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Abstract 45 

Machine-learning (ML) classification may offer a promising approach for treatment response 46 

prediction in patients with major depressive disorder (MDD) undergoing non-invasive brain 47 

stimulation. This analysis aims to develop and validate such classification models based on  easily 48 

attainable sociodemographic and clinical information across two randomized controlled trials on 49 

transcranial direct-current stimulation (tDCS) in MDD. Using data from 246 patients with MDD from 50 

the randomized-controlled DepressionDC and ELECT-TDCS trials, we employed an ensemble 51 

machine learning strategy to predict treatment response to either active tDCS or sham tDCS/placebo, 52 

defined as ≥ 50% reduction in the Montgomery-Åsberg Depression Rating Scale at 6 weeks. Separate 53 

models for active tDCS and sham/placebo were developed in each trial and evaluated for external 54 

validity across trials and for treatment specificity across modalities. Additionally, models with above-55 

chance detection rates were associated with long-term outcomes to assess their clinical validity. In the 56 

DepressionDC trial, models achieved a balanced accuracy of 63.5% for active tDCS and 62.5% for 57 

sham tDCS in predicting treatment responders. The tDCS model significantly predicted MADRS 58 

scores at the 18-week follow-up visit (F(1,60) = 4.53, pFDR = .037,  R2 =  0.069). Baseline self-rated 59 

depression was consistently ranked as the most informative feature. However, response prediction in 60 

the ELECT-TDCS trial and across trials was not successful. Our findings indicate that ML-based 61 

models have the potential to identify responders to active and sham tDCS treatments in patients with 62 

MDD. However, to establish their clinical utility, they require further refinement and external 63 

validation in larger samples and with more features. 64 

 65 

 66 
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Introduction 72 

Major Depressive Disorder (MDD) represents a significant global health challenge, ranking as one of 73 

the main causes of disability worldwide1. Despite the availability of effective treatments ranging from 74 

pharmacotherapy and psychotherapy to non-invasive and invasive neurostimulation, many patients do 75 

not achieve remission, even after multiple therapeutic attempts2. The development of new 76 

interventions has proven challenging, possibly due to the heterogeneity of MDD symptoms3, its 77 

varying time course4, and a lack of robust biological correlates5,6. While multiple sociodemographic, 78 

clinical, genetic, and neuroimaging variables have been associated with responses to common 79 

treatments like antidepressant medication7, these associations have not yet resulted in stratified patient 80 

selection algorithms or targeted interventions. Thus, recent research has focused on developing 81 

multivariate predictive models that might enable pre-treatment stratification at the individual patient 82 

level8,9 and detect effects beyond the between-group level in randomized controlled trials (RCT)9,10. 83 

Within this approach, initial machine learning (ML)-based predictive models are typically trained on 84 

data from existing RCTs to identify responders to the treatments under investigation8,11,12. Models 85 

then require testing in independent samples and across diverse populations to ensure their 86 

generalizability to unseen patients before they are finally tested prospectively for clinical utility. 87 

However, efforts to externally validate initial models remain sparse13, and consequently, few attempts 88 

have been made to validate treatment prediction models in RCTs14.  89 

Predictive approaches are particularly relevant in the field of non-invasive brain stimulation 90 

(NIBS), including repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current 91 

stimulation (tDCS), as the clinical application of these interventions is rapidly growing. tDCS is a 92 

safe, well-tolerated, and easily applicable treatment option for patients with MDD15–17, but has yielded 93 

inconclusive results in recent confirmatory multicenter RCTs18–20. Therefore, efforts to optimize 94 

outcomes on the individual patient level are required to develop the intervention toward clinical 95 

applicability21,22. A recent study reported a high predictive accuracy of an ML-based prediction model 96 

for identifying responders to bifrontal transcranial direct current stimulation (tDCS), yet lacked 97 

external validation23. For rTMS, ML studies have mainly focused on other neuropsychiatric 98 
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conditions, e.g. schizophrenia9,10. To our knowledge, there are currently no studies available utilizing 99 

ML models across RCTs on NIBS interventions.  100 

To investigate whether sociodemographic and clinical data are informative for predicting the 101 

individual response to tDCS, we used data from two large RCTs on basically identical tDCS protocols 102 

(i.e. bifrontal electrode montage: anode left and cathode right dorsolateral prefrontal cortex [DLPFC], 103 

