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Abstract 

Background: The application of artificial intelligence (AI) to electrocardiograms (ECGs) has 

shown great promise in the screening and diagnosis of cardiovascular diseases, often 

matching or surpassing human expertise. However, the "black-box” nature of deep learning 

models poses significant challenges to their clinical adoption. While Explainable AI (XAI) 

techniques, such as Saliency Maps, have attempted to address these issues, they have not 

been able to provide clear, clinically relevant explanations. We developed the Generative 

Counterfactual ECG XAI (GCX) framework, which uses counterfactual scenarios to explain 

AI predictions, enhancing interpretability and aligning with medical knowledge. 

Methods: We designed a study to validate the GCX framework by applying it to eight AI-

ECG models, including those focused on regression of six ECG features, potassium level 

regression, and atrial fibrillation (AF) classification. PTB-XL and MIMIC-IV were used to 

develop and test. GCX generated counterfactual (CF) ECGs to visualize how changes in the 

ECG relate to AI-ECG predictions. We visualized CF ECGs for qualitative comparisons, 

statistically compared ECG features, and validated these findings with conventional ECG 

knowledge. 

Results: The GCX framework successfully generated interpretable ECGs aligned with 

clinical knowledge, particularly in the context of ECG feature regression, potassium level 

regression, and AF classification. For ECG feature regression, GCX demonstrated clear and 

consistent changes in features, reflecting the corresponding morphological alterations. CF 

ECGs for hyperkalemia showed a prolonged PR, discernible P wave, increased T wave 

amplitude, and widened QRS complex, whereas those for AF demonstrated the disappearance 

of the P wave and irregular rhythms.  
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Conclusion: The GCX framework enhances the interpretability of AI-ECG models, offering 

clear relevant explanations for AI predictions. This approach holds substantial potential for 

improving the trust and utility of AI in clinical practice, although further validation across 

diverse datasets is required. 
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Introduction 

Artificial intelligence (AI) applied to electrocardiograms (ECGs) (AI-ECG) has 

demonstrated remarkable proficiency in diagnosing and predicting cardiovascular and other 

systemic diseases, often equaling or exceeding the expertise of cardiologists.1–5 Despite these 

achievements, deep learning-based AI-ECG models face a critical challenge: their decision-

making processes are not transparent and are often regarded as 'black boxes’.6,7 These 

limitations are significant concerns for clinicians, who depend on understanding AI decisions 

to trust and use these technologies effectively in patient care. Thus, the role of Explainable 

Artificial Intelligence (XAI) in interpreting AI decisions is becoming increasingly crucial.8 

XAI aims to develop and refine AI that are not only effective but also ’interpretable’ 

and ’reliable’ for clinical use.9 Here, ‘interpretable’ refers to the ability to understand why the 

AI produces a specific result, while ’reliable’ pertains to the assessment of whether the AI's 

conclusions align with the established medical knowledge held by clinicians.10 

Attribution-based XAI methods, such as Saliency Maps and GradCAM, have been 

predominantly used to interpret AI-ECG.11,12 These techniques generate importance maps by 

quantifying the contribution of each input signal to AI-ECG predictions, which are typically 

visualized as heatmaps. Figure 1.a illustrates the application of a Saliency Map to an AI-ECG. 

The Saliency Map shows that the AI-ECG focuses on the T segment (yellow), but fails to 

clarify whether changes such as widening, narrowing, flattening, or inversion of the T wave 

influencing the AI-ECG's decisions. In addition, these methods do not account for changes in 

rhythm, which is critical for the diagnosis of various arrhythmias. Consequently, the 

interpretation provided by attribution-based XAI methods are often ambiguous and do not 

offer a ‘interpretable’ or ‘reliable’ explanation for AI-ECG decisions. 
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To address limitations in attribution-based XAI in AI-ECG, we introduce the concept 

of Counterfactual (CF)-based XAI, which explores 'what-if' scenarios to determine how 

specific changes in input data could influence an AI-ECG predictions.13 To generate these 

scenarios, generative AI, which is a technology capable of creating synthetic yet plausible 

input data as a CF ECG, can be utilized.14 By integrating this technology with a CF-based 

XAI approach, we introduce the Generative CF XAI method (GCX) for interpreting AI-ECG. 

