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ABSTRACT

FBXO22 encodes an F-box protein which acts as a substrate-recognition component of the

SKP1-CUL1-F-box (SCF) E3 ubiquitin ligase complex. Despite its known roles in the

post-translational ubiquitination and degradation of specific substrates, including histone

demethylases, the impact of FBXO22 on human development remains unknown. Here, we

characterize a pleiotropic syndrome with prominent prenatal onset growth restriction and

notable neurodevelopmental delay across 14 cases from 12 families. Through exome and

genome sequencing, we identify three distinct homozygous loss-of-function FBXO22

variants segregating with the disease: p.(Arg53Serfs*13), p.(Pro3Leufs*3) and

p.(Val240Alafs*6), all predicted to lead to premature translation termination due to

frameshift effects. We confirm that patient-derived primary fibroblasts are bereft of FBXO22

and show increased levels of the known substrate histone H3K9 demethylase KDM4B.

Accordingly, we delineate a unique epigenetic signature for this disease in peripheral blood.

Altogether, we identify and demonstrate that FBXO22 deficiency leads to a pleiotropic

syndrome in humans encompassing growth restriction and neurodevelopmental delay, the

pathogenesis of which may be explained by broad chromatin alterations.
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MAIN

Ubiquitin-tagged proteasomal degradation of specific proteins is an essential molecular

process that contributes to protein turnover, thus regulating many cellular processes,

including cell growth, proliferation, and differentiation.1–3 When the ubiquitin-proteasome

system is impaired, the resultant aberrant stabilization of protein substrates can lead to

defects in both common diseases such as cancer, as well as in development, leading to

rare genetic diseases.4–7 Ubiquitin tagging of protein substrates is performed by several E3

ubiquitin ligases in complex with accessory proteins - one of which includes the

SKP1-CUL1-F-box (SCF) RING-finger E3 ubiquitin ligase complex. A family of proteins

termed the F-box proteins interact with the SCF via their F-box domains, functioning as the

variable substrate-recognition component of the SCF. Three classes of F-box proteins exist

classified according to the substrate-recognition domains present: FBXW (WD40 repeat

domains), FBXL (leucine-rich repeat) and FBXO (other non-fully characterized

domains).8–10

FBXO22 is one of at least 40 FBXO proteins9,11 annotated in the human genome that is

ubiquitously expressed and has been characterized to play a role in the regulation of

cancer.12,13 In particular, FBXO22 has been identified as a regulator of senescence, as well

as a promoter of breast and lung cancer during early oncogenesis, while a suppressor of

migration and metastasis during late cancer stages, through the interaction with its

identified substrates such as KDM4A, KDM4B, TP53, PTEN and KLF4.12–20 In addition, its

interaction with SKP1 of the SCF E3 ligase complex has been experimentally

validated.15,18,20 While a role for FBXO22 in human development has not yet been

described, loss-of-function variants of other family members including FBXO7

(MIM605608), FBXO11 (MIM607871) and FBXO31 (MIM606604) have been shown to

cause Mendelian diseases - Parkinson Disease 15 (PARK15, autosomal recessive,

MIM260300),21–23 Intellectual Developmental Disorder with Dysmorphic Facies and

Behavioral Abnormalities (IDDFBA, autosomal dominant, MIM618089)24–26 and Intellectual

Developmental Disorder, autosomal recessive-45 (MRT45, MIM615979),27 respectively.

Separately, a mouse Fbxo22 knockout model has been characterized by gross and severe

growth reduction to around half the size of wild-type littermates, alongside low-penetrant

postnatal lethality.14
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Here, we identify a pleiotropic syndrome with prominent early-onset growth restriction and

notable neurodevelopmental delay across 14 cases - comprising 13 individuals and one

fetus - from 12 families spanning three countries. Through a mixture of exome and short

and long-read whole genome sequencing, we identify three distinct homozygous germline

FBXO22 coding variants segregating with the disease following an autosomal recessive

mode of inheritance. All three alleles are expected to lead to premature translation

termination and nonsense-mediated decay arising from frameshift mutations. In vitro

analysis of a patient-derived primary fibroblast line confirmed that the absence of FBXO22

led to an increase in protein levels of a critical epigenetic protein substrate, while peripheral

blood DNA methylation analysis identified a unique epigenetic signature. We propose that

these biallelic loss-of-function (LoF) mutations of FBXO22 lead to an aberrant stabilization

of protein substrates as the cause of this previously undescribed pleiotropic syndrome.

In a collaborative international effort of clinicians and scientists, we identified 13 affected

children (eight females and five males) and one fetus (14 cases in total) presenting a

common core symptomatology of early onset growth restriction, neurodevelopmental delay,

craniofacial abnormalities and additional poly-malformations (cardiovascular,

gastrointestinal, urinal and endocrinal) (Figure 1A). All patients belonged to 12 families from

three Gulf Cooperation Council (GCC) countries ( ), of which 10 were

identified as consanguineous. Of the 14 cases, two passed away (F7-II:1 and F9-II:1) and

one was a second-trimester Termination of Pregnancy (TOP) of unknown sex (Figure 1 and

Table S1).

The 13 affected children who were clinically assessed presented with a severe growth

retardation phenotype with intrauterine growth restriction (HP:0001511) (69.2%), short

stature (HP:0004322) (61.5%), decreased body weight (HP:0004325) (53.8%), and an

overall failure to thrive (HP:0001508) (84.6%) (Table 1 and Table S1). In addition, an

apparent neurodevelopmental phenotype was observed, with the vast majority of

individuals suffering from neurodevelopmental delay (HP:0012758) (92.3%), together with

microcephaly (HP:0011451) (69.2%), intellectual disability (HP:0001249) (46.2%), muscular

hypotonia (HP:0001252) (61.5%), generalized hypotonia (HP:0001290) (46.2%), frequent

seizures (HP:0001250) (53.8%) and poor suck (HP:0002033) (38.5%) (Table 1 and Table