2 mA intensity and 30 min duration), that were performed in Brazil16 and Germany18, evaluating the 104 

efficacy of tDCS in patients with MDD. We aimed to develop and externally validate ML-based 105 

prediction models to identify patients likely to benefit from tDCS, test those models for treatment 106 

specificity, and explore their clinical validity and utility based on long-term outcomes. 107 

 108 

Subjects and Methods 109 

Study design 110 

In this secondary analysis of two randomized, blinded, sham-controlled trials, we used an ensemble 111 

ML-based strategy with nested cross-validation to identify patients with response to either active 112 

tDCS or sham/placebo treatment using sociodemographic and clinical baseline variables. Models 113 

were trained separately in each trial for each treatment modality and then applied 1.) across trials to 114 

test for external validity and 2.) across treatment modalities to test if predictions were specific to the 115 

treatment (see Figure 1). Classification probabilities of models with above-chance detection rates 116 

were then associated with long-term outcomes at follow-up to explore the clinical validity and utility 117 

of the predictions. 118 

 119 
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 120 

Figure 1. Model development and validation 121 

 122 

Study population 123 

We analyzed patients with MDD from two trials: 1.) DepressionDC (trial registration: NCT02530164) 124 

was a multicenter RCT investigating the efficacy of 6 weeks of bifrontal tDCS as an additional 125 

treatment to selective serotonin reuptake inhibitors (SSRI) in patients with MDD18. Between January 126 

2016 and June 2020, 160 patients were recruited at seven university hospitals and one psychiatric 127 

community hospital in Germany. Active tDCS was not superior to sham tDCS in reducing depressive 128 

symptoms. 2.) The Escitalopram versus Electrical Current Therapy for Treating Depression Clinical 129 

Study (ELECT-TDCS; trial registration: NCT01894815) was a single-center, non-inferiority RCT 130 

comparing active tDCS plus placebo medication, escitalopram plus sham tDCS, and sham tDCS plus 131 

placebo medication in patients with MDD over 10 weeks16. Two hundred forty-five patients were 132 

recruited at the University of São Paulo, Brazil, between October 2013 through July 2016. Active 133 

tDCS was not non-inferior to escitalopram but superior to placebo treatment.  134 
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Both trials employed rigorous RCT methods with stringent randomization, blinding protocols, 135 

and non-active sham conditions. Participants were selected based on the DSM-5 criteria for MDD 136 

while excluding patients with bipolar disorder, substance abuse or dependence, dementia, and 137 

personality disorders. However, DepressionDC enrolled patients currently receiving SSRIs, whereas 138 

ELECT-TDCS required participants to be antidepressant-free. Furthermore, DepressionDC permitted 139 

the inclusion of patients with marginally lower symptom severity, as assessed by the Hamilton 140 

Depression Rating Scale (HDRS), and restricted participation to a narrower age range. A 141 

comprehensive list of eligibility criteria for both trials is provided in the supplement.  142 

The intervention followed a basically identical tDCS protocol with 2 mA stimulation of the 143 

DLPFC over 30 minutes per session. However, protocols differed in precise electrode placement, i.e. 144 

DepressionDC using the F3 (anode) and F4 (cathode) based on the international 145 

electroencephalogram 10-20 system, and ELECT-TDCS the Omni-Lateral-Electrode (OLE) system 146 

(left DLPFC anode and right DLPFC cathode) with slightly more lateral positions of electrodes24. 147 

Also, treatment lasted 10 weeks with a total of 22 treatment sessions (15 sessions in the first 3 weeks 148 

and 7 weekly sessions for the remaining treatment period) in ELECT-TDCS versus 6 weeks with a 149 

total of 24 treatment sessions (20 sessions in the first 4 weeks and 2 sessions per week for 2 weeks) in 150 

DepressionDC, with efficacy assessed at these time points using the HDRS and Montgomery-Åsberg 151 

Depression Rating Scale (MADRS) as primary outcome measures, respectively. Weekly MADRS 152 

scores were additionally collected in ELECT-TDCS as a secondary outcome measure.  153 

We used data from all patients with available depression scores on the MADRS at baseline 154 

and week 6 after randomization. Thus, the analysis included 136 (active tDCS: 72 patients; sham 155 

tDCS: 64 patients) out of 150 patients from the DepressionDC sample and 110 (active tDCS + 156 

placebo: 66 patients; sham tDCS + placebo: 44 patients) out of 154 patients from the respective 157 

treatment arms of the ELECT-TDCS sample. All participants had provided their written informed 158 

consent before inclusion in the respective study. Both studies were approved by the local ethics 159 

committees and conducted in accordance with the Declaration of Helsinki. 160 

 161 

 162 
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Prediction target and features 163 