This method enables a visual demonstration of how specific morphological features or 

rhythm changes in the ECG can alter the predictive results of the AI-ECG. Figure 1b 

illustrates an example of using GCX to interpret AI-ECG, clearly showing that the AI-ECG's 

high predictive results are associated with increasing and peaked T wave changes, widening 

of the QRS wave, and prolongation of the PR interval with P wave flattening. We believe that 

the GCX framework can significantly enhance real-world clinical implementation of AI-ECG 

by contributing to its goals of being both ’interpretable’ and ’reliable’. 

 
Figure 1. Examples of Saliency Map and GCX interpretation results. Figure 1.a presents a Saliency Map 
applied to an AI-ECG, visually highlighting the T wave as being particularly significant to the AI-ECG's 
predictions. The heatmap below the ECG trace, ranging from black to yellow, indicates the varying importance 
of each segment with the T wave marked as crucial. Figure 1.b introduces the Generative Counterfactual XAI 
(GCX) method, illustrating how altering each major ECG features in counterfactual scenarios affects the AI’s 
predictions. The blue line represents the Negative counterfactual (CF) ECG, compared to the original ECG 
(black line), highlighting the increased and peaked T wave amplitude, widening of the QRS complex, and a 
prolonged PR interval with P wave flattening influence predictive outcomes of AI-ECG. 
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Our study aimed to validate the effectiveness and utility of GCX in the interpretation 

of AI-ECG. Previous studies have analyzed various XAI techniques for deciphering AI-ECG; 

however, CF-based XAI has not been explored.15 First, we applied the GCX to six AI-ECG 

models targeting single ECG features to evaluate its effectiveness. Second, we assessed the 

utility of GCX when applied to AI-ECG models to detect complex ECG changes, such as 

blood potassium imbalance and atrial fibrillation (AF), in the context of established medical 

knowledge. This research introduces a novel, structured framework for applying GCX to AI-

ECG, filling a significant gap in the existing XAI methodologies. 

 

Methods 

Study Design 

 We conducted a proof of concept (POC) experiment and validated the GCX’s utility 

using public clinical dataset (Figure 2.a). First, the POC experiment aimed to verify whether 

the GCX could recognize and express the fundamental morphological and rhythm features in 

the ECG. We developed six AI-ECG models to regress the following ECG features of ECG 

lead II: P, R, and T amplitudes, PR interval, RR interval, and RR interval standard deviation 

(RR SD). Then we applied the GCX framework for each regression model. Second, to assess 

the utility of GCX, we developed two AI-ECG models for potassium level regression and AF 

classification. We interpret both models with GCX. These target tasks were chosen because 

the pathological ECG alterations due to these conditions are well-established.16 For instance, 

hyperkalemia, characterized by high potassium levels, results in a tall T amplitude, prolonged 

PR interval, and QRS widening. In contrast, hypokalemia, characterized by low potassium 

levels, shows increased P wave amplitude, widespread ST depression, T wave 

flattening/inversion, and prominent U waves. AF is identified by disappeared P amplitude 
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and an irregularly irregular rhythm. By ensuring that GCX interpretations matched these 

clinical knowledges, we aimed to validate the practical utility of GCX in real-world clinical 

scenarios. 

Figure 2. overview of study flow. (Figure 2.a) To assess the effectiveness and utility of GCX, we constructed 
a total of eight AI-ECGs and aimed to interpret them using GCX. Six ECG feature regression models were 
interpreted via GCX to verify whether GCX could recognize and interpret the core components of the ECGs. 
Additionally, we used GCX to interpret the potassium level regression and atrial fibrillation classification 
models. (Figure 2.b,) GCX generates modified ECGs reflecting changes in predictive output of specific AI-
ECG models, either increasing or decreasing. This approach allows us to evaluate whether the ECGs produced 
by GCX align with theoretical ECG changes associated with the clinical status. 

*RR SD; RR interval standard deviation. 