S1). Furthermore, stark yet similar abnormal craniofacial abnormalities (HP:0001999) were

observed across the individuals (84.6%), as demonstrated here in images of six individuals
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(obtained with parental consent) (Figure 1B). The craniofacial phenotype included a high

forehead (HP:0000348) (53.8%), depressed nasal bridge (HP:0005280) (61.5%) and short

nose (HP:0003196) (30.8%), hypertelorism (HP:0000316) (46.2%) with short palpebral

fissure (HP:0012745) (30.8%), low-set ears (HP:0000369) (38.5%), and a narrow palate

(HP:0000189) (30.8%) (Figure 1B, Table 1 and Table S1). The facial phenotype in affected

individuals may show temporal evolution, most evident in a three-year-long and a

12-year-long facial photograph time-lapse for patients F7-II:3 and F2-II:3, respectively

(Figure 1B). In infancy, the face tends to be round with sparse eyebrows and bears a

superficial resemblance to that observed in type II collagen defects due to a depressed

nasal bridge and a short nose. Over time, the face becomes triangular and eyebrows

become horizontal with a downward lateral curve, while still demonstrating medial sparsity.

This distinctive eyebrow morphology may provide a diagnostic handle for the

FBOX22-related phenotype in older children.

Although the growth impairment, neurodevelopmental delay and craniofacial anomalies

were the most apparent, additional phenotypes with clinical variability were also observed.

Cardiovascular defects were noted with atrial septal defect (HP:0001631) (30.8%) and

patent ductus arteriosus (HP:0001643) (30.8%), as well as gastrointestinal defects with

gastroesophageal reflux (HP:0002020) (38.5%), duodenal atresia (HP:0002247) (38.5%)

and feeding difficulties (HP:0011968) (30.8%) (Table S1). Several individuals additionally

showed skeletal presentations with hip dislocation (HP:0002827) (30.8%), as well as

camptodactyly (HP:0100490) (23.1%) with tapered digits (HP:0001182) (23.1%), as

demonstrated by individuals F2-II:3 and F7-II:1 (Figure 1C and Table S1). The fingers of

these two individuals showed a resemblance to that characteristic of Coffin-Lowry

syndrome (MIM303600), in exhibiting a soft appearance with distal tapering. Some of the

affected individuals also showed variable endocrine abnormalities, including

hyperthyroidism (HP:0000836) (7.7%) and hypothyroidism (HP:0000821) (23.1%) (Table

S1).

To identify the underlying genetic cause of this pleiotropic syndrome, we performed either

exome sequencing or whole genome sequencing on the affected individuals from all 12

families (Table S1). Mendelian recessive inheritance was favored across the largely

consanguineous backgrounds of the families, with no sex-linked segregation observed,

allowing us to focus on autosomal homozygous variants among the affected children.
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Three distinct germline recessive variants in FBXO22 (MIM609096) were identified across

the 12 families, with full segregation observed in families that were tested (8/8) (Figure 1A).

The majority of patients (families F1-8, F11-12) had the homozygous allele

c.159_162delGGAG, while F9-II:1 bore the homozygous allele c.8_36del29 and F10-II:7

had the homozygous c.719_722delTCAG allele. All three variants have not been annotated

in public databases (gnomAD v4.1.0 - Figure 1D, ExAC, BRAVO/TOPmed) in either the

heterozygous or homozygous states, alluding to their rarity.

FBXO22 spans 7 exons, encoding the 403-amino-acid long FBXO22 protein comprising

three domains: an N-terminal SCF-interacting F-box domain, the protein substrate

interacting central F-box and Intracellular Signal Transduction (FIST)-N domain, and

C-terminal FIST-C domain (Figure 2A).9,13,14,18,28 All three variants encode frameshift alleles

predicted to result in premature termination codons (PTCs) - c.8_36del29;

p.(Pro3Leufs*13), c.159_162delGGAG; p.(Arg53Serfs*13), c.719_722delTCAG;

p.(Val240Alafs*6). All variants showed the highest combined annotation-dependent

depletion (CADD)29 scores of within 31 to 35 (Figure 1D), indicating that they are predicted

to be highly deleterious. In particular, all three frameshift variants are anticipated to lead to

nonsense-mediated decay (NMD) due to the presence of PTCs in exon 1, 2 and 6,

respectively, of the 7-exon transcript, with the new PTC of c.719_722delTCAG;

p.(Val240Alafs*6) located 77 bp upstream from the final exon-exon junction, also meeting

the criteria for NMD (having a PTC within the upstream exons, and >55 bp away from the

final exon-exon junction if within the penultimate exon).30–32 In the theoretical absence of

NMD, deleterious truncating mutants are expected to result with both p.(Pro3Leufs*13) and

p.(Arg53Serfs*13) occurring at the N-terminus, and p.(Val240Alafs*6) truncating part of the

substrate-recognizing FIST-N domain while removing the whole FIST-C domain (Figure

2A). In addition, both Arg53 and Val240 are highly conserved residues (Figure S1A).

Three additional previously annotated homozygous alleles within FBXO22 were observed

at medium frequencies (>10-5) in gnomAD v4.1.0 with moderate CADD scores between 20

and 25 (Figure 1D). The single nucleotide polymorphisms (SNPs) rs758516099 (c.286C>G;

p.(Arg96Gly)), rs149330812 (c.302C>T; p.(Thr101Ile)) and rs372803008 (c.631C>G;

p.(Leu211Val)) all encode missense variants. In particular, a positively charged amino acid

was substituted for a neutral amino acid in p.(Arg96Gly) in a loop domain between the

F-box and FIST-N domains, a mildly-polar amino acid substituted for a hydrophobic amino
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acid in p.(Thr101Ile) at the beginning of the FIST-N domain, and a relatively equivalent

hydrophobic swap of amino acids in p.(Leu211Val) within the FIST-N domain (Figure S1A).