Participants were classified as treatment responders if they achieved a  ≥ 50% reduction from baseline 164 

to week 6 on the 10-item MADRS (score range 0-60; higher scores indicate more severe 165 

depression)25. Pursuing a data-driven approach, we included all variables available across the studies 166 

at baseline as potential predictors. This amounted to 15 features, including basic sociodemographic 167 

information (age, sex, years of education, marriage, unemployment), medical history (body mass 168 

index, smoker status, diagnoses of hypertension, diabetes, and/or hypothyroidism), psychiatric history 169 

(age of MDD onset, duration of MDD episode, family history of MDD), and baseline depression 170 

severity (MADRS and Beck Depression Inventory-II [BDI-II] total scores). 171 

 172 

Machine learning analysis 173 

All ML analyses were conducted using the in-house, open-source software package 174 

NeuroMiner, version 1.05 (https://github.com/neurominer-git/NeuroMiner-1), running on MATLAB 175 

(version R2022a). We used repeated nested cross-validation (CV) with 10 folds and 5 repetitions at 176 

both the inner (CV1) and outer (CV2) loops to strictly separate the training and testing of the models. 177 

In each CV1 fold, we scaled all features from 0 to 1 and substituted missing values via 7-nearest 178 

neighbor-based imputation (Euclidean distance for continuous, Hamming distance for categorical 179 

variables)26. Following a previous approach27,28, each processed CV1 training sample then entered a 180 

greedy stepwise forward search wrapper employing a linear support vector machine algorithm (SVM; 181 

LIBSVM 3.1229) to iteratively select a subset of 50% features with highest predictive performance 182 

(balanced accuracy [𝐵𝐴𝐶 = !"#!$%$&$%'	)	!*"+$,$+$%'
-

]30 on the held-out CV1 data) across a range of C 183 

hyperparameters (2[−4∈ℤ→+4]). To account for uneven distributions of the outcome labels 184 

(response/non-response), optimal C hyperparameters were multiplied with the inverse ratio of the 185 

training group sizes31. For each CV1 permutation, all CV1 models were retrained with the optimal 186 

model hyperparameters, and this ensemble was then applied to the CV2 test data without modification. 187 

Classification probabilities for each CV2 test subject were retrieved by combining the decisions across 188 

all models. We calculated permutation-based p-values to define which models reached above-chance 189 
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detection rates (α=0.05; 1000 permutations)32. To understand which features were most reliably 190 

contributing to the prediction of treatment response, we computed the CV ratio33. The feature 191 

importance of variables was further estimated using sign-based consistency mapping34. For cross-trial 192 

and cross-treatment modality validation, we applied CV1 ensembles with permutation-based above-193 

chance detection rates without modification to the respective other samples. Out-of-sample 194 

performance metrics were calculated by comparing the predicted versus the observed outcome labels 195 

over all CV2 predictions. 196 

 197 

Post-hoc clinical validation 198 

Additional validation analyses and visualizations were performed in R, version 4.3.235. Results were 199 

considered significant at 𝛼=0.05. To explore the clinical validity of all classifiers with above-chance 200 

detection rates, we fit linear mixed models (LMM) using the lme4 package36 to predict MADRS and 201 

GAF changes from baseline until the trials’ follow-up appointments based on the models’ assigned 202 

probability to be a responder (formula: change ~ assigned probability). The model included the 203 

treatment site as a random effect (formula: ~1| site). The significance of the model factors was 204 

determined using omnibus tests (type III ANOVA) with Satterthwaite approximation to degrees of 205 

freedom.  206 

 207 

Results 208 

Main classifiers 209 

In the DepressionDC trial, 24 patients (33%) had responded to active tDCS treatment at week 6. 210 

Compared to tDCS non-responders, these patients were significantly older (mean [SD] age: 37 [13] 211 

vs. 30 [13]; p=0.023) and showed lower clinician-rated (mean [SD] MADRS scores: 22 [5] vs. 26 [6]; 212 

p=0.049) and self-reported depression severity (mean [SD] BDI scores: 23 [9] vs. 30 [11]; p=0.011) at 213 

baseline (other baseline characteristics are shown in Table 1). The classifier ensemble predicted tDCS 214 

responders with an above-chance cross-validated BAC of 63.5% (P=0.001; Table 2; Figure 2), 215 

increasing the prognostic certainty compared to the base rate (prognostic summary index of 24.1%). 216 
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In the sham group, 32 patients (50%) showed a treatment response. Compared to sham non-217 

responders, these patients had lower clinician-rated (mean [SD] MADRS scores: 22 [5.3] vs. 24.3 218 

