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Abstract 37 
 38 
The diagnostic yield of genetic testing for pediatric sensorineural hearing loss (SNHL) has 39 
remained at around 40% for over a decade despite newly discovered causative genes 40 
and the expanded use of exome sequencing (ES). This stagnation may be due to (1) a 41 
focus on coding regions of the genome and (2) an inability to resolve variants in complex 42 
genomic regions due to reliance on short-read sequencing technologies. Short-read 43 
genome sequencing (srGS) and long-read genome sequencing (lrGS) both provide 44 
exonic single nucleotide variant (SNV) and small indel detection at the same sensitivity 45 
as ES, but also evaluate intronic regions. lrGS provides improved resolution for structural 46 
variants (SV) and repetitive genomic regions. We sought to investigate the potential utility 47 
of lrGS in the diagnostic evaluation of a small cohort of patients with SNHL of unknown 48 
etiology after ES and srGS. 19 pediatric patients with SNHL underwent lrGS via PacBio 49 
SMRT sequencing.  Sequencing data were processed using the PacBio WGS variant 50 
pipeline. The diagnostic yield for this lrGS cohort was 4/19 (21%). Relevant variants 51 
detected only with lrGS included a hemizygous deletion in trans with a missense variant 52 
in an area of high genomic homology (OTOA) and two single nucleotide loss-of-function 53 
variants in trans to a known copy-number-loss for a gene with a highly homologous 54 
pseudogene (STRC). A complex inversion was identified in the MITF gene which was 55 
also identified on post-hoc analysis by srGS. LrGS provides improved resolution for 56 
complex genomic structural variation which may increase diagnostic yield for genetic 57 
pediatric SNHL, and, potentially, rare disease more broadly. 58 
 59 
Keywords: long read sequencing, sensorineural hearing loss, hereditary hearing loss  60 
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Introduction  61 
 62 
Congenital sensorineural hearing loss (SNHL) affects as many as 1 in 500 infants in the 63 
United States (Morton and Nance 2006) and a majority of these cases are attributable to 64 
a Mendelian genetic etiology (Smith et al. 2005). The implementation of comprehensive 65 
genetic testing for pediatric SNHL, typically via targeted SNHL gene panels or exome 66 
sequencing (ES), results in an overall diagnostic yield of approximately 43% (Downie et 67 
al. 2020; Perry et al. 2023; Rouse et al. 2022; Shearer 2024; Sloan-Heggen et al. 2016). 68 
There is variation in yield based on clinical phenotype and in some populations, for 69 
instance congenital severe to profound hearing loss, the diagnostic yield can approach 70 
60% (Downie et al. 2020; Sloan-Heggen et al. 2016). This diagnostic yield is relatively 71 
high compared to other neurodevelopmental disorders for which genetic testing is 72 
routinely obtained, such as autism (17%) and epilepsy (24%) (Stefanski et al. 2021). 73 
However, this means that up to 60% of children with a high a priori suspicion of a 74 
hereditary SNHL still go undiagnosed (Kim et al. 2022; Retterer et al. 2016).  75 

The most commonly applied testing methodology for the genetic diagnosis of SNHL is 76 
targeted gene panels, which rely on short read (150-300bp) sequencing of a targeted list 77 
of SNHL genes. Less frequently, pediatric patients with a primary indication of SNHL will 78 
undergo ES, also using short-read sequencing technologies. Both gene panels and ES 79 
are limited by (1) a focus on exonic or coding regions and nearby splice sites, and (2) low 80 
resolution for complex structural variation that contributes to genetic disease. Short-read 81 
genome sequencing (srGS), which is currently not commonly applied in the clinical 82 
evaluation of individuals with SNHL, does provide effective coverage of intronic and 83 
noncoding regions (Byrska-Bishop et al. 2022; Pagnamenta et al. 2023). 84 

However, while srGS evaluates noncoding regions of the genome, it is often unable to 85 
resolve areas of low complexity, high duplication rate, and structural variation (Chaisson 86 
et al. 2019; Genomes Project et al. 2015). In fact, much of the human genome maps to 87 
segmental duplications, or stretches of DNA over 1kb long with over 90% sequence 88 
identity, that are highly mutable but very challenging to resolve using current 89 
methodologies (Bailey et al. 2001; Vollger et al. 2023). Two genes that commonly cause 90 
nonsyndromic SNHL, OTOA and STRC, map to a segmental duplication and highly 91 
homologous pseudogene, respectively, and detecting pathogenic variants within these 92 
genes is challenging (Abbasi et al. 2022; Shearer et al. 2014). This is particularly 93 
important given that pathogenic variation in STRC is the second most common cause of 94 
genetic SNHL (Shearer et al 2014).  95 

