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ABSTRACT

Background:
Parkinson’s disease (PD) is a progressive neurodegenerative disorder that affects motor control,
leading to symptoms such as tremors or impaired balance. Early diagnosis of PD is crucial for
effective treatment, yet traditional diagnostic models are often costly and lengthy. This study explores
the use of Artificial Intelligence (AI) and Machine Learning (ML) techniques, particularly voice
analysis, to identify early signs of PD and make a precise diagnosis.

Objectives:
This paper aims to create an automatic detection and prediction of PD binary classification using
vocal biomarkers. We will also use explainability to identify latent and important patterns in the input
data in retrospect to the target to inform the definition of Parkinson’s through voice characteristics.
Finally, a probability generation will be generated to create a scoring system of a patient’s odds of
PD as a spectrum.

Methods:
We utilized a dataset comprising 81 voice recordings from both healthy control (HC) and PD patients,
applying a hybrid AI model combining Convolutional Neural Networks (CNN), Recurrent Neural
Networks (RNN), Multiple Kernel Learning (MKL), and Multilayer Perceptron (MLP). The model’s
architecture was designed to extract and analyze acoustic features such as Mel-Frequency Cepstral
Coefficients (MFCCs), local jitter, and local shimmer, which are all indicative of PD-related voice
impairments. Once features are extracted, the AI model will generate prediction labels for HC or PD
files. Then, a scoring system will assign a number ranging from 0-1 to each file, indicating the stage
of PD development.

Results:
Our champion model yielded the following results: diagnostic accuracy of 91.11%, recall of
92.50%, precision of 89.84%, an F1 score of 0.9113, and an area under curve (AUC) of 0.9125.
Furthermore, the use of SHapley Additive exPlanations (SHAP) provided detailed insight into the
model’s decision-making process, highlighting the most influential features contributing to a PD
diagnosis. The outcomes of the implemented scoring system demonstrate a distinct separation in the
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probability assessments for PD across the 81 analyzed audio samples, validating our scoring system
by confirming that the vocal biomarkers in the audio files accurately correspond with their assigned
scores.

Conclusion:
This study highlights the efficacy of AI, particularly a hybrid model combining CNN, RNN, MKL,
and Deep Learning in diagnosing early PD through voice analysis. The model demonstrated a robust
ability to distinguish between HC and PD patients with significant accuracy by leveraging key vocal
biomarkers such as MFCCs, jitter, and shimmer.

Keywords Parkinson’s Disease · Deep Learning · Vocal Biomarkers · Explainable AI

1 Introduction

Parkinson’s disease is a disorder of the central nervous system. It causes unintentional and uncontrollable bodily
movements such as shaking, stiffness, or difficulty with balance and control. PD is a neurodegenerative disorder,
meaning the symptoms gradually worsen over time. Due to this, people suffering from PD may develop behavioral
or mental changes such as depression or a decrease in memory. Currently, there is no cure for PD, but there are
medications that can alleviate symptoms. Regardless, it is best to intervene and prevent the gradual onset of PD rather
than treating it at its most vicious state. However, traditional diagnostic methods often rely on clinical evaluations and
imaging techniques, which can be invasive, costly, and require specialized medical expertise. In recent years, the advent
of AI has opened new opportunities for diagnosis, particularly through voice analysis. This paper explores the use of AI
and ML techniques to diagnose early-stage PD by analyzing vocal characteristics. It aims to provide a comprehensive
review of current methodologies, findings, and future avenues in this rapidly growing field.

Recent advancements in AI and ML have demonstrated significant potential in diagnosing Parkinson’s dis-
ease using voice analysis. Various studies have utilized the extracted acoustic features of voice recordings to distinguish
between healthy individuals and individuals with PD. While traditional statistical methods have been employed, the
field is rapidly evolving towards the use of deep learning techniques that automatically extract relevant features from
raw voice data.

1.1 Voice analysis techniques

Little et al. used support vector machines (SVM) to classify voice recordings of PD patients with an accuracy of 91.4%,
establishing themselves as one of the first pioneers in this field [1]. Their study demonstrated the viability of using
acoustic voice features for PD diagnosis and laid the groundwork for further research. However, this study lacked
MFCCs, which are instrumental for projects using voice to diagnose PD. This paper will incorporate MFCCs alongside
traditional acoustic features to ensure a thorough diagnosis. Building on this, Tsanas et al. developed a decision support
system using MKL to replicate the unified Parkinson’s disease rating scale (which requires the patient’s presence in the
clinic) remotely [2]. Their approach underscored the importance of integrating multiple learning features and robust
ML techniques when transitioning to noninvasive and self-administered PD tests. More recent studies, however, focus
on deep learning models—automatic extraction of relevant features from raw voice data. For example, Alhanai et al.
employed a Long-Short Term Memory (LSTM) neural network to analyze speech patterns with an 89% accuracy in
detecting early PD symptoms [3]. Similarly, Alissa et al. used a CNN to extract and analyze voice features, achieving a
diagnosis accuracy of 93.5% [4]. These studies highlight a transition from traditional methods to more sophisticated AI
models.

