
End-to-End Machine Learning based Discrimination of Neoplastic and 

Non-neoplastic Intracerebral Hemorrhage on Computed Tomography 

 
Jawed Nawabi MD MHBAa, b*, Sophia Schulze-Weddige M.Sc.c*, Georg Lukas Baumgärtner 

M.Eng.c, Tobias Orth1, Andrea Dell Orco M.Sc.d, Andrea Morotti MDe, Federico Mazzacane 

MDf, g, Helge Kniep MD Dipl. Ing.h, Uta Hanning MDh, Michael Scheel MDd, Jens Fiehler 

MDh, Tobias Penzkofer MDb, c 

 
 
a Department of Neuroradiology, Charité - Universitätsmedizin Berlin, Campus Mitte, 
Humboldt-Universität zu Berlin, Freie Universität Berlin, Berlin Institute of Health, Berlin, 
Germany. 
b Berlin Institute of Health (BIH), Berlin, Germany. 
c Department of Radiology, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, 
Humboldt-Universität zu Berlin, Freie Universität Berlin, Berlin Institute of Health, Berlin, 
Germany. 
d Department of Neuroradiology, Charité - Universitätsmedizin Berlin, Campus Mitte, 
Humboldt-Universität zu Berlin, Freie Universität Berlin, Berlin Institute of Health, Berlin, 
Germany. 
e Department of clinical and experimental sciences, Neurology Clinic, University of Brescia, 
Brescia, Italy 
f Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy. 
g U.C. Malattie Cerebrovascolari e Stroke Unit, IRCCS Fondazione Mondino, Pavia, Italy. 
h Department of Diagnostic and Interventional Neuroradiology, University Medical Center 
Hamburg Eppendorf, Hamburg, Germany.   
 
* these authors contributed equally 
 

 

Running Title: End-to-end machine learning based prediction of neoplastic hemorrhage 

Corresponding Author 

Sophia Schulze-Weddige 

Department of Radiology 

Universitätsmedizin Berlin 

Augustenburger Platz 1 

13353 Berlin, Germany 

Email: sophia.schulze-weddige@charite.de 

ORCID: 0000-0003-4248-5563 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 1, 2024. ; https://doi.org/10.1101/2024.09.30.24314346doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2024.09.30.24314346
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Abstract word count: 323 

Text word count: 3184 (Introduction to discussion) 

Number of references: 39 

Figure and tables: 2 Tables and 4 Figures. 

Supplementary material: 1 Table and 4 Figures 

 

Abstract  

Purpose: To develop and evaluate an automated segmentation and classification tool for the 

discrimination of neoplastic and non-neoplastic intracerebral hemorrhage (ICH) on admission 

Computed Tomography (CT) utilizing images containing hemorrhage and perihematomal 

edema. 

 

Materials and Methods: The models were developed and evaluated using a retrospective 

dataset of patients who presented with acute ICH of unknown cause upon admission, using CT 

scans obtained from a single institution between January 2016 and May 2020 for both training 

and testing. Etiology of ICH were binarized into non-neoplastic and neoplastic ICH according 

to follow-up MRI results based on the ATOMIC ICH classification. Masks for ICH and PHE 

were manually segmented. Two separate models were trained: 1) An nnU-Net segmentation 

model 2) A ResNet-34 classification model. An end-to-end tool was evaluated by concatenating 

the two models which allowed the segmentation model to preprocess the images for the 

classification model. Performance enhancement was assessed by fine-tuning the model on a 

randomly selected, small subset of the external cohort. To assess the model’s generalizability, 

the performance was additionally validated on an external dataset. Evaluation metrics were 

accuracy (Acc), area under the curve (AUC) and corresponding sensitivities and specificities.  
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Results: A total of 291 patients were included of whom 116 (39.86%) presented with neoplastic 

and 175 (60.14%) with non- neoplastic ICH. The end-to-end classification tool achieved an Acc 

of 86% and an AUC of 85% with a sensitivity and specificity of 80% and 93% in the test set. 

On the external validation cohort (n=58), the classification pipeline achieved an AUC of 68% 

and Acc of 66% (sensitivity 64%; specificity 67%). Fine-tuning on a selected small subset of 

the external cohort enhanced performance, achieving an AUC and accuracy of 70% (sensitivity 

70%; specificity 71%). 