 

The GCX framework is the structured process that uses the GCX to interpret AI-ECG 

model predictions (Figure 2.b) It consists of two stages. First, we use the GCX to generate 

two types of CF ECGs from the original ECGs: Positive CF ECG and Negative CF ECG. A 

Positive CF ECG is a novel transformation of the original ECG that has higher predictive 

value of the target AI-ECG compared to the original ECG, while a Negative CF ECG has a 

lower predictive value. For example, to generate CF ECGs for a T-amplitude regression AI-

ECG model, if the original ECG has a predictive T amplitude value of 0.3 millivolts (mv), 

GCX generates a Positive and Negative CF ECG to have a value higher or lower than 0.3 mv 
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of T amplitude. Second, we interpret the AI-ECG by visualizing both Positive and Negative 

CF ECGs and analyze the ECG features of the generated CF ECGs.  

 

AI-ECG development and data collection 

We developed eight AI-ECG models and interpreted them using the GCX. The AI-ECG 

models were developed using the ResNet architecture. We used the PTB-XL dataset17 and 

MIMIC-IV ECG dataset.18 Detailed process of developing AI-ECGs is provided in 

Supplementary Text 1 and Supplementary Text 2. 

 

Generation of CF ECGs using GCX 

GCX utilizes StyleGAN219, a generative AI model, to create CF ECGs for AI-ECG �  

interpretation. It generates a CF ECG �����  from the original ECG � . In this process, GCX 

ensures that the predictive value������ of the positive CF ECG is higher than the predictive 

value ���� of the original ECG. Conversely, the negative CF ECG �����  has a lower predictive 

value than the original. Since the main objective of this study is to validate the GCX 

framework, detailed descriptions of the GCX process are provided in Supplementary Text 3. 

����� � ���	����� 

����� 
 ������� � 

Where �  is the original ECG and �����  is positive CF ECG and � is ECG AI model. 
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Visualization of CF ECGs 

We utilized the median beat method to extract representative ECGs for the POC 

experiments.20 In POC cases where rhythm changes are crucial, such as with the RR interval 

and RR SD regression models, we visualized 5-second ECGs. The Progressive CF ECG plots 

were visualized to validate two AI-ECG models using both Positive and Negative CF ECG 

from the baseline ECGs. At this point, the Saliency map was also visualized alongside the 

Progressive CF ECG plot for comparative analysis. We performed all visualizations using 

Python's Matplotlib version 2.1.5.21 

 

ECG feature analysis and statistics  

We conducted an ECG feature analysis using paired t-tests and paired box plot. First, 

ECG features were extracted from the original ECGs, positive CF ECGs, and negative CF 

ECGs. Then, by performing paired t-tests on these features, we statistically compared the 

changes in ECG features as the AI-ECG model's predictive values increased or decreased. 

The results of these paired t-tests were presented alongside paired box plots. In these plots, 

the left box represents the features before the change, and the right box represents the features 

after the change. Each paired CF ECG is connected by lines, with red solid lines indicating an 

increase and blue solid lines indicating a decrease.  

For the potassium level regression models, which involved two abnormal states—

hyperkalemia and hypokalemia—we conducted ECG feature analysis by separating the 
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features of the original ECGs and the positive CF ECGs (hyperkalemia) from those of the 

original ECGs and the negative CF ECGs (hypokalemia). Specifically, we compared the T 

amplitude, PR interval, and QRS duration for positive CF ECGs, while for negative CFs, we 

compared the T amplitude, P amplitude, and PS slope. The PS slope is the slope connecting 

the onset of the P wave to the offset of the QRS complex; a lower slope indicates a stronger 

presence of ST depression. For AF classification, we analyzed the features of negative CF 

ECGs (non-AF) and positive CF ECGs (AF), focusing on the P amplitude and RR SD. The 

paired t-tests were performed using Python's SciPy library, version 1.10.1.22 Statistical 

significance was assessed using a two-sided threshold of p < 0.05. 

 

Results 

Table 1 shows baseline characteristics of the datasets used for developing AI-ECGs. 

The PTB-XL dataset comprises 18,869 patients and 21,799 ECGs, with 55.36% male 

participants. The dataset includes 1,514 ECGs (6.95%) classified as AF, while the remaining 

20,285 ECGs (93.05%) were Non-AF. The MIMIC IV dataset includes 104,804 patients and 

238,262 ECGs, with 49.06% male participants. This dataset identifies 16,964 ECGs (7.12%) 

as hypokalemia (< 3.5 mmol/L), and 14,101 ECGs (5.92%) as hyperkalemia (> 5.5 mmol/L).  