All three substitutions appear to be able to be accommodated within highly-confident

Alphafold333 predicted structural regions of FBXO22 - Arg96 in protein surface polar

interactions (no salt bridges identified), Thr101 in tertiary β-β fold interactions and Leu211

in tertiary hydrophobic interactions in an ɑ-β loop region (Figure S1B). Altogether, as all

three of these pre-annotated variants are present in population databases at frequencies

more than expected for disease with no known clinical association, and with their potential

accommodation in protein structure, they are unlikely to be deleterious.

To assay the pathogenicity of the frameshift variants in the ubiquitously expressed FBXO22

(GTEx, Figure S2A), we derived primary cutaneous fibroblasts from patient F7-II:3 bearing

homozygous alleles of the most common variant in our cohort (c.159_162delGGAG;

p.(Arg53Serfs*13)), which was additionally verified by Sanger sequencing. As the variant

was predicted to result in a PTC in an early exon, which probably leads to NMD, an

RT-qPCR analysis was performed on cDNA extracted from the affected fibroblasts

alongside previously derived unaffected wildtype (WT) primary fibroblasts.34 This analysis

demonstrated a significant 2.5-fold reduction in FBXO22 mRNA levels, down to 40% of the

amount seen in the control WT fibroblasts (Figure 2B). In addition, Western blotting

analysis demonstrated that endogenous FBXO22 protein levels were completely absent in

the cellular extracts of the patient fibroblasts compared to the WT control (Figure 2C).

These results indicate that this frameshift mutant variant likely destabilizes FBXO22 mRNA

via NMD and behaves as a LoF protein-null allele, in agreement with the above predictions.

As FBXO22 is a characterized substrate-recognition partner of the E3 ubiquitin-ligase SCF

complex with known protein targets subject to ubiquitin-tagged proteasomal degradation,

we investigated the impact of the loss of FBXO22 on its protein substrates. In particular, we

investigated the key known substrate - the ubiquitously expressed epigenetic histone

H3K9me3/2 demethylase KDM4B13,19,35,36 (GTEx, Figure S2B) via RT-qPCR and Western

blotting of fibroblast extracts. While the mRNA expression levels of KDM4B in the patient

cells were unperturbed compared to the WT control (Figure 2D), a stark increase in KDM4B

protein expression levels was observed in the patient-derived fibroblast line (Figure 2E).

This result highly suggests that KDM4B protein levels were post-translationally stabilized in
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the absence of SCFFBXO22 proteasomal-degradation activity, with no change to the upstream

transcription of its gene.

Given the observed altered protein levels of the histone demethylase KDM4B, which

suggest changes to chromatin in the absence of FBXO22, we turned our attention to

profiling epigenetic changes in our patient samples. Notably, loss of function variants in

KDM4B, associated with the intellectual development disorder MRD65 (MIM609765), have

been previously associated with a robust DNA methylation epigenetic signature in

peripheral blood.37–39 Additional unique DNA methylation epi-signatures have also been

identified in Mendelian disorders caused by mutations in other histone demethylases and

methyltransferases, with general changes in histone modifications also previously shown to

impact DNA methylation.40–43 We therefore investigated the changes to the DNA

methylomes of peripheral blood gDNA from three affected patient samples from families

F1, F7 and F12 with the c.159_162delGGAG; p.(Arg53Serfs*13) variant using long read

Oxford Nanopore (ONT) sequencing with 5-methylcytosine basecalling.

Focusing our DNA methylation analysis across 3,643 genomic loci corresponding to probe

regions of previously identified epi-signatures encompassing 34 Mendelian

neurodevelopmental disorders (Episign MNDDs),39,44,45 we observed that all three FBXO22

samples formed a distinct cluster, segregating away from the other 34 Episign MNDDs as

well as the control, implicating a unique FBXO22 epi-signature (Figure S3A). We iteratively

identified the top 40 differentially-methylated loci within these regions representing a

proposed FBXO22-specific epi-signature (see Methods and Table S2).45 This primarily

consists of marked hypomethylation (Figure 3A and Table S3), with the FBXO22-deficiency

samples forming a highly specific cluster relative to the 34 Episign MNDDs and control in

principal component analysis of methylation values of these loci (Figure 3B). Analysis of

the 40 regions revealed differential methylation within specific genes or proximal regulatory

elements upstream of genes (20 regions out of 40) (Table S2). Altogether, these genes are

found to be predominantly active in the brain (12/20 genes), respiratory system (6/20

genes), gastrointestinal tract (5/20 genes), muscle tissues (8/20 genes), and bone marrow

(4/20 genes), and have been associated with neurological and developmental disorders

(12/20 genes),46–50 cardiovascular and blood disorders (6/20 genes)51,52 and various forms

of skeletal abnormalities (4/20 genes)47,53 (Table 2). A patent finding is significant

hypomethylation within the ultimate exon 19 of AGAP2 coding for its 3′-UTR in comparison
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to both the EpiSign MNDD cohort as well as an additional sample set of unrelated

neurological disorders (ND cohort), previously generated using the same ONT-seq long

read sequencing protocol (n=17)45 (Figure 3C,D). Hypomethylation at the AGAP2 3′-UTR

has previously been associated with haploinsufficiency of the H3K4 methyltransferase

KMT2D in patients with Kabuki syndrome (MIM147920 and MIM300867)54,55. Notably,

FBXO22-deficient patients and Kabuki cases present with overlapping clinical features such

as developmental delay, growth failure, hypotonia and seizures.

Separately, analysis of the methylation profile across regions previously shown to define a

specific KDM4B-deficiency epi-signature39 did not show any difference for samples with

biallelic FBXO22 loss of function (n=3) in comparison with the ND cohort (Figure S3B). This

result may suggest that although the known KDM4B epi-signature has been associated

with the loss of function of KDM4B, the underlying DNA methylation marker loci might not

be dosage-dependent to capture the opposite pattern of resultant KDM4B overexpression

associated with FBXO22 biallelic loss.

In conclusion, we have identified and characterized recessive LoF variants in FBXO22,

which we propose are responsible for this heretofore undescribed pleiotropic congenital

Mendelian syndrome. This is supported by genetic and clinical data across a large cohort of

12 families identifying three LoF alleles, target characterization using patient-derived

fibroblasts in vitro, and epigenetic profiling with epimarker identification in peripheral blood

gDNA.