1.2 Multimodal approaches

Integrating voice analysis with other modalities, such as data from wearable devices, has shown promise in improving
diagnostic accuracy. For example, Guo et al. demonstrated that combining voice data with other physiological signals
improved their overall accuracy of PD diagnosis to around 96.06% [5]. However, this area of study is relatively
novel, and researchers are still experimenting with ways to accurately combine voice and locomotive movement. Our
paper only uses voice as data input, isolating the model’s accuracy so it disregards any other biomarker. Removing
confounding variables lets us properly gauge how important vocal biomarkers are for diagnosing PD.
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1.3 Model architecture

Historically, AI model applications in medical analysis have used decoupled model architectures. This means the model
does not leverage multiple networks concurrently. A notable exception in recent literature is a pipeline AI model that
uses SVM, adaboost classifier, and bagged random forest, as well as two different variants of deep learning model RNN
known as LSTM and Bi-directional LSTM [6]. Their model was specifically applied to analyze handwritings from
patients with PD. In this paper, we will explore the performance of our novel pipeline model on vocal biomarkers, a
different yet equally important domain for PD diagnosis.

1.4 Explainable AI

SHAP has been effectively implemented to explain various model outputs for diagnosing conditions like myocardial
infarction (MI). Salih et al. applied SHAP to 4 classification models and generated plots similar to Figure 7a. According
to SHAP, all 4 models agreed that high cholesterol, hypertension, and sex were the three most important factors
determining an MI diagnosis, thus proving SHAP’s success [7]. We intend to use SHAP to identify important patterns
in voice data that influence a PD diagnosis the most. By transparently quantifying the impact of each feature, our model
will promote greater trust among clinicians and patients regarding the AI diagnostic process, setting this project apart
from less interpretable models.

1.5 Current challenges

One major challenge is that while deep learning models have achieved high precision levels, most lack data explainability.
This is particularly concerning in medical contexts where understanding the decision-making process of AI is crucial
for gaining trust among healthcare professionals and patients [8]. Furthermore, the generalizability of these models
across diverse populations is limited because they are only trained on specific demographic groups’ audio recordings.
To enhance their robustness, there is a need for diverse datasets and training across various cohorts [9]. “Today, the
much-needed personalization of medicine for PD patients still depends largely on the abilities, experience and intuition
of treating physicians, nurses and allied healthcare professionals to adjust evidence-based medicine to individual
decision making” [10]. This paper will utilize a large language model (LLM) to attempt to provide explainable AI that
could personalize PD treatment.

1.6 Research aims

1. Automatic detection and prediction of PD binary classification using vocal biomarkers.

2. Use explainability to identify latent and important patterns in the input data in retrospect to the target to inform
the definition of Parkinson’s through voice characteristics.

3. Generate a probability to create a scoring system of a patient’s odds of PD as a spectrum.

2 Methods

2.1 Data preprocessing

The dataset for training this AI model consists of 81 distinct voice recordings sourced from a publicly accessible dataset.
Of these recordings, 41 were taken from healthy patients in the HC group, and the other 40 were taken from patients
with PD who comprise the PD group. To maintain consistency among the data, the recordings were modified to remove
background noise, equalize decibels based on sex, and retain intervals of silence before and after the audio.
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2.2 Patient demographics

Table 1a

Healthy Control Group Parkinson’s Disease Group

Sex Ratio (male/female) 16/24 21/19

Age at Collection 47.9±14.5 66.6±9.0

Hoehn and Yahr stage of PD N/A 2.1±0.4

Length of Disease N/A 9.5±6.0

Iyer, A., et al. created the dataset shown in the Table 1a [11].

2.3 Data analysis

The AI model excels at processing audio files, demonstrating superior performance with .wav formats and .zip
archives. The script uses the Parselmouth library, a Python wrapper for Praat—a software tool for speech analysis. The
primary function, extract_voice_features, takes an audio file as input and extracts several key acoustic features.
First, the audio is converted into a parselmouth.Sound object, allowing for various analyses. Then, using Praat’s “To
Pitch” method, the AI retrieves the mean, minimum, and maximum pitch values. Next, the model calculates local jitter,
which measures frequency variation, by converting the sound to a point process and applying the “Get Jitter (local)”
method. Similarly, local shimmer, which measures amplitude variation, is extracted using the “Get Shimmer (local)”
method. Finally, the script calculates the harmonicity-to-noise ratio (HNR) using Praat’s harmonicity analysis method
to determine the mean HNR.

Figure 1a showcases an amalgamation of each acoustic feature extracted and collected.

Raw data values can be found in the following document:

https://docs.google.com/document/d/1cW306roQFkzHqXWQPUEKz06Wbkcb89dGPkILhVwLrEA/edit?usp=
sharing

Figure 1a

Continuous model refinement involved leveraging insights from acoustic feature analysis and interpreting various
graphical plots. Although these graphical visualizations were not directly used in the model, they served as a valuable
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tool for clinicians and researchers to better understand the underlying data. For example, the spectrograms provided
visual cues about the voice recordings’ frequency content and temporal dynamics. Violin plots, box plots, and histograms
illustrated the distribution of the acoustic features, highlighting blatant and nuanced differences between the HC and
PD groups1. Scatter plots depicted relationships between mean pitch and HNR, revealing distinct clusters of the two
groups, further aiding the model’s training. Overall, the graphical data allowed for a more informed approach to model
improvement by enhancing our understanding of the data’s complexities.

2.4 Fourtier transformation

The Fourier transform (FT) is beneficial in speech analysis because different aspects of the voice can be analyzed more
effectively in the frequency domain. Furthermore, the precise data of acoustic feature analysis is too complex for human
scrutiny (Figure 2a vs. Figure 2b), especially in real-time. This gives a legitimate case for using machine learning to
ensure proper analysis.