 

Conclusion: An end-to-end classification tool achieved a high diagnostic performance and 

generalizability in classifying neoplastic from non-neoplastic ICH on CT, suggesting a robust 

framework for a potential clinical implementation as a decision-aided tool in early ICH 

management. 

 

 

Keywords: brain neoplasms; hemorrhage; edema; Tomography; X-Ray Computed; artificial 

intelligence. 
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Abbreviations 

 

Acc   accuracy  

AUC  area under the curve  

BM  brain metastasis 

CAA  cerebral amyloid angiopathy 

CNN  convolutional neural network 

CT  Computed Tomography 

DKFZ  Division of Medical Image Computing, German Cancer Research Center  

DSC  dice score coefficients 

EDH  epidural hematoma 

ICH   intracerebral hemorrhage  

IQR  interquartile range 

IVH  intraventricular hemorrhage 

FN  false negative 

FP  false positive  

GBM  glioblastoma multiforme  

GCS  Glasgow Come Scale 

HU  Hounsfield units 

MRI  Magnetic Resonance Imaging 

NCCT  non-contrast CT  

NCET  non-enhanced CT 

NifTI  Neuroimaging Informatics Technology Initiative 

PACS  picture archiving and communication system 

PHE  perihematomal edema 

ResNet  Deep Residual Network 

ROI  region of interest 

SAH  subarachnoid hemorrhage 

SDH  subdural hematoma 

SD  standard deviation 

TN  true negative  

TP  true positive 
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1. Introduction 

Neoplastic hemorrhage is a variant of intracerebral hemorrhage (ICH) and reported to occur in 

up to 30% of all brain tumors, specifically in glioblastoma multiforme (GBM) and brain 

metastasis (BM).1,2,3 Diagnostic key dilemmas in these patients include stroke-like symptoms 

accompanied by bleedings masking the underlying tumor on imaging.4,5,6,7,8,9,10  Therefore, 

neoplastic hemorrhage may not always disclose the underlying cause of the bleeding 

immediately, as it may indicate, among others, a hypertensive ICH.4 This is of particular 

importance in patients with brain tumors presenting with hemorrhage as the first clinical 

manifestation.4,5,6,7,8,9 Perihematomal edema (PHE) on Computed Tomography (CT) has been 

introduced as a promising candidate to accurately discriminate between neoplastic and non-

neoplastic hemorrhage upon admission imaging.11,12,13 This issue was initially explored for 

qualitative imaging characteristics and was further advanced into a machine learning approach 

adding quantitative imaging-based texture features.11,12,13 Recent developments of deep 

learning approaches have gained great utility within cancer imaging, but have not yet been 

explored for the discrimination of neoplastic hemorrhage.14 Therefore, we hypothesized that an 

end-to-end machine learning pipeline accurately discriminates neoplastic from non-neoplastic 

hemorrhage.  

 

2. Material and Methods 

This study was approved by the ethics committee (Charité Berlin, Germany [protocol number 

EA1/035/20] and written informed consent was waived by the institutional review boards. All 

study protocols and procedures were conducted in accordance with the Declaration of Helsinki. 

Patient consent was waived due to the retrospective nature of the study. 
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2.2 Study Populations 

2.2.1 Internal Training and Testing Cohort 

Patients with acute ICH referred to Charité University Hospital Berlin, Germany were 

retrospectively reviewed during the period of 01/2016 to 05/2020. 27,174 patients were 

included according to a referral diagnosis of ICH on CT and a follow-up Magnetic Resonance 

Imaging (MRI). CT images were screened for the presence of parenchymal ICH and excluded 

when in coappearance of subarachnoid hemorrhage (SAH), subdural hematoma (SDH), or 

epidural hematoma (EDH). Patients with an MRI follow-up more than 30 days after initial CT 

imaging were also excluded. Further exclusion was performed for subjects with parenchymal 

ICH secondary to hemorrhagic transformation following ischemic stroke, traumatic or 

aneurysmal associated ICH, and cranial surgery performed prior to the admission imaging. The 

retrieved follow-up MRI reports were used to define the ICH etiology as previously reported13. 

In brief, ICH etiology was determined according to seven prespecified categories based on an 

adapted version of the mechanistic H-ATOMIC classification and described in detail in the 

supplementary material15,16. Medical records provided patient age, sex, medical history, 

medication details, Glasgow Come Scale (GCS) score, and symptom onset time.  