Long-read genome sequencing (lrGS), by contrast, generates sequencing reads up to 96 
several megabases long (Mahmoud et al. 2024; Mantere et al. 2019) and therefore has 97 
high resolution for complex structural variation and repetitive genomic regions. Several 98 
studies over the last few years have shown that long-read techniques have the capacity 99 
to identify Mendelian etiology after standard sequencing techniques have failed, including 100 
a handful of patients with SNHL (Conlin et al. 2022; Miller et al. 2021; Ohori et al. 2021; 101 
Olivucci et al. 2024; Vache et al. 2020; Xie et al. 2020). 102 
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In this study, our goal was to evaluate the potential utility of lrGS for genetic diagnosis for 103 
pediatric hearing loss in patients with nondiagnostic ES and srGS. We find that lrGS 104 
provided significantly improved resolution for complex structural variation and, in this 105 
cohort, substantially improved diagnostic yield over ES and srGS.  106 

 107 
Methods 108 
 109 
Recruitment and Participants 110 
 111 
This research was approved by the Institutional Review Board at Boston Children’s 112 
Hospital (P00035179 and P00031494) and performed in partnership with the Children’s 113 
Rare Disease Cohort initiative. Pediatric patients with SNHL were recruited in the Boston 114 
Children’s Hospital Otolaryngology and Communication Enhancement clinical setting and 115 
provided written informed consent to participate. Criteria for eligibility included having a 116 
clinical diagnosis of SNHL that did not have a known genetic etiology; there were no 117 
exclusions based on other clinical criteria, including age of onset, laterality or severity of 118 
hearing loss, presence of syndromic features, or family history. All patients had diagnostic 119 
work up for sensorineural hearing loss including audiometric testing and clinical 120 
evaluation; many had additional diagnostic workup including congenital cytomegalovirus 121 
(cCMV) testing and temporal bone imaging (CT and/or MRI). 122 
 123 
Genetic Testing Methodologies 124 
 125 
Prior to lrGS through this study, genetic testing methodologies varied based on individual 126 
patient circumstances. Some probands had prior single gene sequencing or targeted 127 
hearing loss gene panel sequencing on a clinical basis. All probands had research exome 128 
sequencing, and most probands had srGS performed on a research basis prior to 129 
research lrGS. Prior genetic testing, regardless of methodology, was deemed 130 
nondiagnostic by the testing laboratory and clinical team. 131 
 132 
DNA Extraction, Sequencing, and Analysis 133 
 134 
DNA was extracted from whole blood using standard methods. 150bp paired end ES and 135 
srGS was performed at GeneDx using Illumina sequencers. ES and srGS data were 136 
processed using Illumina Dragen v3.9 as previously described (Rockowitz et al. 2020). 137 
For PacBio sequencing, 12-15 kb insert SMRTbell libraries were prepared using the 138 
SMRTbell prep kit 3.0. Long-read whole genome sequencing was performed using Single 139 
Molecule, Real-Time (SMRT) sequencing at Pacific Biosciences (“PacBio,”) (Menlo Park, 140 
CA) using the PacBio Sequel II system to a depth of 24-32x coverage. Sequence data 141 
was processed by PacBio variant pipeline. Unaligned HiFi reads in BAM format were 142 
received from PacBio. Read alignment and variant calling were performed using PacBio 143 
HiFi-human-WGS-WDL workflow v1.0.3. In short, HiFi reads were aligned to the GRCh38 144 
(GCA_000001405.15) genome using pbmm2 v1.10.0. Single nucleotide variants, small 145 
insertions and deletions were identified with DeepVariant v1.5.0 (Poplin et al. 2018). 146 
Structural variants were called with pbsv v2.9.0. Copy number variations were called with 147 
HiFiCNV v0.1.7. Short tandem repeat expansion was identified using TRGT v0.5.0. Small 148 
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variants and structural variants were jointly phased with HiPhase v0.10.2 (Holt et al. 149 
2024), and phase haplotype tags (“HP”) were added to the aligned BAM file. Variant 150 
calling results were further processed using in house bioinformatic pipelines and analyzed 151 
via GeneDx Discovery Platform. For each candidate variant, sequencing reads were 152 
visually reviewed using IGV v2.16.0. 153 
 154 
Clinical Confirmation and Return of Results 155 
 156 
Variant pathogenicity was determined according to the American College of Medical 157 
Genetics and the Associations for Molecular Pathology guidelines as modified for SNHL-158 
specific considerations (Oza et al. 2018; Richards et al. 2015). Candidate variants that 159 
were identified via research analysis of lrGS were clinically confirmed using an additional 160 
clinical sample and orthogonal genetic testing method within a commercial genetic testing 161 
laboratory (Prevention Genetics, Marshfield, WI) environment with Clinical Laboratory 162 