In the POC experiments, we analyzed the ECG features including P, R, and T wave 

amplitudes and PR interval using median beat visualizations. The Positive CF ECGs 

demonstrated increased amplitudes for the P, R, and T waves compared to the original ECGs, 

while the Negative CF ECGs showed decreased amplitudes (Figure 3).  The PR interval panel 

showed that Positive CF ECGs had a prolonged PR interval, whereas Negative CF ECGs had 
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a shortened PR interval (Figure 3). For the RR interval and RR SD, the Positive CF ECGs 

displayed longer RR intervals and increased variability (RR SD), whereas the Negative CF 

ECGs exhibited shorter RR intervals and decreased variability (Figure 3). 

 

Table1. Baseline Characteristics for ECG datasets: PTB-XL and MIMIC-IV 

Dataset Name PTB-XL MIMIC IV 

Patients N  18,869  104,804  

ECG N 21,799 238,262 

Male (%)  55.36  49.06  

Age, mean (aSD)  59.83 (16.95)  60.54 (17.18)  

Heart rate, bpm, mean (SD)   74.17 (16.94)  81.14 (21.65) 

QRS duration, ms, mean (SD)  98.70 (16.83)  98.60 (20.80) 

QT interval, ms, mean (SD)  387.37 (38.28)  382.24 (48.56) 

PR interval, ms, mean (SD)  183.32 (33.29)  157.39 (32.50) 

P wave axis, degree, mean (SD)  38.93 (26.17)  40.24 (36.67) 

R wave axis, degree, mean (SD)  16.32 (39.93)  11.84 (43.48) 

T wave axis, degree, mean (SD)  37.07 (50.22)  36.98 (54.47) 

Potassium level, mmol/L, mean (SD) - 4.30 (0.78)  

Atrial fibrillation     

Atrial fibrillation ECGs (%) 1,514 (6.95) - 

Non-atrial fibrillation ECGs (%) 20,285 (93.05) - 

Hypokalemia (< 3.5 mmol/L)   

ECG N (%) - 16,964 (7.12) 

Potassium level, mmol/L, mean (SD) - 3.19 (0.24)  

Hyperkalemia (> 5.5 mmol/L)   

ECG N (%) - 14,101 (5.92) 

Potassium level, mmol/L, mean (SD) - 6.49 (0.92)  

aSD; standard deviation  

For the potassium regression AI-ECG model, Positive CF ECGs indicative of 

hyperkalemia reveal increased T wave amplitude, prolonged PR interval, and QRS widening, 

while Negative CF ECGs for hypokalemia show decreased T wave amplitude, increased P 

wave amplitude, widespread ST depression, and prominent U waves (Figure 3). The 
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progressive CF plots in Figure 4 provide a dynamic view of how these features evolve as 

predictive potassium levels change, offering a continuous and detailed depiction of the 

morphological changes initially observed in Figure 3. In contrast, the saliency map 

emphasizes the T wave amplitude but does not provide additional morphological information. 

For the AF classification AI-ECG model, Figure 3 demonstrates that Positive CF 

ECGs, associated with higher AF probabilities, are characterized by the disappearance of the 

P wave. However, the irregular rhythm is not directly visible in the median beat 

visualizations of Figure 3. This feature becomes apparent in Figure 4, where the progressive 

CF plots effectively capture not only the disappearance of the P wave but also the gradual 

emergence of rhythm irregularities as AF probability increases. Importantly, the progressive 

CF plots also captured the variability in QRS morphologies with each beat, reflecting the 

characteristic ‘irregularly irregular’ pattern typical of AF. This dynamic visualization 

complements the static observations from Figure 3, providing a more comprehensive 

understanding of how AF-related changes develop over time. The saliency map, while 

highlighting the P wave, does not offer additional morphological details and fails to capture 

the rhythm changes. 