 

2.2.2 External Validation Cohort 

We tested the performance and generalizability of our tool on an external data cohort, 

retrospectively collected from the University Medical Center Hamburg, Germany between 

01/2015 to 12/2017. Inclusion criteria were consistently applied in line with the protocols 

established for our development cohort, ensuring uniformity across both groups.  

 

2.3 Image Analysis 
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Non-contrast CT (NCCT) and MRI imaging data were retrieved from the local picture archiving 

and communication system (PACS) servers in Digital Imaging and Communications in 

Medicine (DICOM) format. DICOM data was anonymized in compliance with the local 

guidelines and transformed into Neuroimaging Informatics Technology Initiative (NifTI) files. 

ICH location and presence of an intraventricular hemorrhage (IVH) was documented. ICH and 

PHE were semi-manually quantified by planimetric measurements using the NifTI data as 

described in detail in the supplementary material17,18. A repeated segmentation was performed 

3 months apart by one rater for 29 patients, selected in the test set, to calculate intra-reader 

agreement. Regions of interest (ROIs) were delineated using the MITK Workbench 2016.11.0 

Software19.  

 

2.4 End-to-end Pipeline 

Two models were trained with manually segmented non-enhanced CT (NECT) images 

containing ICH and PHE regions. The first model was a segmentation model which was 

subsequentially used to preprocess the images for the second model, which performed the 

classification task. The two models are described in more detail below. The performance on the 

test set was evaluated by combining both models sequentially to build a fully automated end-

to-end classification tool. This way of reducing complexity is a sensible strategy, particularly 

in the medical domain where labeled datasets are often limited in size. By applying masks to 

focus solely on the relevant regions of interest, we not only streamline the computational 

process but also optimize the utilization of available data. This targeted approach ensures that 

the computational burden is concentrated where it matters most, improving the efficiency of 

analysis and model training. 

 

2.5 Preprocessing 
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An image subset of size 200x200x20 centered on the ICH region was created. The new images 

encompassed the complete ICH and PHE regions, thereby diminishing the initial input image 

size from 8.1 million voxels to 800,000. To achieve further reduction, we applied a mask that 

zeroed out all voxels beyond the boundaries of the ICH and PHE regions. As the image size of 

200x200x20 was selected to accommodate even the largest lesions, most images contain 

significantly smaller regions of interest. Consequently, this approach served to further diminish 

complexity. In the training phase, the preprocessing was based on manual segmentations. In the 

testing phase, however, the segmentations were automatically generated by the segmentation 

model as discussed above. 

 

2.6 Automated Deep Learning Segmentation 

In the end-to-end tool a deep learning framework was employed to automatically segment the 

ICH and PHE region for the preprocessing of the CT images.20 Therefore, a MIC-DKFZ nnU-

Net was trained (Division of Medical Image Computing, German Cancer Research Center 

(DKFZ), Heidelberg, Germany) which is a robust adaptive and open-source tool rendering 

state-of-the-art biomedical image segmentation20,21 and has already shown promising results in 

the context of ICH and PHE segmentation.22 The source code and comprehensive 

documentation are publicly available on GitHub.23 The dataset was randomly split into a 

training (90%) and test (10%) set as presented in figure 1. Mean and median dice score 

coefficients (DSC) were selected as the computational metrics for the segmentation model and 

computed as described in the supplementary material.24 DSC of the manually segmented ground 

truth masks were calculated for the test set of 29 subjects with non-neoplastic and neoplastic 

ICH. 
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Figure 1: Overview of the pipeline for the classification of neoplastic and non-neoplastic and 
intracerebral hemorrhage  

 
 
Legend: Pipeline for the classification of neoplastic and non-neoplastic intracerebral 

hemorrhage by integrating a nnU-Net-based segmentation of intracerebral hemorrhage and 

perihematomal edema with a deep residual network comprising 34 layers (ResNet-34) for 

advanced pattern recognition. The training and testing phases were conducted on a dataset 

comprising 291 scans, followed by an external validation on an independent dataset of 58 scans 

from a separate center to ensure robustness and generalizability of our model. 

 

2.7 Residual Network Classification 

For our study, a ResNet34 model was trained as presented in figure 2. The same training (90%) 

and testing (10%) split as for the segmentation model was used as presented in figure 1. 