In further support of the pathogenicity of the LoF variants, we note that FBXO22 is

intolerant to heterozygous loss-of-function variants with a very low observed/expected LoF

ratio (0.402) in the general population (gnomAD v4.1.0) (Fig S4A). More importantly, given

the autosomal recessive inheritance, FBXO22 is entirely devoid of biallelic occurrences of

rare (≤0.5%) LoF and/or deleterious (predicted) missense variants in gnomAD (variant

co-occurrence statistics only available in v2.1.1) (Figure S4B). Interestingly, a strong

founder mutation likely exists in the GCC countries from which the affected individuals

originate. The c.159_162delGGAG; p.(Arg53Serfs*13) variant has a minor allele frequency

of 0.05% in Qatar, where 15 heterozygous individuals were ascertained within a healthy

cohort of 14,000 whole genomes. In addition, haplotype analysis of the
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c.159_162delGGAG; p.(Arg53Serfs*13) variant across all three ONT-seq WGS samples

show that the majority of ancestry on chr15 for all haplotypes is inferred to be Middle

Eastern, with minor Central & South Asian, African and East Asian ancestry (Fig S5A and

B), while phylogeny analysis show that all six haplotypes (two per individual) cluster

together within a larger phylogeny of haplotypes of 135 published Middle Eastern

individuals (Fig S5C).56

Additionally, the DECIPHER database (GRCh38) reports 9 individuals with an additional

copy of FBXO22 due to duplications ranging from 0.4 to 79.4 Mb on chromosome 15q24.2.

No apparent phenotypes are attributed to these cases, suggesting that three copies of

FBXO22 may not be pathogenic. Additional searches in public databases have identified

FBXO22 had no hits in public PheWAS, but some genome-wide significant hits in GWAS

for kidney function (NHGRI-EBI GWAS Catalog: GRCh38.p14 and dbSNP Build 156).

FBXO22 was deemed a hit 27 times in 1,356 CRISPR screens (BioGRID ORCS v1.1.16.1),

in which its targeted inhibition was often associated with decreased cellular proliferation

(52% of hits). This can be interpreted to be in concordance with the gross growth reduction

seen across patients and in the mouse KO model.14

The ubiquitous expression of FBXO22 across tissues lends support to the pleiotropic

nature of the syndrome, with the demonstrated loss of FBXO22 protein and accompanying

NMD in patient-derived fibroblasts leading to an ectopic stabilization of a prototypical

protein substrate. In addition to KDM4B, additional epigenetic substrates subject to

polyubiquitination-targeted protein degradation by SCFFBXO22 have been identified to date,

which include the histone demethylases KDM4A and KDM5A, histone methyltransferase

NSD2, and the histone acetyl reader BRD4.16,18,57,58 Further characterized substrates

include the tumor suppressors and cell cycle regulators KDM4A-methylated TP53 (p53),

PTEN, CDKN1A (p21), CDKN1C (p57Kip2), LKB1, as well as additional targets KLF4,

BACH1, HDM2, CD274 (PD-L1), CD147 and FKBP12.14,15,17,20,58–65 Beyond

ubiquitin-mediated protein degradation, MTOR (mTOR) has additionally been identified as

a non-proteolytic monoubiquitinated substrate of FBXO22, serving a regulatory role in

amino acid level sensing.66,67 With the vast majority of studies performed in cancer cell

lines, the repertoire of substrates largely discovered has thus implicated FBXO22 as an

epigenetic multiplayer in carcinogenesis and therapy response, particularly as a regulator

of senescence, as well as a promoter of breast and lung cancer proliferation in early cancer
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stages, while a suppressor of migration and metastasis during late cancer stages.12,13,16,59

To date, no predisposition to or protection against cancer in the probands have been

documented, nor in the aforementioned mouse KO line, which instead demonstrated

severe growth reduction and occasional early postnatal lethality.14

The observed stabilization and increase in KDM4B protein levels in patient-derived

fibroblasts, together with knowledge of additional epigenetic protein targets, similarly posits

FBXO22 as a potential epigenetic multiplayer in human development. As mentioned above,

haploinsufficiency of KDM4B is causal for an autosomal dominant intellectual

developmental disorder (MRD65, MIM609765), characterized by overall delayed

neurodevelopment, dysmorphic facial features, feeding difficulties, and hypotonia.68 The

overlap in neurological and additional defects in MRD65 and FBXO22-deficiency could

suggest the importance of dose control of protein levels of KDM4B in neurodevelopment. In

addition, biallelic pathogenic variants in the homolog KDM5B are also responsible for an

autosomal recessive intellectual disorder (MRT65, MIM618109), with neurodevelopment

similarly impacted.69–71 This precedence, together with the wide range of likely impacted

additional protein substrates of FBXO22 across multiple tissue types, could potentially

account for the neurological and the additional multi-system anomalies seen in patients,

warranting further exploration in organ-specific assays.

Both recessive and dominant causative variants in lysine demethylases and

methyltransferases implicated in Mendelian neurological disorders have previously been

associated with peripheral blood DNA methylation changes. In addition to KDM4B and

KDM5B described above, epigenetic signatures have been identified for neurological

disorders implicating loss of function for KDM2B (KDM2B-related syndrome),72 X-linked

recessive KDM5C (MRXSCJ, MIM300534), X-linked dominant KDM6A or

autosomal-dominant KMT2D (Kabuki syndrome 1 and 2, MIM147920 and MIM300867),

autosomal dominant KMT2A (WDSTS, MIM605130), autosomal dominant KMT2B (DYT28

and MRD68, MIM617284 and MIM619934), autosomal dominant KMT2C (Kleefstra

syndrome 2, MIM617768), autosomal dominant EHMT1 (Kleefstra syndrome 1,

MIM610253) and autosomal dominant KMT5B (MRD51, MIM617788).37–39 In addition,

autosomal dominant mutations in the ubiquitin ligase FBXO11 (IDDFBA, MIM618089)24–26

are also marked by a DNA methylation signature (Episign v5). With FBXO22 molecularly

implicated in regulating protein levels of several lysine demethylases and
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methyltransferases, likely impacting chromatin states, and with its association with

neurological dysfunction, an epigenetic DNA methylation signature for FBXO22-deficiency,

likely converging on a common methylation target (AGAP2 gene) with KMT2D, was readily

and likewise identified in peripheral blood gDNA. The FBXO22 epi-signature presents an

opportunity as a biomarker for detecting FBXO22-deficiency while warranting further

investigation into the specific molecular epigenetic pathways perturbed.