Improvement Amendments (CLIA) approval. Clinically confirmed variant results were 163 
returned to families and genetic counseling was provided by a certified and licensed 164 
genetic counselor and otolaryngologist.  165 
 166 
 167 
Results 168 
 169 
Subject Demographic and Clinical Characteristics 170 
 171 
Nineteen probands underwent lrGS through this study (Table 1). The median age at the 172 
time of results was 7-years-old (with an interquartile range of 5.1-years-old to 9.7-years-173 
old). Fifteen (79%) probands had a bilateral symmetric SNHL, three (15.8%) had bilateral 174 
asymmetric hearing loss, and one (5.2%) had unilateral SNHL with bilateral enlarged 175 
vestibular aqueducts. Twelve probands (63%) had congenital onset SNHL, 2 (10.5%) had 176 
prelingual SNHL, 3 (15.8%) had postlingual SNHL, and onset of SNHL was unknown for 177 
2 probands (10.5%). Severity of SNHL was highly variable (Supplemental Table 1). Two 178 
(10.5%) probands had an autosomal recessive family history of SNHL, two (10.5%) had 179 
an autosomal dominant family history of SNHL, and 15 (78.9%) had no reported family 180 
history. Five (33.3%) probands had notable extra-auditory clinical presentations including 181 
hemolytic anemia; retinal dystrophy; global developmental delay; hypotonia, low vision, 182 
and nystagmus, and hematuria in one proband each.   183 
 184 
All probands had extensive genetic testing prior to lrGS, the primary indication for which 185 
was SNHL. Three probands (15.8%) had single gene (GJB2) testing, four probands (21%) 186 
had SNHL gene panel testing, 19 probands (100%) had exome sequencing, and 18 187 
probands (94.7%) had short read genome sequencing. Testing was nondiagnostic for all 188 
19 probands on initial analysis. Nine probands (47.4%) were identified to harbor a 189 
heterozygous pathogenic or likely pathogenic variant in a gene that was associated 190 
exclusively or primarily with autosomal recessive conditions, including two probands with 191 
a heterozygous loss of STRC (full patient details are included in Supp. Table 1). 192 
 193 
Long Read Genome Sequencing: 194 
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 195 
The median read length across 19 samples was 13.5 kb (1.2 kb standard deviation). The 196 
median depth of coverage of lrGS across samples was 29.5x (3.5x standard deviation). 197 
On average, per sample, 5,386,525 single nucleotide variants were detected (range 198 
5,305,533-5,533,276) and 22,004 structural variants were detected (range 19,838-199 
23,049). The number of variants, both SNVs and SVs, detected through ES and srGS of 200 
these same patients was significantly lower than for lrGS (Table 2 and Supp. Table 2).  201 
 202 
LrGS and analysis was completed for 19 probands. Genetic variants were identified for 4 203 
of the 19 probands that were assessed to be causative or potentially causative resulting 204 
in a diagnostic yield of 21.1%.  205 
 206 
Case Vignettes 207 
 208 
Case 1:  209 
Proband 1 is a with a bilateral mild-moderate SNHL who is otherwise healthy. Proband 210 
referred bilaterally on the newborn hearing screen in the neonatal period. Two diagnostic 211 
auditory brainstem response (ABR) tests in infancy showed a bilateral SNHL in the mild 212 
range of severity. Subsequent behavioral audiometric evaluations in childhood have been 213 
consistent with a stable bilateral mild sensorineural hearing loss. The proband has an 214 
older sibling with a similar history and audiological profile. There is otherwise no family 215 
history of SNHL. Proband had cytomegalovirus (CMV) testing in the newborn period that 216 
was negative. She has not had diagnostic imaging of the inner ear. Research ES for 217 
proband, sibling, and parents was nondiagnostic but did identify a heterozygous copy 218 
number loss at chromosome 15q15.3 encompassing the STRC and CATSPER2 genes. 219 
No second variant was detected. SrGS did not identify any further notable variants.  220 
 221 
lrGS identified a pathogenic nonsense mutation in trans with a hemizygous deletion of 222 
STRC and CATSPER2 (Figure 1A). The depth-based CNV caller HiFiCNV detected a 223 
104 kb deletion (approx. chr15:43,566,001-43,670,000). On the other allele, DeepVariant 224 
(Poplin et al. 2018) analysis identified the variant NM_153700.2:c.1228C>A, p.(Gln410*) 225 
(chr15:43,616,338 G>A). This variant is absent from gnomAD, ClinVar, and LOVD and 226 
results in a stop gain in an exon that is challenging to map with short reads due to a highly 227 
similar paralog. Interestingly, phasing analysis using Paraphase (Chen et al. 2023) 228 
enabled visualization of a single STRC haplotype and two pseudogene haplotypes of 229 
pSTRC (Figure 1A). This phasing analysis of a complex region helps to confirm 230 
segregation. Both STRC variants were clinically confirmed and disclosed to the family. 231 
LrGS was able to help resolve this SNV when other methods could not, due to the highly 232 
homologous pseudogene pSTRC. 233 
 234 
Case 2:  235 