Hyperparametertuning was performed to determine the best model configuration for the 
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classification task at hand. The final model was trained for 182 epochs with a batch size of 64, 

a learning rate of 0.000296, the Adams optimizer, Negative Log-Likelihood loss, and image 

augmentations using batchgenerators43. As shown in figure 3, there were four indices for 

comparing real labels and predicted labels in the binary classification pipeline: true positive 

(TP), true negative (TN), false positive (FP), and false negative (FN). Performance metrics were 

accuracy (Acc) and area under the curve (AUC) with corresponding sensitivities and 

specificities. In order to optimize the balance between sensitivity and specificity on the test set 

and the external validation cohort, the optimal threshold was defined as the point maximizing 

the product of sensitivity and specificity.25,26 

 

Figure 2: Classification model for the classification of neoplastic and non-neoplastic 
intracerebral hemorrhage  
 

 
Legend: Classification of neoplastic and non-neoplastic intracerebral hemorrhage (ICH) with a 

deep residual network with 34 layers (ResNet-34). The graphic illustrates the ResNet34 model 

architecture. The input layer processes segmented medical images containing only the ICH and 

PHE region, followed by convolutional blocks with residual connections for effective feature 

extraction. Pooling layers (red) reduce spatial dimensions, and fully connected layers make the 

classification decision. The output layer uses softmax activation for probability predictions of 

neoplastic and non-neoplastic classes. The prediction is displayed on a scale from benign to 

malignant in our web based custom reader interface (figure 4). 

 

2.8 Statistical Analysis 
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For the clinical indicators of patients, data was tested for normality and homogeneity of 

variance using histogram plots and the Shapiro-Wilk test. Descriptive statistics are presented 

as counts (percentages [%]) for categorical variables and compared with χ2 test. Continuous 

variables are presented as mean (standard deviation [SD]) for normally distributed variables, 

and medians (interquartile range [IQR]) for non-normal variables which are compared with the 

Mann-Whitney test. A p-value < 0.05 was considered as significant. Statistical analyses were 

performed using the IBM SPSS Statistics 21 software package (IBM Corporation, Armonk, 

NY) and python package sklearn 0.0.post1. Visualizing the data was done in an Ubuntu 20.04.5 

LTS environment using jupyterlab 3.4.5 and LaTeX 2.0 as well as the following python 

packages: matplotlib 3.5.2, seaborn 0.11.2. The following packages were used in the ResNet 

training process: torch 1.12.1+cu113, batchgenerators 0.24, scikit-learn 1.1.2, NumPy 1.23.3, 

pandas 1.5.0. The following packages were used in the nnU-Net training process: nnU-Net 

Version 1.6.6, SimpleITK Version 2.0.2, pandas v 1.2.3, NumPy 1.20.2. 

 

3. Results 

3.1 Patients Characteristics of the Internal Training and External Validation Cohort 

Characteristics of 291 patients in training and testing cohorts are in Table 1. 116 (39.86%) had 

neoplastic ICH, predominantly brain metastases (79; 68.10%) versus primary tumors (37; 

31.90%). Non-neoplastic ICH was found in 175 (60.14%). Neoplastic ICH had larger PHE 

volumes (median 23.11 ml, IQR: 12.45-60.25 ml) than non-neoplastic (median 10.48 ml, IQR: 

5.32-24.37 ml, p < 0.001). Hematoma volumes were similar between groups (p = 0.56). The 

external validation cohort mirrored these findings. 

 

3.2 Automated Lesion Segmentation of ICH and PHE 

On the test set, the segmentation model achieved median DSC of 0.80 (mean 0.70 ± 0.30; range 

0 – 0.95) and 0.70 (mean 0.60 ± 0.24; range 0 – 0.86) for ICH and PHE, respectively. Median 
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DSC of ground truth masks for repeated segmentations were 0.86 (mean 0.85 ± 0.11; range 

0.43 – 0.96) for ICH and 0.71 (mean 0.69 ± 0.12; range 0.36 – 0.85) for PHE.  

On the external validation cohort, the model achieved median DSC of 0.71 (mean 0.66 ± 0.20; 

range 0 – 0.88) and 0.60 (mean 0.55±0.19; range 0 – 0.87) for ICH and PHE, respectively. In 

two cases, the model did not segment any ICH or PHE region. These cases were excluded from 

the proceeding analysis of the classification tool due to the absence of segmented regions in the 

preprocessed images. 