Taken together, our clinical, genetic and molecular studies define a heretofore undescribed

Mendelian recessive disorder caused by homozygous LoF FBXO22 variants, characterized

by multi-system anomalies and a unique epigenetic signature. The ubiquitous expression of

FBXO22 coupled with the extensive repertoire of protein targets, including epigenetic

modulators, thus provides a potential underlying rationale for the pleiotropic effects of

FBXO22-deficiency.
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MAIN FIGURES, TABLES AND LEGENDS

Figure 1. Predicted biallelic loss-of-function FBXO22 variants in 14 cases with multi-system
anomalies. (A) Pedigrees of 12 families segregating autosomal recessive congenital multi-system
anomalies. Crossed symbols indicate deceased individuals. Triangular symbols indicate
Termination of Pregnancy (TOP) or miscarriage. Germline FBXO22 variant coordinates are
indicated below the pedigrees, colored by variant. (B) Facial images of four affected individuals (top

15

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 1, 2024. ; https://doi.org/10.1101/2024.09.28.24314530doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.28.24314530
http://creativecommons.org/licenses/by-nc-nd/4.0/


row, left), and timelapse facial images of individuals F7-II:3 (top
row, right), and F2-II:3 from (bottom row). (C) Images of hands and
feet featuring the tapering digits of affected individuals F2-II:3 and F7-II:1. (D) Minor allele frequency
(x-axis) and scaled-CADD score (y-axis) of homozygous FBXO22 coding variants found in gnomAD
v.4.0.1 (grey dots, n = 37) and those found in each of the 12 families coloured by variant (n = 3).
Common variants with scaled-CADD score >20 are labelled.
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Figure 2. Loss of FBXO22 in patient-derived primary fibroblasts leads to abnormally high
KDM4B levels. (A) Schematic diagram of the genomic (top) and protein (bottom) structure of
FBXO22 in humans. The FBXO22 protein contains three conserved domains: F-Box, FIST-N and
FIST-C. The three homozygous genetic variants and corresponding protein mutations are indicated.
(B-E) FBXO22 and KDM4B expression analysis at the mRNA and protein levels in primary dermal
cutaneous fibroblasts from F7-II:3 with control (WT). (B,D) FBXO22 and KDM4B mRNA levels
normalised to housekeeping gene ACTB mRNA levels, relative to the WT control (n = 3 biological
replicates), with significant reduction in FBXO22 levels and unaltered KDM4B levels. ****p =
0.0000295; ns, nonsignificant (unpaired, two-way student’s t-test). (C,E) Western blot of
endogenous FBXO22 and KDM4B proteins with ACTB (beta-Actin) as the housekeeping control,
showing negligible FBXO22 levels and increased KDM4B levels in the patient fibroblasts.
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Figure 3. Loss of FBXO22 is associated with a unique epigenetic signature in peripheral
blood (A) Heatmap with euclidean distance hierarchical clustering of DNA methylation values for
the top 40 differentially-methylated regions featuring the FBXO22 epi-signature for three
FBXO22-deficiency peripheral blood samples integrated with the 34 EpiSign Mendelian
neurodevelopmental disorders (MNDDs) and control dataset. (B) Principal component analysis on
the 40 regions representing the DNA methylation epi-signature in PBMCs of three patients lacking
FBXO22 showing clustering of all three cases away from the EpiSign MNDDs and control. Variance
explained by components PC1 and PC2 are indicated in brackets. (C) Genome browser view of the
differentially methylated (orange) region of the 3′-UTR within the ultimate exon 19 of AGAP2
featuring aggregated CpG methylation (5mC - red; unmodified C - blue) of ONT-seq long reads from
the three FBXO22-deficiency samples and three samples from the general neurological disorders
(ND) cohort. (D) Methylation values at the differentially methylated probed region within the 3′-UTR
of AGAP2 in the FBXO22-deficiency ONT-seq samples (n=3), ND cohort ONT-seq samples (n=17,
p=0.013) and EpiSign MNDD samples (n=34, p=0.015). Error bars denote SD. *p < 0.05; ns,
non-significant (unpaired, two-way student’s t-test).
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Table 1. Summary of key clinical data of patients with biallelic FBXO22 LoF variants.

Key clinical feature of FBXO22
deficient patients

Standardized Human
Phenotype Ontology

Penetrance

Total number of affected patients 13a

Growth

Failure to thrive HP:0001508 84.6%

Intrauterine growth restriction HP:0001511 69.2%

Short stature HP:0004322 61.5%

Decreased body weight HP:0004325 53.8%

Neurodevelopment

Neurodevelopmental delay HP:0012758 92.3%

Microcephaly HP:0011451 69.2%

Muscular hypotonia HP:0001252 61.5%

Seizures HP:0001250 53.8%

Intellectual disability HP:0001249 46.2%

Generalized hypotonia HP:0001290 46.2%

Poor suck HP:0002033 38.5%

Craniofacial

Abnormal craniofacial shape HP:0001999 84.6%

Depressed nasal bridge HP:0005280 61.5%

High forehead HP:0000348 53.8%

Hypertelorism HP:0000316 46.2%

aExcluding fetal case (F4-II:3) where full phenotyping was not possible.
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Table 2. Expression profiles and associated diseases of genes with promoter or proximal
DNA methylation differences within the top 20 differentially-methylated regions of
FBXO22-deficiency