Proband 2 is a male with a bilateral mild to moderate SNHL who is otherwise healthy. He 236 
did not pass a newborn hearing screen. An ABR performed in infancy identified a mild 237 
SNHL. A recent behavioral audiometric evaluation in childhood showed a bilateral mild to 238 
moderate SNHL. The proband had negative CMV testing in the newborn period. He has 239 
not had diagnostic imaging of the inner ear. Research trio ES identified a heterozygous 240 
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CNV at 15q15.3 encompassing the STRC and CATSPER2 genes. SrGS was 241 
nondiagnostic. Similar to Case 1, LrGS identified a single nucleotide variant in STRC 242 
(NM_153700.2:c.3217C>T, p.(Arg1073*)) in trans to the CNV which was classified as 243 
pathogenic. Following the identification of these STRC variants, another sibling to 244 
proband 2 was born and identified to have a mild bilateral SNHL shortly after birth; results 245 
of targeted STRC variant testing for this sibling are pending. 246 
 247 
 248 
Case 3:  249 
Proband 3 is a female with a bilateral SNHL. She did not pass a newborn hearing screen 250 
bilaterally. Initial ABR in infancy identified a bilateral SNHL that was moderate in severity. 251 
A recent hearing test in childhood demonstrated a slightly u-shaped audiogram 252 
configuration in the moderate to moderately-severe range of severity. She had CMV 253 
testing that was negative. She has not had diagnostic imaging of the inner ear. Targeted 254 
gene panel testing identified a heterozygous likely pathogenic variant in MYO7A (Supp. 255 
Table 1.) The proband’s unaffected parent also harbored this variant. Research exome 256 
and srGS were nondiagnostic with no further variants of interest identified.  257 
 258 
LrGS identified a copy number variant (CNV) (loss of 769bp at chr16:21,735,945) 259 
including exon 22 of OTOA in trans with a heterozygous missense variant 260 
(NM_144672.3:c.2654A>G, p.(His885Arg)) in the OTOA gene (Figure 1B).  This result 261 
was deemed to be possibly/likely diagnostic of OTOA-associated nonsyndromic hearing 262 
loss. However, the missense variant in OTOA is currently classified as a variant of 263 
uncertain significance. OTOA is within a segmental duplication. Neither variant in OTOA 264 
had been appreciated before lrGS; upon review, the srGS analysis pipeline had called the 265 
His885Arg missense variant, but it had been filtered out of the list of candidate variants 266 
due to low call quality (poor coverage and mapping quality). The CNV was detected only 267 
by lrGS. 268 
 269 
Case 4:  270 
Proband 4 is a female with a bilateral asymmetric SNHL. She passed a newborn hearing 271 
screen bilaterally. Failing a hearing screen in early childhood prompted audiological 272 
assessment. Behavioral audiometry identified a mild low-frequency SNHL, which has 273 
progressed slightly since first identified. In the right ear, hearing is in the moderate rising 274 
to normal range of severity. In the left ear, hearing has been in the slight sloping to 275 
moderate rising to normal range of severity. GJB2 sequencing was negative. Research 276 
ES was nondiagnostic.  277 
 278 
lrGS identified a 403.2kb inversion (chr3:69977069_70380310inv) upstream of the MITF 279 
gene predicted to impact alternatively spliced transcripts of MITF. Similar inversions have 280 
not been reported before, so this variant was classified as a variant of uncertain 281 
significance though it is suspected to be causative of the proband’s SNHL. This copy-282 
neutral inversion was subsequently identified on srGS upon reanalysis of data using an 283 
updated tertiary analysis pipeline. 284 
 285 
Discussion  286 
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 287 
Despite increasing access to comprehensive genetic testing for pediatric SNHL patients, 288 
the discovery of additional SNHL genes, and decreasing costs of testing, the diagnostic 289 
yield of the genetic evaluation of SNHL remains at approximately 43% over the past 290 
decade (Shearer 2024). While this diagnostic rate is high compared to other indications 291 
for genomic testing in children (Malinowski et al. 2020; Manickam et al. 2021; Vandersluis 292 
et al. 2020), there remains a gap between the actual diagnostic rate and the suspected 293 
true prevalence of hereditary hearing loss (Smith et al. 2005). Furthermore, the 294 
improvement in the diagnostic yield for hearing loss as well as other pediatric rare 295 
diseases seems only modestly increased when comparing srGS to ES (Wojcik et al. 296 
2024). Identifying the underlying cause of SNHL in pediatric patients is critical to providing 297 
tailored, high-quality care. Determining the genetic etiology of SNHL facilitates accurate 298 
genetic counseling and recurrence counseling, provides valuable information on 299 
prognosis that may impact treatment decisions, and allows for the identification and 300 
appropriate follow-up for children with syndromic SNHL. Ongoing clinical trials for 301 
targeted gene therapies for DFNB9 further emphasize the utility of precision medicine in 302 