2.4.1 Convertion to frequency domain

The 81 speech recordings were initially captured as time-domain signals, representing how the audio amplitude varies
over time. The FT converts these time-domain signals into the frequency domain, representing the signal in terms of its
frequencies and their respective amplitudes. This helps to isolate and identify different frequency components indicative
of vocal characteristics.

2.4.2 Feature extraction

The frequency domain representation obtained through FT allows the AI to extract the key acoustic features: pitch, jitter,
shimmer, and HNR. The extracted features are then standardized using Python’s ‘StandardScaler’ from ‘sklearn’ to
ensure they are on a similar scale, improving the model’s performance. The AI is trained to automate these extractions,
allowing future researchers to efficiently process large datasets of voice recordings while maintaining consistency in
feature extraction.

2.4.3 Data visualization: spectrogram generation

The AI model generates spectrograms by applying the Short-Time Fourier Transform (STFT) to the audio signal.
The STFT divides the signal into short, overlapping segments and then applies FT to each segment, resulting in a
time-frequency representation. The colour scale adjacent to each spectrogram represents the magnitude of its frequency
components, which are measured in decibels. The colours range from bright yellow, signifying higher amplitude
components, to dark purple, indicating lower amplitude components. The colour scale represents 10 log(|S|/max(|S|)),
where S denotes the complex numbers obtained from the output of the FT. This logarithmic scaling underscores the
differences in intensity across various frequencies, allowing the AI model to easily discern subtle variations that could
be crucial for diagnostic purposes.

2.4.4 Spectrogram analysis: HC vs. PD

In Figure 2a, which depicts the HC group, the frequency bands are clearly defined and consistent across the time axis,
indicating stable vocal tract function and regular vocal fold vibration. Furthermore, harmonics are visible at regular
intervals—characteristics of a healthy vocal system. On the other hand, the PD group in Figure 2b has less distinct
frequency bands and exhibits more variability. These irregularities suggest vocal instability, something commonly
seen in PD patients. Such instability may be due to tremors affecting vocal fold vibration, leading to the scattered
and less defined harmonic structure. We only used vocal data in our AI decision-making, but these graphs exist as a
foundational representation to aid clinicians in understanding the granular details of the voice recordings.

1https://drive.google.com/drive/folders/15JYAPF7K-xJMGLWXtr36cqBFwXAYW1OG.
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Figure 2a

Figure 2b

2.5 Experimentation

The experimentation phase of this model involved constantly improving a rudimentary MLP and CNN model designed
to diagnose Parkinson’s disease from voice recordings. This model utilized Python’s robust ML and audio processing
libraries for rigorous training and validation to achieve optimal performance. Eventually, MLP and CNN were paired
with RNN and MKL to create a unified PD diagnosis model that harnesses each approach’s strengths [6].
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2.5.1 Model architecture and Training

The MLP + CNN + RNN + MKL (our champion model) is a hybrid model whose architecture was designed to
discern intricate patterns in voice signals. MLP is useful when applied to structure learning, meaning it is strong
when detecting and learning patterns in HC and PD recordings. CNN excels at capturing local acoustic patterns with
spectrograms, such as mean pitch. RNN effectively models the temporal dynamics of speech, which is critical for
the model to correctly identify sequential anomalies associated with PD. Finally, MKL enriches the AI model by
enabling the integration of diverse feature modalities, thus making for a more comprehensive analysis and prediction.
This combination not only advanced model precision, sensitivity, and recall but also enhanced generalizability across
different data sets. The model comprises multiple convolutional layers that extract hierarchical feature representations
from the input spectrograms. These layers were followed by pooling layers to downsample the feature maps, reducing
computational complexity and preventing data overfitting. Finally, dense layers were used to combine the extracted
features and make a final prediction. We used k-fold cross-validation (CV) to report more accurate evaluation results,
which means we averaged final performance metrics across all runs.

This model can be considered a sequential pipeline structure with multiple branches where CNN and RNN
might operate in parallel, and their outputs are later combined using MKL [6].

2.5.2 Architecture flow

1. Input Data:

• Input is fed into the CNN layers.

2. CNN Layer:

• Extracts feature maps from the input data.

• Output: Feature maps.

3. RNN Layer:

• Takes feature maps as input and learns temporal sequences.

• Output: Temporal feature representation.

4. MKL Layer:

• Takes inputs from both CNN and RNN.

• Learns a kernel-based representation.

• Output: Combined representation.

5. MLP Layer:

• Processes the combined representation to learn higher-level, non-linear relationships between acoustic
features.

• Output: A refined, non-linear representation of the data suitable for prediction.

6. Fully Connected Layers:

• The final representation is passed to one or more dense layers.

• Output: Prediction distribution.

7. Output Layer:

• Provides the classification output.

7
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Figure 3a

2.6 Scoring system

2.6.1 Introduction of the scoring system

HC and PD diagnoses exist on a continuum, meaning that not all files labeled as "HC" are equally distant from a
potential PD diagnosis; some may be closer to being classified as PD than others. In conjunction with binary labeling,
we want a more granular means of distinction among different HC and PD cases.

We created a scoring system to quantify the likelihood of a patient having PD based on key acoustic features
extracted from their voice recordings. This system is derived from model probabilities, allowing clinicians to interpret
the likelihood of PD more effectively and set individualized thresholds for diagnosis. By enabling precision medicine,
this approach ensures that diagnostic decisions are tailored to the unique characteristics of each patient rather than
relying on a one-size-fits-all binary system.