Gene Expression Associated diseases
NAT8L Brain – Lungs – Retina – Adipose tissue

– Pituitary gland – Skeletal muscle
N-acetylaspartate deficiency
Cardiomyopathy
Neurodegeneration
Alzheimer

DDX39B Brain – Thyroid – Bone marrow –
Kidneys – Lungs – Skin – Heart –
Skeletal muscle

Neurodevelopmental delay
Epilepsy
Short stature and congenital hypotonia
Anterior horn cell

TRIM15 GI tract – Liver – Kidneys – Colon Hepatic veno-occlusive disease with
immunodeficiency

TRMT9B Brain – Thyroid Dubowitz syndrome
ARHGEF10 Brain – Lungs – Heart – Skeletal muscle Slowed Nerve Conduction Velocity (SNCV)

Axonal neuropathy

AGAP2 Brain Kabuki Syndrome

GALNT9 Brain – Thyroid – Kidney Association with autism spectrum disorders
and Parkinson’s disease

ZNF385A Brain – Skin – Retina Encephalopathy
Cone-Rod Dystrophy 2

OLIG1 Brain Oligodendroglioma
MED13 Bone marrow – Liver – Lungs – Retina MRFACD syndrome

SLC22A23 Brain - Parathyroid gland – GI tract Wolf-Hirschhorn Syndrome
Inflammatory Bowel Disease

SLC17A5 Parathyroid gland – Retina – Liver Salla disease
Free Sialic Acid Storage Disorders

PRDM16 GI tract – Thyroid – Brain – Kidney –
Heart

Cardiomyopathy

DDAH2 Heart – Lungs – Thyroid - GI tract –
Kidneys

Coronary artery disease

MYH7B Heart – Skeletal muscles Cardiomyopathy
MEOX1 Heart – Adipose tissue Klippel-Feil syndrome
DDR1 Brian – Skin – GI tract – Kidneys Spondylo-meta-epiphyseal dysplasia

LY6G6D Skin – GI tract Anemia, Nonspherocytic Hemolytic

MPIG6B Lungs – Skin – Spleen Congenital macrothrombocytopenia with focal
myelofibrosis

TAPBP Liver – Bone marrow – Brain – Heart Bare lymphocyte syndrome
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MATERIALS AND METHODS

Ethical approval
Written informed consent was obtained from all individuals (parents and parents on behalf
of patients from each family) for genetic testing, skin biopsy (for patient F7-II:3) and the use
of the clinical information and images in this study, according to the ethical approval of the
local Institutional Review Boards (IRBs) in and . The study protocol was
approved by A*STAR IRB (2019-087) in Singapore and at KAUST (23IBEC090) in the KSA.

Patient recruitment
The affected patient F1-II:1 and F12-II:4 were diagnosed by A.A.T. at

. The affected patient F2-II:3 was diagnosed by A.M.A.M.A.S. in
. The affected patient F3-II:2 was diagnosed by G.E. in . The affected patient

F4-II:2 and fetal case F4-II:3 were diagnosed by H.A., M.A.O. and A.W.E. in . The
affected patient F5-II:1 was diagnosed by S.A.S.A. at

. The affected patients F6-II:1 and F8-II:1 were diagnosed by N.A. at
. The affected patients F7-II:1 and F7-II:3 were diagnosed by A.A.

at . The affected patient F9-II:1 was
diagnosed by M.Alfadhel, F.A. and M.Alghamdi in . The affected patient
F10-II:7 was diagnosed by A.A.S. and E.A.F. at

. The affected patient F11-II:2 was diagnosed by M.M. in .

Next-Generation Sequencing and Analysis
Whole genome sequencing and whole exome sequencing were performed at different
research institutes according to local standard procedures.

Whole Exome Sequencing (WES). DNA was barcoded and enriched for the coding exons
of targeted genes using hybrid capture technology (Agilent SureSelect Human
All-exons-V6), as previously described.73,74 Prepared DNA libraries were then sequenced
using Next-Generation Sequencing (NGS) technology [NovaSeq 6000 (Illumina), 150 bp
paired-end, at 200X coverage]. The reads were mapped against UCSC GRCh37/hg19 by
Burrows-Wheeler Aligner (BWA 0.7.12).

Illumina-WGS. Whole genome sequencing (WGS) was done as previously described for
F2, F3 and F9.74 Briefly, using gDNA extracted from whole blood, sequencing libraries were
constructed on site using the TruSeqDNA PCR-Free Library Prep kit (Illumina) according to
the manufacturer’s instructions. Paired-end sequencing was performed on the NovaSeq
6000 platform with the S1 flowcell (Illumina). The reads were mapped against UCSC
GRCh37/hg19 by Burrows-Wheeler Aligner (BWA 0.7.12).

Variant Analysis. Genome Analysis Toolkit (GATK 3.4) was used for variant calling. Variant
filtration, as previously described,74,75 was applied to keep novel or rare variants (≤ 1%).
Publicly available variant databases and an in-house database of 1562 exomes (for the