All of the ECG features listed above were statistically verified using paired t-tests, 

and each demonstrated statistically significant outcomes. Detailed information, results and 

box plots of paired t-test, can be found in the Supplementary Text 4. 
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Figure 3.  Visualization of CF ECGs for each AI-ECG model. The figure demonstrates GCX’s ability to 
produce counterfactual ECGs (CF ECGs) and highlight morphological differences between original (black), 
Positive CF (red), and Negative CF (blue) ECGs. The panels for P, R, and T wave amplitudes and PR interval 
show median beat visualizations, indicating their significance in each AI-ECG prediction. The RR interval and 
RR SD panels are 5-second ECG examples among CF ECGs instead of median beat visualizations as rhythm 
changes cannot be shown using median beats. The Potassium and Atrial Fibrillation panels also use median beat 
visualizations to highlight typical changes, such as increased T amplitude in higher potassium levels and P wave 
disappearance in AF cases. 
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Figure 4. Progressive CF plots. Figure 4 demonstrates how ECG morphology changes influence predictive 
values. The black ECG represents the baseline ECG, while the red and blue ECGs represent positive and 
negative CF ECGs, respectively. It shows the progression of morphological changes as the predictive value 
varies from the baseline ECG. The color map shows importance levels of saliency map, with low importance 
segments in black and high importance segments in yellow. The potassium section shows the progressive 
changes in ECG morphology corresponding to hyperkalemia and hypokalemia. The ECG traces reflect 
increasing predictive potassium levels from 2 to 7 mmol/L, with notable changes in T wave amplitude and P, 
QRS waves’ shape. For AF, the figure illustrates clinical features with increasing AF probabilities, ranging from 
0.01 to 0.92. The ECG traces show progressive AF characteristics such as rhythm irregularity and modification 
or absence of P waves.  
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Discussion 

This study aimed to validate the GCX framework in interpreting AI-ECG models, 

particularly for ECG feature regression, potassium level regression and atrial AF 

classification. By leveraging counterfactual scenarios generated through a novel approach, we 

sought to enhance the interpretability and clinical applicability of AI-driven ECG diagnostics. 

While CF-based XAI has been applied to ECGs in previous research, we are not aware of any 

study that has rigorously validated this approach within a clinical research context.23,24 Our 

study represents a pioneering effort to propose and test a structured framework for applying 

CF-based XAI to ECG analysis, which constitutes a significant innovation in the field. 

This study results demonstrate that GCX could facilitate the visualization of the 

correct ECG features based on changes in the predictive probabilities of the six POC AI-ECG 

model. Additionally, GCX was able to generate CF ECGs that align with the established 

domain knowledge of ECG changes related to blood potassium levels or AF diagnosis. For 

potassium level regression, positive CF ECGs for higher potassium levels showed increased 

T wave amplitude with peaked morphological change, flattening P wave with prolonged PR 

interval, and widened QRS complex (Figure 3, Figure 4, Supplementary Figure 1, 

Supplementary Figure 2). However, other known hyperkalemia-related ECG changes, such as 

conduction disturbances or bradyarrhythmia, were not observed through this framework 

process. These limitations could potentially be overcome by diversifying the development 

dataset and cohort, and by enhancing the generalization of the AI-ECG model. Negative CF 

ECGs, indicative of lower potassium levels displayed decreased T wave amplitude, increased 

P wave amplitude, prolonged PR interval, and ST depression, and prolonged QT interval with 

fusion of T-U waves (Figure 3,4),  These changes were consistent with established ECG 

knowledge.  For AF classification, positive CF ECGs, which are associated with higher 

probabilities of AF, exhibited hallmark features such as the absence of P waves and an 
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‘irregularly irregular’ pattern, reflecting not only increased rhythm irregularity but also 

variability in the morphology of each beat. .Conversely, negative CF ECGs showed a regular 

rhythm and distinct P waves, indicating lower probabilities of AF. The changes observed in 

the aforementioned CF ECGs were validated using a paired t-test, yielding consistent results 

(Supplementary file, Supplementary Figure S4.1, Supplementary Table S4.1). 