2.6.2 Description of the scoring system

Our scoring system assigns probabilities of the likelihood of an individual being diagnosed with PD on a scale from 0-1.
The system uses probabilities generated by a Random Forest model trained on acoustic vocal features such as mean
pitch, MFCCs, local jitter, local shimmer, and HNR. This model is integrated in a sequential pipeline with our champion
model. This means that once the champion model completes its diagnosis, the results are input into the Random Forest
model for scoring. Although the Random Forest model’s code is computationally simpler than our champion model’s
code, it shows a strong correlation with the champion model’s results, thus providing an interpretable layer for clinical
decision-making 2.

2https://github.com/MatthewShen08/Parkinson-s-Diagnosis-using-XAI
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Table 2a

Scoring Range Description

0.00 - 0.10 Very low likelihood of PD. Healthy vocal features with no signs of PD.

0.10 - 0.20 Low likelihood of PD. Some vocal features may be slightly atypical but
are generally not indicative of PD.

0.20 - 0.30 Mild likelihood of PD. Features start to show more noticeable
deviations, suggesting further monitoring and evaluation.

0.30 - 0.40 Moderate likelihood of PD. This range suggests that several vocal
features are indicative of early signs of PD and should be closely

monitored.

0.40 - 0.50 Moderate to high likelihood of PD. There is a significant indication of
Parkinson’s based on vocal features, suggesting a need for clinical

evaluation.

0.50 - 0.60 High likelihood of PD. Vocal features strongly indicate PD, and clinical
assessment is strongly recommended.

0.60 - 0.70 Very high likelihood of PD. Most vocal features are consistent with
those observed in PD patients.

0.70 - 0.80 Extremely high likelihood of PD. Vocal features are highly indicative of
advanced characteristics of PD.

0.80 - 0.90 Near certainty of PD. Almost all vocal features align closely with
known PD patterns.

0.90 - 1.00 Definite likelihood of PD. The vocal features meet all or nearly all the
criteria for PD according to data from our AI model and existing

literature.

3 Results

This section will report the model evaluation results. The primary metrics for model evaluation were accuracy and
cross-entropy loss, which were assessed during both the training and validation phases. Accuracy indicates how well the
model correctly predicts the inputted data’s labels. A high accuracy indicates that the model can adequately distinguish
between HC and PD recordings. On the other hand, low accuracy suggests a higher number of misclassifications.
Cross-entropy loss measures how well or poorly the model’s predictions match the actual labels during training. A
high cross-entropy loss value (40% or higher) indicates the predictions significantly deviate from the actual labels. In
contrast, a cross-entropy low loss value (20% or lower) shows the predictions are closely aligned with the actual labels.
We utilized a 5-fold CV in which the stratified data was split into 5 subsets. Each fold further trains the model on 4
subsets and validates it on the remaining subset. This process was repeated for each of the 5 folds, ensuring that every
data point was used for training and validation to report a consistent average of evaluation indices. We also ensured
that each subset of the data was used for validation precisely once. This approach mitigates the risk of overfitting and
provides a more reliable estimate of the model’s performance.

The most optimal model was the MLP + CNN + RNN + MKL model. Its performance was evaluated based on accuracy,
precision, recall, F1 score, and AUC metrics. Its average accuracy was 0.9111, indicating that around 91.11% ± 1 of all
predictions made with this model will be correct. For reference, a 2016 meta-analysis of 11 pathologic examinations
(the gold standard for PD diagnosis) for PD had a pooled diagnostic accuracy of 80.6% [12]. The precision was 0.8984,
meaning roughly 89.84% ± 1 of the positive predictions (Parkinson’s disease) were correct. This high precision value
indicates that the model is reliable when it predicts a patient with Parkinson’s, as it produces a low rate of false positives.
This low rate of false positives can save patients and hospitals resources by preventing healthy patients from testing
positive for Parkinson’s. It will also prevent false anxiety from being instilled within the patient. The recall was
0.9250, indicating that the model’s ability to identify positive cases correctly was 92.50% ± 0.5. The F1 score, which
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was 91.13% ± 0.1, balances high precision and recall. This score reflects the model’s ability to accurately identify
Parkinson’s patients while keeping false positives to a minimum. The MLP + CNN + RNN + MKL model outperforms
all other models on every metric.

The loss values of our champion model remained consistently low, as seen in Figure 4b. The loss value ranged from
a high of 9.88% in Folds 4 and 5 to a low of 7.41% in Fold 3. The average loss value of the champion model is 8.89% ± 1.

Our champion model’s consistency in both accuracy and cross-entropy loss shows that it is extremely good at predicting
unseen data.

Figure 4a

Figure 4b
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Figure 5a

The Receiver Operating Characteristic (ROC) shows the trade-off between the true positive rate (TPR) and false positive
rate (FPR) for different machine learning models. The higher the AUC, the better the model is at distinguishing between
positive and negative cases. The dashed line represents random chance (AUC = 0.5), and models performing above this
line indicate better-than-random performance.

Figure 6a
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Our champion model achieved an AUC value of 0.9125, as shown in Figure 6a. This means it has strong discriminative
power when distinguishing between individuals with Parkinson’s disease and healthy individuals across different
classification thresholds. This value is comparable to Iyer et al. [11]. They used a CNN with transfer learning approach
on the same 81 audio files we used. However, they did not report accuracy, recall, precision or F1 score.