the care of pediatric SNHL patients and the potential impact of an accurate genetic 303 
diagnosis (Lv et al. 2024). 304 
 305 
Given the relatively high prevalence of pediatric SNHL in the population, an increase in 306 
the overall genetic diagnostic rate is poised to result in many more diagnoses per year, in 307 
absolute terms. The STRC gene alone has a carrier frequency of approximately 1.5% in 308 
the general population, and accounts for around 15% of all cases hereditary hearing loss 309 
(Han et al. 2021; Perry et al. 2023; Shearer et al. 2014; Shubina-Oleinik et al. 2021; Sloan-310 
Heggen et al. 2016). However, due to the STRC pseudogene and complexity of this 311 
genomic region, many commercial labs will only perform CNV analysis without 312 
sequencing or omit STRC from gene panels altogether. We posit that STRC is, therefore, 313 
meaningfully under-diagnosed. We performed lrGS for two unrelated probands with 314 
congenital mild-moderate SNHL and a heterozygous loss of STRC, resulting in a high a 315 
priori suspicion for a missing second STRC variant. lrGS confirmed that suspicion, 316 
resolving loss-of-function SNVs in trans to a CNV for both probands. While less prevalent 317 
than STRC-, OTOA-mediated hearing loss is likely underdiagnosed as well due to its 318 
locus in a segmental duplication. Indeed, an estimated 7% of the human genome consists 319 
of segmental duplications that are highly mutable (Vollger et al. 2023; Vollger et al. 2022).  320 
 321 
This work underscores the promise of lrGS to improve detection of variants in complex 322 
and difficult-to-resolve genomic regions and increase diagnostic yield. In this study, we 323 
selected a cohort of 19 probands with pediatric SNHL who had already had extensive 324 
genetic evaluation. We were able to identify four additional diagnoses and confirm a 325 
complex structural variant, leading to a diagnostic rate of 21.1% using lrGS. Emerging 326 
studies comparing the genetic diagnosis of rare disease using ES and srGS do not report 327 
a significant improvement in the yield of srGS over ES (Chung et al. 2023). SrGS remains 328 
more expensive than ES and more time-consuming to analyze. It is, in fact, not a part of 329 
routine clinical care to order srGS across most clinical indications, including pediatric 330 
SNHL. Sample sizes are small, but published rare disease studies using lrGS, including 331 
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this one, hint at the potential for improved yield over other methodologies (Mahmoud et 332 
al. 2024; Miller et al. 2021; Pagnamenta et al. 2023; Xie et al. 2020).  333 
 334 
LrGS, while not currently available on a clinical basis, offers a single test to identify SNV, 335 
CNVS, small insertion and deletions, tandem repeats, SVs, and methylation changes 336 
across both simple and complex genomic regions. In addition, this technology provides 337 
phasing information which may be advantageous for discrimination of pathogenic 338 
variation. For the patients in this small cohort, each had undergone extensive genetic 339 
testing prior to lrGS. While lrGS remains costly compared to other testing modalities, 340 
eliminating the use of other high-cost, low-yield tests such as srGS may ultimately be 341 
more beneficial to all stakeholders.  342 
 343 
Limitations of our study include the small cohort size as well as the selection of probands 344 
for inclusion based on high a priori suspicion of a mendelian condition based on clinical 345 
characteristics. Future work should include a larger sample size of less highly selected 346 
patients with pediatric SNHL.  347 
 348 
Conclusions 349 
 350 
Long read sequencing, while not in use clinically, has shown promise as a single test 351 
capable of detecting diverse genomic variant types in both simple and complex genomic 352 
regions. We describe four diagnoses identified in a cohort of 19 pediatric patients with 353 
SNHL who had undergone extensive nondiagnostic testing prior to lrGS, further 354 
highlighting the promise of this technology to significantly increase diagnostic rates.   355 
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Figures 570 
 571 
Figure 1 Causative variants identified via long-read genome sequencing (lrGS). A) Top panel shows identification of 572 
compound heterozygous pathogenic variant and hemizygous deletion in STRC. Bottom panel shows haplotype analysis 573 
indicating two STRCP1 haplotypes and only one STRC haplotype, with roughly half of the expected coverage (CN1), 574 
containing a G>A stop gain at chr15:43,616,338. B) Identification of a single exon deletion (exon 22) and stop mutation in 575 
compound heterozygosity in the OTOA gene. C) Identification of a copy-neutral inversion in the MITF gene.  576 
 577 
 578 
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Tables   580 
 581 
Table 1: Cohort demographic and clinical characteristics. lrGS: long-read genome 582 
sequencing. 583 
 584 