population cases) were used to filter out common or benign variants. Only coding or
splicing variants were considered. The phenotype and mode of inheritance (autosomal
recessive) were considered. Variants of high impact or highly damaging missense, a
CADD29 score ≥ 20 and shared between the affected individuals were prioritized. Other
OMIM genes that are known to be associated with a similar phenotype were analyzed from
the exome data and no pathogenic variants were identified.
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Long read sequencing, methylation calling and mapping
Long read sequencing, processing and methylation calling was done as previously
described.45 Briefly, genomic DNA was extracted from peripheral whole blood using the
QIAsymphony DSP DNA Kit (Qiagen) and QIAsymphony automated nucleic acid extraction
instrument, according to the manufacturer's instructions. For all samples, 1,000 to 4,500 ng
gDNA was sheared with G-Tubes (Covaris LLC, USA) following the standard 20 kb
protocol. The resulting DNA fragments were utilized for library preparation using the
Ligation Sequencing Kit V14 (Oxford Nanopore, UK), according to the manufacturer's
instructions, and was sequenced on the PromethION P48 device with R10.4.1 flow cell
(Oxford Nanopore, UK) as follows: 72 hours with a second library loaded at 24 hours post
flow cell nuclease flush for FBXO22_F12:II_4 (N50: 11.39kb; Bases: 94.35 Gb;
Approximate coverage: 31x); for the low DNA input sample, FBXO22_F1:II_1, DNA
shearing was not performed and the library was sequenced for only 72 hours (N50: 14.9
kb; Bases: 34.5 Gb; Approximate coverage: 11.5x); for FBXO22_F7:II_3 the library was
sequenced for 97 hours with second and third libraries loaded post-nuclease flushes at 28
hours and 52 hour timepoints (N50: 11.5 kb; Bases: 110.1 Gb; Approximate coverage:
36.7x). Base calling (with 5mC) was done using “high-accuracy base calling” (HAC) mode
during the run using MinKnow distribution (v22.05.7 or v24.02.19) and Guppy/Dorado
(v6.1.5 or v7.3.11). The methylation SAM tags (MM,ML) were preserved using samtools
(version 1.13) for all BAM passed files and were then aligned to the human reference
genome (GRCh37/hg19) using minimap2 (v2.22-r1101) using the appropriate parameters
‘minimap2 -x map-ont -a -y’.

Methylation profile analysis
Methylation analysis was performed by comparing the methylation profile of the patients
with those reported in literature for the Episign epigenomic signature44 for a total of 34
Mendelian neurodevelopment disorders (MNDDs). For the purpose of comparison, disease
specific probes from Illumina Infinium methylation 450k and EPIC bead chip arrays
identified as epi-signatures (EpiSign) were mapped on the human genome hg19 using
pblat15 with the parameter “-fastMap”. In order to remove ambiguity coming from
multimapping probes, those with block count of 1 with alignment length matching the probe
length were selected and assessed for the downstream analysis. Aggregated methylation
modification counts for each base from long read sequencing in the probe region were
calculated using modbam2bed from the ‘methyl’ module of Epi2Me workflow
wf-human-variation (v1.2.0). Methylation values for all samples and MNDD dataset were
standardized (i) and normalized (ii) using min-max normalization using the equation below
where s is the sample, p is the probe, xp is the methylation value for each probe, is the𝑥
mean and 𝛔 is the standard deviation, stdMethyl is the standardized methylation value and
normMethyl is normalized methylation value:

𝑖( )                                                         𝑠𝑡𝑑𝑀𝑒𝑡ℎ𝑦𝑙
𝑝

=
𝑥

𝑠
− 𝑥

𝑝
 

σ
𝑠

𝑖𝑖( )                                    𝑛𝑜𝑟𝑚𝑀𝑒𝑡ℎ𝑦𝑙
𝑝

=  
𝑠𝑡𝑑𝑀𝑒𝑡ℎ𝑦𝑙

𝑝
−𝑚𝑖𝑛(𝑠𝑡𝑑𝑀𝑒𝑡ℎ𝑦𝑙

𝑠
) 

𝑚𝑎𝑥(𝑠𝑡𝑑𝑀𝑒𝑡ℎ𝑦𝑙
𝑠
)−𝑚𝑖𝑛(𝑠𝑡𝑑𝑀𝑒𝑡ℎ𝑦𝑙

𝑠
) 

Hierarchical clustering was performed using euclidean distance and ward.D2 for MNDD
epi-signature probes on normalized methylation values for each sample with the MNDD.
For the KDM4B Episign probe set,39 hierarchical clustering was performed using euclidean
distance and ward.D2 on the normalized methylation values for the FBXO22-deficiency
samples and our additional cohort of previously published ONT-seq reads from 17
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unrelated Neurological Diseases (ND cohort).45 IGV v2.16 was used to visualize
differentially methylated regions of interest from the ONT-seq reads.

FBXO22 Epi-signature detection
In order to identify a specific FBXO22 methylation signature, we focused on regions defined
by 3,643 probes from the published Episign epigenomic signature dataset44 for a total of 34
MNDDs. Standardized and normalized methylation values were calculated, as mentioned
above. The FBXO22_F1-II:1 sample sequenced with low input DNA protocol was observed
to show higher variability within the replicates, suggesting technical variability. Hence,
probes with low variability within the replicates were considered. Briefly, probes with high
variability within the FBXO22 sample replicates were removed such that the standard
deviation of each probe of the replicates were within the 75th quantile, thus negating effects
of technical variability within the replicates. Methylation difference was calculated for each
probe between the MNDD and FBXO22 (i), where p is the probe, methylDiff is the
methylation difference, is the mean methylation value of the replicates of FBXO22𝐹𝐵𝑋𝑂22
and, is the mean methylation value of the 34 MNDDs:𝑀𝑁𝐷𝐷
𝑖( )                                𝑚𝑒𝑡ℎ𝑦𝑙𝐷𝑖𝑓𝑓

𝑝
=  𝐹𝐵𝑋𝑂22

𝑝
−  𝑀𝑁𝐷𝐷

𝑝
The optimal probe set for FBXO22 (40 probes) was selected by an iterative method of
probe selection based on the ranked decreasing value of the methylDiff such that the
cumulative explained variance for principal components 1 and 2 was at least 60% with least
correlation across the MNDD.