3.1 Scoring system results

3.1.1 Applying the scoring system to our data

The outcomes of the implemented scoring system demonstrate a distinct separation in the probability assess-
ments for PD across the 81 analyzed audio samples. There is a clear demarcation of which files were con-
sidered HC and PD based on the system. For example, 40 of the 41 HC files scored between 0-0.30. How-
ever, File AH_678A_2E7AFA48-34C1-4DAD-A73C-95F7ABF6B138.wav, classified as HC, was assigned a higher
score of 0.39. According to Table 2a, this file has a moderate likelihood of developing PD, suggesting that
such a case would require careful monitoring in a clinical setting. Conversely, 38 of the 40 PD files scored
between 0.70-0.90. Notably, the files AH_545812846-0C14B32A-6C50-4B62-BC89-0A815C2DEEFA.wav and
AH_545880204-EE87D3E2-0D4C-4EAA-ACD7-C3F177AFF62F.wav registered scores of 0.69 and 0.62, respectively.
Upon further analysis of the files scoring 0.39 and 0.62, their acoustic features closely resemble those of patients in the
early stages of PD. This observation validates our scoring system by confirming that the vocal biomarkers in the audio
files accurately correspond with their assigned scores.

On the more definitive end, File AH_322A_C3BF5535-A11E-498E-94EB-BE7E74099FFB.wav
was scored at 0.06, indicating a virtually nonexistent likelihood of PD, and File
AH_545789670-C297FD53-BF71-4183-86A0-58E5E1EB0DF8.wav received a score of 0.89, strongly sug-
gesting PD presence. Subsequent analyses confirmed that their acoustic features are highly representative of their
respective scores, thereby validating our scoring system even in extreme cases.

All results can be found in Table 4a by clicking the link:

Table 3a

https://docs.google.com/document/d/1-FS9LavZZTZEEBWXr3PPWISeQPDPUXM1j-vdNQA79dY

4 Discussion

In this juncture, we want to where the machine misclassified the predictions. We would also want to generate insights if
possible to inform medical practitioners in the diagnosis and prognosis of PD using voice. We will also use an LLM to
investigate the important vocal characteristics in the data.

4.1 Error analysis (champion model)

4.1.1 Healthy control group misclassifications

Of the 41 HC audio files, an average of 36.8 were correctly classified as HC, while 4.2 were incorrectly classified as PD.
This resulted in a precision rate of 89.84% ± 1 for HC label predictions. The misclassification of an average of 4.2 HC
files could be attributed to various reasons. The most likely explanation for the observed overlap in acoustic features
between HC and early-stage PD patients can be attributed to the subtler distinctions between these groups compared
to those between HC and late-stage PD. This nuance results in the model occasionally misclassifying HC files as PD
due to their acoustic similarity. However, it is also possible the feature extraction software did not adequately capture
variations in speech patterns, thus resulting in too much leniency in the model’s decision boundary when distinguishing
between the two classes.

4.1.2 Parkinson’s disease group misclassifications

The AI model correctly classified 37 out of the 40 PD files, with 3 files incorrectly classified as HC. This makes the
recall rate 92.50% ± 0.5 for PD predictions, indicating that few PD instances were missed. These false negatives are
particularly concerning in a clinical context because failure to identify PD could delay treatment. The variability in
symptom severity among patients may have contributed to the misclassification of PD. The model may have also been
overly conservative when labeling borderline cases as PD, resulting in such prediction errors.
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Table 5a

Model
HC

Total HC Files
PD

Total PD Files Total Correct Total Incorrect
Correctly Predicted Mistaken For PD Correctly Predicted Mistaken For HC

MLP 26.4 14.6 41 11.2 28.8 40 37.6 43.4

CNN 21.8 19.2 41 32 8 40 53.8 27.2

CNN + MLP 18.2 22.8 41 29.2 10.8 40 47.4 33.6

MKL + MLP 25 16 41 21 19 40 46 35

RNN + MLP 17.8 23.2 41 32 8 40 49.8 31.2

CNN + RNN + MLP 21.6 19.4 41 31.6 8.4 40 53.2 27.8

MLP + CNN + RNN + MKL 36.8 4.2 41 37 3 40 73.8 7.2

Table 5a represents the average actual frequency values of the seven AI Models tested across 5 CV folds. Each model
was evaluated on the original 41 HC files and the original 40 PD files. A higher count in the “Correctly Predicted”

section indicates stronger model performance.

4.2 Feature importance explainability

In this study, we employed SHAP to interpret the model’s predictions. SHAP generations offer insight into the extent to
which each feature contributed to the final predictions, allowing us to validate the model’s decision-making process and
reliability.

4.2.1 Key features and their contributions

The SHAP summary plot (Figure 7a) provides a thorough visualization of the most influential features used by our
pipelined composite champion model to distinguish between HC and PD patients. Each feature’s impact on the data
output is displayed along the x-axis. Positive SHAP values indicate a higher likelihood of the prediction being PD,
and negative values indicate a higher likelihood of HC. The left-hand-side y-axis shows the features that had the most
influence on model output (top) and the least influence on model output (bottom).

4.2.2 Mel-frequency cepstral coefficients (MFCC) features

Among the most impactful features were MFCCs, with mfcc_3, mfcc_11, and mfcc_5 showing significant influence
(Figure 7a). MFCCs encapsulate the spectral properties of voice, which are known to be altered in PD patients due
to the neurodegenerative nature of the disease on speech production. The efficacy of MFCCs in speech recognition,
speaker biometry, or voice pathology detection is universally recognized [13]. In fact, a 2023 study isolated MFCCs
from other speech features and analyzed sustained vowels similar to this paper. Their performance metrics ranged from
70 to 79%, highlighting the relevance of MFCCs in this field [14].