Characteristic lrGS Cohort n (%) 

Total 19 (100%) 

Sex 
 

     Female 13 (68.4%) 

     Male 6 (31.6%) 

Race 
 

     White 16 (82.4%) 

     Not Reported 1 (5.2%) 

     Asian 1 (5.2%) 

     Hispanic/Latino 1 (5.2%) 
Positive Family History (of childhood-onset 
HL)  

     No 15 (78.9%) 

     Yes 4 (21.1%) 

HL Onset 
 

     Congenital  12 (63.1%) 

     Prelingual  2 (10.5%) 

     Postlingual  3 (15.8%) 

     Unknown 2 (10.5%) 

HL Laterality 
 

     Bilateral, symmetric 15 (78.9%) 

     Unilateral 1 (5.2%) 

     Bilateral, asymmetric 3 (15.8%) 

HL Severity (in worse ear) 
 

     Mild-Moderate  9 (47.4%) 

     Severe-Profound 10 (52.6%) 

Syndromic Features 
 

     Yes 5 (26.3%) 

     No 14 (73.7%) 

Previous Genetic Testing 
 

     Single gene 3 (15.8%) 

     Gene panel 4 (21.1%) 

     Exome sequencing 19 (100%) 

     Short read genome sequencing 18 (94.7%) 

585 
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Table 2. Key sequencing statistics using exome sequencing (ES), short-read genome sequencing (srGS) and long-read 586 
genome sequencing (lrGS).  587 
 588 
Method ES srGS PacBio lrGS 

N Samples 19 18 19 

Read Length (bp) 150 150          13,539  

Avg Depth of Coverage 75.5 50.9 29.5 

SNV Detected (T-test* significance 
relative to lrGS)   117,336** (p=4.2E-36)         5,039,980 (p=1.2E-18)     5,386,525  

SV Detected (T-test* significance 
relative to lrGS) 78† (p=1.5E-28)               12,273 (p=6.6E-15)           22,004  

 589 
SNV = single nucleotide variant, SV = structural variant. *Two-tailed paired T-test. **T-test significance ES relative to srGS 590 
for SNVs: 5.1E-34. †T-test significance ES relative to srGS for SVs: 9.6E-17.  591 
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