[4.4]; p=0.017) and self-reported depression severity (mean [SD] BDI scores: 23 [9] vs. 30 [10]; 219 

p=0.005) at baseline. Sham responders were predicted with an above-chance cross-validated BAC of 220 

62.5% (p=0.023; Table 2) and prognostic summary index of 25.1%. In both the tDCS and sham 221 

analyses, only baseline BDI scores reliably and significantly contributed to the classifier decisions 222 

(Figure 3). 223 

In the ELECT trial, 27 patients (41%) had responded to active tDCS treatment at week 6. 224 

Compared to tDCS non-responders, they had higher clinician-rated depression at baseline (mean [SD] 225 

MADRS scores: 29 [8] vs. 26 [6]; p=0.020). Responders were predicted with a BAC of 61.0% that did 226 

not reach our above-chance detection criterion (p=0.071; Table 2). Similarly, our analysis did not 227 

yield models with above-chance detection rates for the 14 (32%) responders to sham treatment 228 

(BAC=42.9%; p=0.88; Table 2). 229 

 230 

External validation and treatment specificity 231 

Models with above-chance detection rates did not generalize across trials. The DepressionDC tDCS 232 

classifier showed a BAC of 51.1% in the ELECT tDCS sample, and the DepressionDC sham classifier 233 

reached a BAC of 55.5% in the ELECT sham sample (shown in Table 2). Models also did not reach 234 

above-chance detection rates across treatment modalities, with the DepressionDC tDCS model 235 

showing a BAC of 53.1% when applied to the DepressionDC sham arm and the DepressionDC sham 236 

model showing a BAC of 53.1% when applied to the DepressionDC tDCS arm. 237 

 238 

 239 

 240 

 241 

 242 

 243 

 244 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 30, 2024. ; https://doi.org/10.1101/2024.09.29.24314556doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.29.24314556
http://creativecommons.org/licenses/by/4.0/


Table 1. Baseline characteristics of patients with MADRS response and non-response to tDCS  245 

 
Feature 
 

DepressionDC ELECT 

Non-responder, 
n = 48a 

Responder, 
n = 24a 

p-
valueb 

Non-responders, 
n = 39a 

Responder, 
n = 27a 

p-
valueb 

Sex   0.9   0.3 

Female 29 (60%) 14 (58%)  25 (66%) 21 (78%)  

Male 19 (40%) 10 (42%)  13 (34%) 6 (22%)  

Age at randomization 
- years 

37 (13) 43 (14) 0.1 44 (13) 47 (11) 0.2 

Age of depression 
onset - years 

30 (13) 37 (13) 0.023 27 (12) 28 (12) 0.8 

Duration of episode - 
weeks 

56 (67) 52 (56) >0.9 28 (72) 26 (33) 0.7 

Family history of 
depression 

21 (46%) 15 (65%) 0.1 26 (67%) 19 (70%) 0.8 

Years of education 11.91 (2.28) 11.50 (1.65) 0.5 15.8 (4.5) 14.0 (4.7) 0.2 

Unemployed 3 (9.1%) 0 (0%) 0.5 13 (35%) 10 (37%) 0.9 

Married 5 (15%) 6 (43%) 0.1 19 (49%) 16 (59%) 0.4 

Body mass index - 
kg/m2 

25.7 (5.2) 27.9 (5.9) 0.1 25.8 (4.7) 25.7 (4.6) >0.9 

Smoker 21 (44%) 7 (29%) 0.2 7 (18%) 5 (19%) >0.9 

Hypertension 4 (10%) 4 (24%) 0.2 9 (24%) 5 (19%) 0.7 

Diabetes 1 (2.5%) 0 (0%) >0.9 3 (7.9%) 1 (3.7%) 0.6 

Hypothyroidism 2 (5.0%) 4 (24%) 0.1 8 (21%) 5 (19%) 0.8 

MADRS score at 
baseline 

26 (6) 22 (5) 0.049 26 (6) 29 (8) 0.020 

BDI score at baseline 30 (11) 23 (9) 0.011 30 (10) 30 (11) 0.7 
aMean (SD); n (%). b Pearson's Chi-squared test; Wilcoxon rank sum test. Fisher's exact test.246 
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Table 2. Prediction results of MADRS response models. 247 