 

3.3 End-to-end Tool for the Classification of Neoplastic and Non-neoplastic ICH 

Our end-to-end tool distinguished neoplastic from non-neoplastic ICH with an AUC of 85% 

and Acc of 86% (sensitivity 80%; specificity 93%) in the test set with a decision threshold of -

1.5 on the model’s output of the positive class. On the external validation cohort, the 

classification pipeline achieved an AUC of 68% and Acc of 66% (sensitivity 68%; specificity 

63%). These results were reached with a decision threshold of -0.075. The end-to-end 

classification tool failed to correctly classify four subjects which have been analyzed in detail 

and presented on a case-by-case basis in the supplementary figures 1-4. It misclassified one 

subject as neoplastic ICH (false positive; FP) and three as non-neoplastic ICH (false negative; 

FN). Resulting performance metrics are shown in table 2. The results for the indices of the 

confusion matrix are presented in figure 3. An illustrative example of the web based custom 

reader interface for the automated segmentation and classification of neoplastic and non-

neoplastic ICH is illustrated in figure 4.  
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Figure 3: Confusion matrices for classification of non-neoplastic and neoplastic intracerebral 
hemorrhage.  
    

 
 

Legend: Confusion matrices for the classifier in the test set (left) and the external validation 

cohort (right). 
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Figure 4: Web based custom reader interface for the fully automated prediction of neoplastic 
and non-neoplastic intracerebral hemorrhage on Computed Tomography.  
 

 
 
Legend: Imaging panel of web based custom reader interface with an image drop zone for the 
automated lesion detection, segmentation, and calculation of parenchymal hemorrhage (green) 
and perihematomal edema (red) volumes and densities - displayed to the reader on the right 
imaging panel. Automated prediction of non- neoplastic (green coded bar displayed below the 
volume characteristics; left) and neoplastic bleeding (red coded bar displayed below the volume 
characteristics; right) with a high certainty (upper panel) compared to two additional cases of 
less certainty (lower panel). ICH; intracerebral hemorrhage; HU, Hounsfield Unit; PHE, 
perihematomal edema 
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4. Discussion 

In this study, we proposed a prediction model for the automated segmentation and classification 

of neoplastic ICH utilizing imaging properties on CT from the parenchymal hemorrhage and 

surrounding edema formation in an ICH patient cohort. The proposed prediction pipeline 

demonstrated an overall high accuracy and diagnostic performance, suggesting a robust 

framework for an end-to-end tool to be implemented in the clinic. As shown in the confusion 

matrices, only a small number of subjects were incorrectly classified which have been compiled 

on a case-by-case basis in the supplementary figures. In the test set, one single subject with 

non-neoplastic ICH was incorrectly classified. The corresponding CT image displayed a 

bleeding in the paravermal cerebellar hemisphere which was confirmed as a rare pial-type of 

an arteriovenous malformation as indicated in the supplementary figure 1. On CT imaging the 

bleeding was surrounded by relatively pronounced PHE formation which potentially could be 

a result of a repeated bleeding event found in arteriovenous malformations.27   

 

Our previous results have confirmed higher PHE characteristics in neoplastic ICH to be of high 

discriminatory value in the classification of neoplastic and non-neoplastic ICH and therefore 

may have equally led to the misclassification of the current classifier.11,17,13 Among the falsely 

negative classified subjects, two were characterized by small bleedings of metastatic ICH as 

presented in the supplementary figures 2 and 3. As the preprocessing exclusively segmented 

the largest lesion, the classification model generated predictions based solely on this particular 

instance of bleeding rather than considering the entirety of the bleeding instances. This 

complicated the classification task, potentially contributing to the misclassification errors. 

Another case of metastases associated ICH was incorrectly classified as presented in the 

supplementary figure 4. This patient with an unknown melanoma metastasis presented with a 

large parenchymal bleeding and extension to the ventricular system - both displaying very 
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atypical imaging findings of an underlying neoplastic brain lesion and being rather indicative, 

among others, of a hypertensive or amyloid angiopathy associated bleeding.29 In hindsight, the 

patient’s record indicated that the patient had concomitantly suffered from meningitis 

ventriculitis which was unknown at the point of the follow-up imaging that we used for our 

classification scheme. It is to be believed that these complications may have caused or at least 

have strongly influenced the development of a large parenchymal ICH with extension to the 