As illustrated in Figure 1 and Figure 4, compared to traditional attribution-based XAI 

methods like Saliency Maps and GradCAM, which primarily generate importance maps, 

GCX provides a more nuanced understanding by elucidating the 'why' and 'how' behind AI 

decisions, clarifying both specific morphological and rhythm changes in ECGs that influence 

AI predictions. We believe that the value of GCX can be expanded in the following ways: 

Firstly, a traditional ECG interpretation is typically based on rule-based criteria. The rules are 

often complex, difficult to memorize, and interpreted by various device manufacturers’ 

algorithms.  For most clinicians without expertise in ECG interpretation, these reports offer 

limited practical value. For example, even if an ECG report from a patient with hyperkalemia 

indicates 'hyperkalemia' and 'tall T waves,' it can be difficult to pinpoint the exact locations of 

the abnormalities, and the report lacks detailed explanations of other ECG features that 

suggest hyperkalemia, which would support clinicians in their decision-making. Therefore, 

GCX could significantly enhance clinical applications by providing clear insights into not 

only AI-ECG models but also conventional device interpretations, thereby increasing 

clinician trust and improving diagnostic decisions. Secondly, GCX may enhance our 

understanding of how specific ECG changes influence AI-ECG predictions, thereby 

promoting greater transparency and trust in AI systems. The potential of AI-ECG extends 

beyond conventional rule-based criteria, enabling the diagnosis and prediction of 

cardiovascular and systemic diseases that would otherwise be undetectable, such as heart 
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failure or aortic stenosis.25,26 GCX can play a crucial role in interpreting the causal 

relationships within these algorithms. 23 

GCX as Generative CF based XAI is particularly effective for analyzing ECGs for 

two key reasons. First, as a 1D dataset, ECGs are well-suited for overlapping the original 

signal with CF signals, allowing for clear, visual comparisons without the spatial interference 

that complicates such analyses in 2D images. This capability enables a straightforward 

understanding of how specific waveform changes influence AI predictions. Second, we 

identified the potential value of GCX for generating and comparing 'healthy state' ECGs. 

Typically, physicians assess a single ECG from a currently ill patient by comparing it with 

the same patient's recent 'healthy state' ECG. If GCX generates and visualizes a 'healthy state' 

ECG, physicians could use this as a baseline comparator. Moreover, GCX can be even more 

effective when used in conjunction with Saliency Maps for ECG interpretation. As illustrated 

in Supplementary Figure 3 and 4, the combined use of GCX and Saliency Maps in ECG 

interpretation provides a powerful tool for clinical diagnostics.  

While our study demonstrates the utility of GCX, it is important to acknowledge 

several limitations. First, the CF ECGs generated by GCX may not always align with clinical 

facts. Primary goal of GCX is to interpret the reasoning of AI-ECG models. If the AI-ECG 

model performs poorly or relies on unintended artifacts within the dataset to make prediction, 

the CF ECGs produced by GCX may differ from established medical knowledge. Therefore, 

the interpretation of GCX is most useful when applied to AI-ECG models that are well-

trained on well-established datasets. Second, there is the potential for generating unrealistic 

or non-existent ECG patterns, reflecting the current technical limitation of generative AI. 

Future advancements in generative AI should focus on producing clinically more realistic 

ECGs. Nevertheless, this study is significant as it demonstrates the utility of applying 

generative AI to ECG interpretation and serves as a foundational step in ECG research. 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 30, 2024. ; https://doi.org/10.1101/2024.09.29.24314144doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.29.24314144


Lastly, the proprietary algorithm used for ECG feature extraction cannot be disclosed, 

potentially limiting reproducibility.  
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Conclusion 
 In conclusion, the GCX framework represents a significant advancement in the 

interpretability and reliability of AI-ECG models by providing clear, actionable explanations 

for the emergence of specific ECG features, morphological patterns, or rhythm changes, in 

alignment with established ECG knowledge. By generating and analyzing counterfactual 

scenarios, GCX effectively addresses key limitations of existing XAI methodologies and 

shows substantial promise for enhancing both clinical and technical applications. Future 

research should focus on extending the application of GCX to a broader range of clinical 

scenarios and AI-ECG models, thereby validating its effectiveness and reliability. 

Additionally, exploring its performance across diverse populations and ECG datasets will be 

essential for improving its generalizability. 
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