Notably, mfcc_3 had a strong positive SHAP value, signifying that higher values of this feature were associ-
ated with an increased likelihood of a PD diagnosis. An absence of mfcc_3 would indicate a likelihood of HC. Some
characteristics residing at the center of Figure 7a, such as mfcc_2, are more neutral when predicting both values of our
binary target. Other characteristics such as mfcc_6, which is found at the bottom of Figure 7a, indicate less prominence
in model decision-making with reference to either values of our binary target.

4.2.3 Jitter and shimmer

Incorporating jitter and shimmer measurements provided deeper insight into the fine vocal variations associated with
PD. Local shimmer and local jitter were extremely influential because they allowed the model to recognize sensitivity
in amplitude and frequency variations. For instance, high values of local shimmer were linked to a higher likelihood of
a PD diagnosis, as shown by the positive SHAP values. Similarly, rap_jitter and local_jitter, which measure
relative frequency perturbations, were also crucial in the model’s predictions.

4.2.4 Harmonicity-to-noise ratio

Although not as significant, ‘mean HNR’ still contributed to the models’ predictions. Lower HNR values, which suggest
a noisier voice signal, were more often associated with PD. This supports the clinical observations of PD patients
tending to have a breathier voice due to impaired control of vocal fold vibration [15].
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Figure 7a

5 Limitation

Due to the small sample size of 81 audio files, the results may not reflect the model’s true capabilities and undermine
generalizability. In the continuation of this project, we will continue collecting data to improve the model’s training,
thus improving generalizability. The scarcity of available data also potentially magnifies the biases of age and gender
depicted in Table 1a. Furthermore, the PD data includes a mix of early and late-stage PD files, thus skewing the model’s
ability to discern between files.

6 Suggestions for future research

Using MLP + CNN + RNN + MKL in the AI model introduced several layers of complexity. While highly sophisticated
and extremely powerful, this model style may have introduced new layers of depth that were not properly synthesized,
thus potentially contributing to data overfitting or poor generalization for specific test cases. This warrants future work
to develop methods of balancing the complexity of the AI with the data. The most logical way would be to train this AI
with many more audio files and run breakages in epochs to prevent overfitting. Furthermore, it would be prudent to
attempt to pair this MLP + CNN + RNN + MKL model with other means of physical analysis. For example, creating a
smartwatch that can record the wearer’s speech and track physical movements such as tremors and gait would be a great
way to introduce a multimodal, non-invasive, early PD diagnosis method.

7 Conclusion

This study highlights the efficacy of AI, particularly a hybrid model combining MLP, CNN, RNN, and MKL in
diagnosing early PD through voice analysis. The model demonstrated a robust ability to distinguish between HC and
PD patients with significant accuracy by leveraging key vocal biomarkers such as MFCCs, jitter, and shimmer.
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Our champion model had an accuracy of 91.11%, a precision of 89.84%, a recall of 92.50%, an F1 score of 91.13%, and
an AUC of 0.9125. These evaluation metrics are all around the 90% mark, indicating high consistency in distinguishing
PD patients.

Furthermore, the use of SHAP for data explainability reinforced the reliability of the diagnostic tool by providing
transparent insight into how individual acoustic features impacted model decision-making. Features like MFCCs have
been well-documented in existing literature as strong indicators of vocal abnormalities in PD, which is why they were
among the most prominent in Figure 7a. Also, jitter and shimmer significantly contributed to model decision-making,
aligning with well-tested clinical characteristics of PD-related speech disorders. Extrapolating from just the raw data,
LLMs such as SHAP can provide insights that were otherwise latent, potentially enabling physicians to tailor treatment
plans more effectively by identifying the most prominent acoustic features in a patient’s voice data. In Figure 7a, for
instance, features such as mfcc_3 or local_shimmer are more pronounced, indicating different aspects of disease
progression that can guide individualized treatment planning.

Also, implementing a scoring system proves advantageous over similar works because it allows for a quantifiable,
objective measurement of disease markers, which is crucial for early diagnosis and management of PD. Using a random
selection of voice recordings, we validated our scoring system and it was consistent with the prediction results because
the HC voice recordings were scored 0-0.40, and the PD voice recordings were scored 0.60-0.90, which are the correct
ranges for the HC and PD recordings. This system facilitates longitudinal monitoring of disease progression, offering a
valuable tool for assessing treatment efficacy and adjusting therapeutic interventions accordingly.

This study’s findings suggest that ML, coupled with a hybrid variation of advanced voice feature analysis, offers a
promising and noninvasive approach for early PD diagnosis.

8 Funding

The authors have no funding to report.

9 Conflict of interets

The authors have no conflict of interest to report.

10 Data availability

The data supporting the findings of this study are openly available in Figshare at https://doi.org/10.6084/
m9.figshare.238491273. These data were derived from the following resources available in the public
domain: https://figshare.com/articles/dataset/Voice_Samples_for_Patients_with_Parkinson_s_
Disease_and_Healthy_Controls/23849127.