ventricular system.30,31 In compliance with the aforementioned, IVH among patients with 

neoplastic brain lesions is limited to two case reports.  In a case series of 15 patients with 

metastatic bleedings, five patients presented with some of the parenchymal hemorrhage 

ruptured into the ventricular system, and one presented with a primary IVH only.10 The authors 

found no presence of IVH among a subgroup of patients with glioma associated bleedings.10 In 

line with this, IVH among primary brain tumors is only reported in one case report of 

intraventricular meningioma.32 A rare condition seen in 0.5–5% of all intracranial meningiomas 

with 80% presenting in the lateral ventricles  - similarly to our case.32 Hence, massive IVH is a 

very random condition in neoplastic brain lesions and may result primarily from a metastatic 

tumor at or within the cerebral ventricles. Considering the rather rarely seen and clinically 

inconclusive cases, coupled with small bleedings primarily in metastatic lesions, it is 

conceivable that our proposed classification tool showed an overall good performance. 

 

The widespread adoption of ML tools in medical imaging, particularly for the analysis of CT 

images, is hindered by the challenge of poor generalizability across different scanners and local 

clinical practices44. The inherent variability in imaging protocols, hardware configurations, and 

acquisition techniques among diverse medical institutions leads to a lack of standardization in 

the data. ML models trained on images from one scanner or clinic may struggle to adapt 

effectively to data from others, compromising their performance and reliability. This issue is 

exacerbated by subtle yet consequential differences in image quality, resolution, and noise 
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levels between machines45. As a result, the robustness and accuracy demonstrated during model 

development may not translate seamlessly when applied to CT images acquired from disparate 

sources which also translated into a reduced performance on our external dataset. While a 17% 

reduction in AUC and Acc is not optimal, the performance in the external validation remains 

satisfactory, given the diverse data sources. To enhance performance, we attempted model 

finetuning using a limited subset of images from the external dataset. Following a common 

approach, we froze the trained layers of the classification model and selectively trained the last 

layer. Specifically, we randomly selected 20% (n=12) of cases from the external cohort for 

finetuning, resulting in a 2% improvement in AUC. Further enhancements are anticipated with 

more training data. We deliberately refrained from utilizing more external data to maintain a 

realistic evaluation of performance. 

 

This study has several strengths. First, we utilized two state-of-the-art deep convolutional 

neural networks. The ResNet was developed with the main intent of designing very-deep 

networks that did not suffer from the “vanishing gradient” problem that was prevalent in its 

predecessors.33 The nnU-Net outperformed most deep learning networks and won several 

competitions of segmentation tasks of biomedical imaging.21 In addition, we added imaging 

information on PHE which have shown to be important in the differential diagnosis of 

neoplastic brain lesions. 11,17 In our previous studies the diagnostic properties of PHE had been 

initially analyzed in a conventional and later radiomics based machine learning approach. 11,17  

Despite the promising results both methods lacked the potential for a clinical implementation 

as the manual lesion segmentation was a prerequisite for the classification task.12 Previous 

studies had proposed automated algorithms for the segmentation and volumetric estimation of 

both ICH and PHE, but their methods were limited to non-neoplastic, and foremost 

hypertensive, ICH patients.32,40,41 Hence, the performance in a real-world ICH patient cohort, 

especially with neoplastic ICH, was supposedly uncertain. To our knowledge this is the first 
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study to propose a fully automated tool for the classification of neoplastic and non- neoplastic 

ICH. This can be considered as a significant step forward in improving the diagnostic dilemma 

and hence clinical management and outcome of patients with neoplastic brain lesions presenting 

with ICH.4,5,6,7,8,9 In line with this, we implemented a ready to use web-based custom reader 

interface to be integrated in the clinical workflow and allow a quick and easy imaging 

interpretation in the real-life clinical setting. We plan to improve the model by adding subgroup 

specific classifications for all ICH etiologies. This is of clinical interest, as the differentiation 

of metastatic and primary brain tumors is important since clinical management and treatment 

of these two types of tumors are radically different.37,43 The same applies for non-neoplastic 

ICH which represent a very large group of heterogenous entities and could help to inform 

treating physicians about prognosis and treatment strategies.16,42 Another strength is that the 

generalizability of our approach was tested in an external cohort. This step is often omitted 

which means no claims about the general performance of a given model can be made. Although 

the performance dropped, we are still content with the results as an equally high performance 

on images from different scanners is unlikely in most AI models. Further, fine-tuning on as 

little as 12 cases already improved the performance. Hence, with limited effort the approach 

can be translated to other datasets, clinics, and scanners. 