Model TP TN FP FN Sens Spec PPV NPV PSI AUC BAC p-value 

DDC tDCS 17 27 21 7 70.8 56.2 44.7 79.4 24.1 0.64 63.5 0.001 

applied to ELECT tDCS 11 24 15 16 40.7 61.5 42.3 60.0 2.3 0.50 51.1 - 

applied to DDC sham 17 17 15 15 53.1 53.1 53.1 53.1 6.2 0.62 53.1 - 

DDC sham 20 20 12 12 62.5 62.5 62.5 62.5 25.0 0.67 62.5 0.023 

applied to ELECT sham 9 14 16 5 64.3 46.7 36.0 73.7 9.7 0.59 55.5 - 

applied to DDC tDCS 14 23 25 10 58.3 47.9 35.9 69.7 5.6 0.54 53.1 - 

ELECT tDCS 17 23 16 10 63.0 59.0 51.5 69.7 21.2 0.60 61.0 0.07 

ELECT sham 5 15 15 9 35.7 50.0 25.0 62.5 -12.5 0.44 42.9 0.88 

Abbreviations: TP, True Positive; TN, True Negative; FP, False Positive; FN, False Negative; Sens, Sensitivity; Spec, Specificity; PPV, Positive Predictive Value; NPV, 248 
Negative Predictive Value; PSI, Prognostic Summary Index; AUC, Area Under the Curve; BAC, Balanced Accuracy. Note: p-values were calculated using permutation 249 
analysis (α=0.05; 1000 permutations).250 
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 251 

252 
Figure 2. Permutation-based significance. Response was defined as ≥ 50% reduction from baseline.  253 
 254 

 255 
Figure 3. Feature importance. A positive cross-validation ratio suggests that a higher feature value predicts 256 
MADRS response, whereas a negative ratio implies that lower values do. A higher sign-based consistency 257 
suggests that feature weights were more consistently positive or negative across the ensemble. Significance was 258 
assessed by defining a hypothesis test for the importance score with a null hypothesis of 0 and an alternative 259 
hypothesis of not 0. FDR-corrected p-values were then calculated using a cumulative distribution function of z-260 
scores (α=0.05; red dotted line). 261 
 262 

Post-hoc clinical validation 263 

For the DepressionDC tDCS model, classification probabilities significantly predicted MADRS scores 264 

at the 18-week follow-up visit (F(1,60) = 4.53, pFDR = .037,  R2 =  0.069), but not MADRS scores at 265 

week 30 or GAF scores at weeks 18 and 30 (Supplementary Table S2 and Supplementary Figure S1). 266 

Classification probabilities of the DepressionDC sham model did not predict MADRS or GAF 267 

outcomes at weeks 18 and 30. 268 

 269 
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Discussion 270 

To our knowledge, this is the first study testing the cross-trial validity of ML models trained on easily 271 

attainable sociodemographic and clinical baseline variables to predict responders to a NIBS 272 

intervention. Whereas ML models increased accuracy in identifying responders to active tDCS and 273 

sham tDCS in the 6-week multicenter, randomized-controlled DepressionDC trial, the same variable 274 

battery could not be utilized to predict responses in the ELECT-TDCS trial, and models did not 275 

generalize across trial datasets and treatment modalities. Our findings underscore existing challenges 276 

and limitations inherent in predicting antidepressant responses in RCT  populations.  277 

The predictive accuracies of our models with above-chance detection rates align with prior 278 

attempts to predict responses to antidepressant medication using ML algorithms trained on clinical 279 

variables9,11,12,37. Although these performances are modest compared to the classification benchmarks 280 

set in other medical disciplines, such as neuroradiology38, antidepressant response prediction remains 281 

a challenging task relying on subjective judgment, and thus, even small increases in predictive 282 

accuracy might theoretically inform clinical decisions. However, as exemplified by the only prior 283 

attempt to prospectively assess the clinical utility of an antidepressant response classifier, which failed 284 

to improve treatment outcomes when applied as a decision-making tool14, strong indicators are needed 285 

to justify further development of classifiers beyond the proof-of-concept stage. In the context of our 286 

study, the tDCS response classifier for the DepressionDC sample significantly predicted depression 287 

severity at the 18-week follow-up visit, suggesting potential clinical validity. Nonetheless, given the 288 

failed external validation and the need for enhanced performance, further refinement and testing of the 289 

model would be needed to establish its efficacy and reliability39. 290 

Recent research, including a validation attempt across trials on antipsychotic medication for 291 

schizophrenia40, suggests that three main reasons might have contributed to our models' failed 292 

transferability across trial datasets. First, trial populations might have been too heterogeneous, 293 