3https://doi.org/10.6084/m9.figshare.23849127

15

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 30, 2024. ; https://doi.org/10.1101/2024.09.29.24314580doi: medRxiv preprint 

https://doi.org/10.6084/m9.figshare.23849127
https://doi.org/10.6084/m9.figshare.23849127
https://figshare.com/articles/dataset/Voice_Samples_for_Patients_with_Parkinson_s_Disease_and_Healthy_Controls/23849127
https://figshare.com/articles/dataset/Voice_Samples_for_Patients_with_Parkinson_s_Disease_and_Healthy_Controls/23849127
https://doi.org/10.6084/m9.figshare.23849127
https://doi.org/10.1101/2024.09.29.24314580
http://creativecommons.org/licenses/by-nc/4.0/


Explainable Artificial Intelligence to Diagnose Early Parkinson’s Disease via Voice Analysis

References

[1] Little MA et al. “Suitability of dysphonia measurements for telemonitoring of Parkinson’s disease.” In: IEEE
Trans Biomed Eng. DOI: 10.1109/TBME.2008.2005954. IEEE. 2009, 56(4):1015–1022.

[2] Tsanas A et al. “Accurate telemonitoring of Parkinson’s disease progression by noninvasive speech tests.” In:
IEEE Trans Biomed Eng. DOI: 10.1109/TBME.2009.2036000. IEEE. 2010, 57(4):884–893.

[3] Alhanai T, Au R, and Glass. J. “Detecting Depression with Audio/Text Sequence Modeling of Interviews.” In:
DOI: 10.21437/Interspeech.2018-2522. Interspeech. 2018, pp. 1716–1720.

[4] Alissa M et al. “Parkinson’s disease diagnosis using convolutional neural networks and figure-copying tasks.” In:
Neural Comput Appl. DOI: 10.1007/s00521-021-06469-7. Springer. 2022, 34(2):1433–1453.

[5] Guo G et al. “Diagnosing Parkinson’s Disease Using Multimodal Physiological Signals.” In: Communications in
Computer and Information Science. DOI: 10.1007/978-981-16-1288-69.. Springer, Singapore. 2021, pp. 125–
136.

[6] Kumar K and Ghosh. R. “Parkinson’s disease diagnosis using recurrent neural network based deep learning
model by analyzing online handwriting.” In: Multimed Tools Appl. DOI: 10.1007/s11042-023-15811-1. Springer.
2023, 83:11687–11715.

[7] Kumar K et al. “A Perspective on Explainable Artificial Intelligence Methods: SHAP and LIME.” In: Adv Intell
Syst. DOI: 10.1002/aisy.202400304. Wiley Online Library. 2024.

[8] Dixit S et al. “A comprehensive review on AI-enabled models for Parkinson’s disease diagnosis. Electronics.” In:
Electronics. DOI: 10.3390/electronics12040783. MDPI. 2023, 12(4):783.

[9] Santa Cruz BG, Husch A, and Hertel. F. “Machine learning models for diagnosis and prognosis of Parkinson’s
disease using Brain Imaging: General overview, main challenges, and future directions.” In: Front Aging Neurosci.
DOI: 10.3389/fnagi.2023.1216163. frontiers. 2023, 15:1216163.

[10] Klucken J et al. “Management of Parkinson’s disease 20 years from now: towards digital health pathways.” In: J
Parkinsons Dis. DOI: 10.3233/JPD-181519. IOS Press. 2018, 8(s1):S85–S94.

[11] Iyer A et al. “A machine learning method to process voice samples for identification of Parkinson’s disease.” In:
Sci Rep. DOI: 10.1038/s41598-023-47568-w. nature. 2023, 13:20615.

[12] Rizzo G et al. “Accuracy of clinical diagnosis of Parkinson disease: A systematic review and meta-analysis.” In:
Neurlogy. DOI: 10.1212/WNL.0000000000002350. Neurology Journals. 2016, 86(6):566–576.

[13] Gómez-Rodellar A et al. “Performance of Articulation Kinetic Distributions Vs MFCCs in Parkinson’s Detection
from Vowel Utterances Neural Approaches to Dynamics of Signal Exchanges.” In: Smart Innovation, Systems
and Technologies. DOI: 10.1007/978-981-13-8950-438.. Singapore, Springer. 2019, 151:431–441.

[14] Bouagina S et al. “MFCC-Based Analysis of Vibratory Anomalies in Parkinson’s Disease Detection using
Sustained Vowels.” In: IEEE Afro-Mediterranean Conference on Artificial Intelligence. DOI: 10.1109/AM-
CAI59331.2023.10431494. IEEE. 2023, pp. 1–5.

[15] Ma A, Lau KK, and Thyagarajan. D. “Radiological correlates of vocal fold bowing as markers of Parkinson’s
disease progression: A cross-sectional study utilizing dynamic laryngeal.” In: CT. PLoS One. DOI: 10.1371/jour-
nal.pone.0258786. Pone. 2021, 16(10).

16

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 30, 2024. ; https://doi.org/10.1101/2024.09.29.24314580doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.29.24314580
http://creativecommons.org/licenses/by-nc/4.0/


Explainable Artificial Intelligence to Diagnose Early Parkinson’s Disease via Voice Analysis

11 Appendix

A. Technical Details and Definitions

1. Mel-Frequency Cepstral Coefficients (MFCCs):

• Definition: MFCCs are coefficients that collectively represent the short-term power spectrum of a sound.
• Application: In this paper, MFCCs such as mfcc_3, mfcc_11, and mfcc_5 were used to distinguish between

HC and PD, with higher MFCC values often indicating PD.

2. Jitter:

• Definition: A measure of frequency variation from cycle to cycle in voice signals, indicating potential vocal
fold instability.

• Application: Used to identify fine variations in vocal recordings that are symptomatic of PD.

3. Shimmer:

• Definition: A measure of amplitude variation from cycle to cycle used to detect issues in vocal fold function.
• Application: Used to identify fine variations in vocal recordings that are symptomatic of PD.