 

Our study had some limitations. Firstly, as this was a clinical study of retrospectively collected 

data it bears a risk of bias. ICH etiology was determined by follow-up MRI report. Additional 

pathology reports may have increased the certainty of ICH etiology but were not universally 

available. Secondly, the DSC showed potential for improvement in the PHE segmentation 

quality. However, these results agree well, and in some cases even prove better, with previous 

results reporting fully automated PHE segmentation models.22,38,39 As stated above, the 

proposed model performed less in cases of small ICH, primarily with metastatic lesions as 

presented in the supplementary figure 2 and 3, a problem that has been frequently been found 
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in deep learning segmentation models.22 This issue should be addressed in future studies by 

adding more, heterogenous training data to further enhance the model performance. 

 

In conclusion, our fully automated approach demonstrated a high performance in the 

classification of neoplastic and non-neoplastic ICH suggesting a robust end-to-end framework 

for the integration in the clinical workflow as a decision-aided tool via our proposed user-

friendly web-based custom reader interface. In order to be applied in different clinics, fine-

tuning on a small set of samples is recommended to adapt to the specificities of the new dataset 

such as scanner type and protocol. 
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Table 1: Baseline characteristics of patients with acute neoplastic and non-neoplastic 
intracerebral hemorrhage. 
 All ICH 

(n=291) 

Neoplastic ICH 

(n=116) 

Non-neoplastic 

ICH (n=175) 

p-value 

Age [years], median 

(IQR) 

66 (51;77) 63 (51;77) 66 (51;77) 0.63 

Female, n (%) 157 (53.95) 64 (55.2) 93 (53.1) 0.734 

GCS, median (IQR) 15 (14;15) 15 (15;15) 15 (13;15) < 0.001 

Diabetes, n (%) 17 (5.8) 7 (6.0) 10 (5.7) < 0.001 

Hypertension, n (%) 146 (50.2) 39 (33.6) 107 (61.1) < 0.001 

oAC, n (%) 11 (3.8) 5 (4.3) 6 (3.4) 0.699 

Antiplatelet, n (%) 46 (15.8) 13 (11.2) 33 (18.9) 0.08 

Δ symptom onset to 

imaging [days], 

median (IQR) 

0.484 (0.13;2.09) 1.0 (0.21;7.07) 0.32 (0.09;1.14) < 0.001 

Δ imaging to 

discharge [days], 

median (IQR) 

8.16 (4.43;15.42) 8.60 (5.05;18.1) 7.52 (4.19;14.51) 0.11 

Hypertension, n (%) 72 (24.7) - 72 (41.1) - 

CAA, n (%) 43 (14.8) - 43 (24.6) - 

Oral anticoagulation, 

n (%) 

10 (3.4) - 10 (5.7) - 

Vascular 

malformation, n (%) 

50 (17.2) - 50 (28.6) - 

Metastasis, n (%) 79 (27.1) 79 (68.1) - - 

Tumor, n (%) 37 (12.7) 37 (31.9) - - 

ICH volume [ml], 

median (IQR) 

6.29 (1.92;19.56) 6.85 

(2.29;19.89) 

6.29 (1.64;19.54) 0.563 

PHE volume [ml], 

median (IQR) 

16.26 (6.21; 

37.28) 

23.11 

(12.45;60.25) 

10.48 

(5.32;24.37) 

< 0.001 

 

Legend: CAA, cerebral amyloid angiopathy; Δ, delta; ICH, intracerebral hemorrhage; IQR; 

interquartile range; GCS, Glasgow Come Scale; ml, milliliters; oAC, oral anticoagulation; 

PHE, perihematomal edema. 
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Table 2: Diagnostic performance of the end-to-end prediction model in the classification of 

neoplastic and non-neoplastic intracerebral hemorrhage in the internal test dataset and the 

external validation cohort. 

 
 Accuracy Sensitivity Specificity AUC 

Internal Validation 0.86 0.80 0.93 0.85 

External Validation 0.66 0.68 0.63 0.68 

After Fine-tuning 0.70 0.70 0.71 0.70 

 
Legend: AUC; area under the curve. 
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