including patients at different disorder stages or with nuanced differences in psychopathology profiles 294 

not captured by the broad DSM-5 inclusion criteria. Indeed, participants in the DepressionDC trial 295 

showed numerically later depression onset and longer mean depression episode duration compared to 296 
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ELECT-TDCS16,18. By contrast, baseline depression severity was comparable between trials. Second, 297 

compared to a previous ML prediction study in the ELECT-TDCS cohort23, our models showed 298 

considerably lower predictive performance in the same dataset. Since our analysis aimed to develop 299 

generalizable prediction models across two RCT cohorts, we took several methodological choices that 300 

may partly explain this difference. Instead of an XGBoost classifier, we used a validated ensemble 301 

learning strategy applying SVM algorithms within a nested cross-validation framework. This 302 

framework was chosen because it has been applied in several multisite analyses and optimized to 303 

generate generalizable models9,27,28. We also limited the input variables to features available in both 304 

datasets. Consequently, this meant omitting data modalities like neuropsychological test results, 305 

electrophysiological data, and imaging measurements, which might have been needed to specifically 306 

detect patterns of response in the active treatment arm. For example, a recent analysis on data from 307 

the RESIS trial, which like the DepressionDC trial was also negative regarding its primary and 308 

secondary outcomes, extended a previous attempt to built an active rTMS treatment response 309 

classifier for patients with predominant negative-symptom schizophrenia based on structural 310 

Magnetic Resonance Imaging (sMRI)9 by incorporating further data domains (i.e. polygenic risk 311 

scores) and multimodal sequential modelling10. While not yet validated, this approach improved the 312 

prediction performance from 80 % to 94% in the active treatment but not the sham treatment arm. 313 

Third, treatment response rates could have been overly influenced by contextual factors that cannot be 314 

modeled at the single-subject level. For example, the present trials were conducted in healthcare 315 

settings with differing models of reimbursement and access to care. They also subtly differed in 316 

eligibility criteria, with participants in the DepressionDC trial kept on a stable SSRI dose while 317 

participants in ELECT-TDCS were antidepressant-free. These methodological challenges showcase 318 

the current need in ML-based treatment prediction research to systematically assess and compare 319 

potential analytic pipelines in larger samples, to include comprehensive phenotyping in RCT 320 

protocols, and to harmonize best-practice symptom assessments across brain stimulation trials. 321 

Models with above-chance detection rates for active tDCS and sham tDCS in the 322 

DepressionDC sample also did not generalize across treatment modalities. Our feature importance 323 

analyses indicated that the performance of both models was predominantly driven by baseline BDI 324 
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scores. This reliance on a single feature presents an interpretative challenge: Without a distinct feature 325 

selection profile, it becomes difficult to determine whether the models are tailored specifically to each 326 

treatment modality or if they lack generalizability to new patients.  327 

Our analysis has several limitations. Firstly, the relatively small sample size in both datasets 328 

might have limited the performance and robustness of our classifiers41. Secondly, only a limited set of 329 

identical features was available from both trials. For example, negative affect, which was a key 330 

predictive feature in the prior ML analysis of the ELECT-TDCS sample23, was not collected in 331 

DepressionDC. This omission might have reduced the predictive accuracy of models in the present 332 

analysis. Thirdly, our study was retrospective and served as a proof-of-concept analysis. 333 

Consequently, our models have not been validated prospectively, nor have they been benchmarked 334 

against clinical judgments. Fourthly, the DepressionDC trial did not demonstrate the efficacy of active 335 

tDCS at a group level. This raises the possibility that there may not have been any discernible effects 336 

at the individual subject level either, which would inherently limit the potential of our models to 337 

identify specific treatment effects. Lastly, while Kambeitz et al.23 evaluated treatment response at 338 

week 10, we opted to identify responders at week 6 due to the availability of MADRS data at this time 339 

point across both trials. Consequently, our study could not explore and compare predictive accuracies 340 

at various endpoints. 341 

In conclusion, our findings suggest that readily accessible clinical variables at baseline, 342 

particularly self-rated depression severity, have the potential to identify responders to active tDCS and 343 

sham tDCS treatments in patients with MDD. However, our findings also caution against the 344 

premature dissemination of predictive models that lack external validation. Future research should 345 

aim to harmonize and deepen phenotyping efforts in RCT protocols to enable the development of 346 

more robust predictive models. Ultimately, such models need to be first externally validated and then 347 

prospectively tested for their clinical utility. 348 

 349 
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