4. Harmonic-to-Noise Ratio (HNR):

• Definition: HNR is the ratio between harmonic components of the data and noise components. Lower HNR
values indicate a breathier or noisier voice, which can be indicative of PD.

• Application: HNR contributed to the AI model’s predictions by looking for conventional symptoms of PD.

5. Fourier Transformation (FT):

• Definition: A mathematical technique that transforms a time-domain signal into its constituent frequencies,
providing a frequency-domain representation of the signal.

• Application: This study used FT to convert voice recordings into the frequency domain, aiding in accurately
extracting key acoustic features.

6. SHapley Additive exPlanations (SHAP):

• Definition: Provides a way to explain the output of machine learning by showing the contribution of each
acoustic feature to the predictions.

• Application: This study used SHAP to interpret the model’s predictions, offering insight into the extent to
which acoustic features contributed to the final diagnosis.

B. Model Architecture and Training Process

1. MLP + CNN + RNN + MKL Learning Model Architecture:

• This model combines MLP for non-linear data representation, CNN for local pattern recognition, RNN for
temporal sequence analysis, and MKL for integrating multiple feature modalities.

• Architecture Overview:
– CNN Layers: Extracted hierarchical feature representations from input spectrograms.
– RNN Layers: Modeled the temporal dynamics of speech to identify sequential anomalies.
– MKL Layers: Integrated diverse feature modalities, enhancing generalizability and robustness.
– MLP Layers: Processes the combined representation to learn higher-level, non-linear relationships

between acoustic features.
• Training Process: The model was trained using k-fold cross-validation to avoid overfitting and ensure quality

output. The training involved multiple epochs, continuous monitoring, and tuning based on loss and accuracy
metrics.

2. Parameters:
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• Learning Rate: Adjusted based on training output to optimize model convergence.
• Epochs: An epoch is one complete pass through the entire training dataset. Training a model for multiple

epochs improves performance by allowing it to learn patterns. This study trained AI models on a scale of
1-150 epochs with the flexibility to halt training at any point to prevent overfitting.

• Batch Size: All AI models were trained on the same 81 voice recordings to ensure consistency in input, thus
minimizing confounding variables.

C. Data Preprocessing Steps

1. Noise Reduction and Decibel Equalization:

• Iyer, A. et al. (2023) removed all background noise from the 81 audio recordings. Furthermore, audio was
equalized based on sex to maintain consistency across data [11].

2. Handling Silent Intervals:

• Iyer, A. et al. (2023) retained intervals of silence before and after the 81 audio recordings to preserve the
natural speech patterns of the participants [11].

3. Feature Extraction:

• All audio files were processed using a Parselmouth library, a Python wrapper for Praat. Key acoustic features
were extracted.

D. Supplementary Data and Visualizations

1. Spectrograms:

• HC and PD Spectrograms: https://drive.google.com/drive/folders/
1gVih3iqpJXzdn0O5B4YT4W6HkmX6rPB2?usp=sharing

• Short-Time Fourier Transformation (STFT) Enhanced Spectrograms: Figures 2a and 2b are STFT-enhanced
spectrograms, showing improvement in clarity and diagnostic utility.

2. Evaluation:

• Accuracy and Cross-Entropy Loss Metrics: This metric provides the accuracy and loss for each fold in the
5-fold CV, highlighting variability and areas for further model improvement.

– An accuracy value above 80% indicates high-quality performance regarding the ratio of the number of
correct predictions (both true positive and true negative) to the total number of predictions (true positive,
true negative, false positive, and false negative).

– A loss value below 20% indicates high-quality performance regarding predictions matching with true
labels.

• The following is how the performance metrics were calculated:

– Accuracy:

Accuracy =
True Positives + True Negatives

Total Instances
– Precision:

Precision =
True Positives

True Positives + False Positives
– Recall:

Recall =
True Positives

True Positives + False Negatives
– F1 Score:

F1 Score = 2× Precision × Recall
Precision + Recall

– Confusion Matrix: True Negatives False Positives

False Negatives True Positives


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– The following table displays the average performance metrics across 5-fold CV of each model:

Model Accuracy Precision Recall F1 Score Area under Curve (AUC)

MLP 48.22% 43.38% 28.00% 32.68% 0.4660

CNN 66.38% 63.46% 80.00% 70.05% 0.6625

CNN + MLP 58.15% 56.98% 73.00% 63.88% 0.5968

MKL + MLP 56.79% 56.76% 52.50% 54.55% 0.5674

RNN + MLP 61.46% 58.17% 80.00% 67.23% 0.6125

CNN + RNN + MLP 65.66% 63.83% 79.00% 68.95% 0.6599

MLP + CNN + RNN + MKL 91.11% 89.84% 92.50% 91.13% 0.9125

E. Code and Algorithm Explanations

1. Pseudocode for Model Training:

• Model Workflow:

This pseudocode outlines the primary steps in training the hybrid MLP + CNN + RNN + MKL model.

F. Dataset Information

1. Source:
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• The dataset used in this study was obtained from Figshare, titled "Voice Samples for Patients with Parkinson’s
Disease and Healthy Controls" (DOI: https://doi.org/10.6084/m9.figshare.23849127).

2. Participant Details:

• 81 voice recordings (41 from HCs and 40 from PD patients).
• Demographic information, including sex ratio, age at collection, Hoehn & Yahr stage of PD, and length of

disease, can be found in Table 1a.

3. Ethical Considerations:

• All data was from a public dataset and were anonymized, thus adhering to the ethical standards of data usage
and participant privacy.
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