Haplotype and Phylogeny Analysis
ONT-seq WGS for the three samples were mapped using minimap276 (v2.28-r1209) using
the preset parameter (map-ont) to GRCh38. SNP genotype likelihoods were generated
using bcftools (v1.17) using the following command on polymorphic sites found in the
HGDP+APPG reference panel:
bcftools mpileup -B -Q13 -q30 --max-BQ 30 -I -E -T
chr15.reference.panel.vcf.gz -b <bam.list> -Ou | bcftools call -Aim
-C alleles -T chr15.reference.panel.sites.tsv.gz -Oz
This panel is composed of the 929 HGDP samples77 and an additional 135 APPG (Middle
Eastern) samples.56 The construction of the panel is described in the supplementary of
Martiniano et al., 2024.78 Beagle4.079 was subsequently used to refine genotypes based on
genotype likelihoods using the HGDP+APPG reference panel. Only highly confident sites
(AR2 > 0.98) were retained for analysis. Beagle5.480 was then used to phase variants into
haplotypes using the same reference panel. FLARE81 (version 0.5.1) was used to perform
local ancestry inference using the HGDP samples as a reference with seven reference
ancestries set as previously described77: Africa, Europe, Middle East, East Asia, Americas,
Oceania and Central & South Asia. A phylogeny based on SNPs within the region
(chr15:75794242-76113817) was generated based on fasta sequences that were produced
for each haplotype using bcftools consensus (v1.17). The distance-based phylogeny (HKY)
was built using seaview (v5.0.5)83. The three individuals were analysed along with the
aforementioned 135 Middle Eastern samples. Due to the large phylogeny, only the branch
with the three samples is illustrated.

Cell Culture
The patient-derived primary cutaneous fibroblast cell line was established from a skin
biopsy from F7-II:3, following standard procedures.34,82 All primary fibroblast lines were
cultured in complete Dulbecco’s Modified Eagle Medium/High Glucose (with 4 mM
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L-glutamine) (HyClone Cat: SH30022.01) supplemented with 10% fetal bovine serum
(FBS) (Biological Industries) and 1% penicillin-streptomycin (Gibco). All cell lines were
maintained in a humidified atmosphere at 5% CO2 and 37°C and tested negative for
mycoplasma using the MycoAlert Mycoplasma Detection Kit (Lonza, catalog no. LT07-118).

RNA Extraction and RT-qPCR
Total RNA from cell culture was extracted using the RNeasy Mini Kit (Qiagen) according to
the manufacturer’s instructions. For RT-qPCR analysis, cDNA was synthesized using a
ReverTra Ace qPCR kit (Toyobo). RT-qPCR amplifications were then performed in 96-well
optical reaction plates with Power SYBR Green PCR Master Mix (Applied Biosystems) on
the QuantStudio 3 System (Applied Biosystems). The relative expression values of each
gene were determined by normalization to beta-actin expression for each sample. Prism
v10 was used for statistical analysis of RT-qPCR data.

Cell Lysate and Western Blotting
Cells were directly lysed with Laemmli-buffer (2% SDS, 10% glycerol, 5%
2-mercaptoethanol, 0.002% bromophenol blue, and 62.5 mM Tris HCl at pH 6.8). Whole
lysates (20-50 g) were separated by SDS-PAGE, transferred to a PVDF (Immobilon-P;
Millipore) membrane, and then subjected to immunoblotting with the appropriate antibodies
using the ECL detection system.

In silico Protein Analysis
Protein sequence conservation analysis of FBXO22 was performed with the Clustal Omega
program (v1.2.4) on UniProt. AlphaFold333 on the AlphaFold Server was used to model the
protein structure of FBXO22 (Q8NEZ5), visualised using pyMOL (v3.0.3).

List of antibodies used
mouse anti-ACTB (AC-15: Santa Cruz Biotechnology)
rabbit anti-FBXO22 (GeneTex, GTX117774)
rabbit anti-KDM4B (Cell Signaling Technology, D7E6).

List of primers used
ACTB-forward primer: AGAGCTACGAGCTGCCTGAC
ACTB-reverse primer: AGCACTGTGTTGGCGTACAG
FBXO22-forward primer: CTCACTGAAGTAGGTCTTTTAG
FBXO22-reverse primer: CCAGCCAAGATGATATTCATATC
KDM4B-forward primer: TGTCTGATGAGCGTGAAAGG
KDM4B -reverse primer: GTTGGAGGAATCAGCCAAAA

24

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 1, 2024. ; https://doi.org/10.1101/2024.09.28.24314530doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.28.24314530
http://creativecommons.org/licenses/by-nc-nd/4.0/


SUPPLEMENTAL FIGURES AND LEGENDS

Figure S1. In silico analysis of FBXO22 alleles. (A) Schematic diagram of the protein primary
structure of FBXO22 with loss-of-function alleles indicated in color, and more commonly found
SNPs in grey. Vertebrate sequence conservation of the amino acids implicated in the
loss-of-function alleles indicated below. (B) AlphaFold 3-predicted structure of human FBXO22
(Q8NEZ5), with emphasis on the locations of the three more commonly found missense variants at
Argine96 (rs758516099; c.286C>G; p.(Arg96Gly)), Threonine101 (rs149330812; c.302C>T;
p.(Thr101Ile)) and Leucine211 (rs372803008; c.631C>G; p.(Leu211Val)).

25

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 1, 2024. ; https://doi.org/10.1101/2024.09.28.24314530doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.28.24314530
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S2. Ubiquitous expression of FBXO22 and KDM4B. GTEx adult expression levels of (A)
FBXO22 and (B) KDM4B indicate that both genes are expressed ubiquitously over different tissue
types.
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Figure S3. Peripheral blood DNA methylation analysis across known epi-signatures. (A)
Heatmap with euclidean distance hierarchical clustering of DNA methylation values for all 3,643
regions featuring known epi-signatures for three FBXO22-deficiency peripheral blood samples
integrated with the 34 EpiSign Mendelian neurodevelopmental disorders (MNDDs) and control
dataset. (B) Heatmap with euclidean distance hierarchical clustering of methylation values across
246 regions for KDM4B LoF (MRD65)-defining epi-signature regions for the three
FBXO22-deficiency samples together with an additional dataset of 17 ONT-seq samples with
general neurological disorders (ND cohort).45
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Figure S4. FBXO22 intolerance to biallelic and compound heterozygous loss-of-function
variants. (A) Constraint metrics on heterozygous predicted loss-of-function (pLOF) variants for
FBXO22 from gnomAD v4.1.0. (B) Heterozygous variant co-occurrence (compound heterozygous)
frequencies for FBXO22 from gnomAD v.2.1.1.
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Figure S5. Haplotype and phylogenetic analysis of the recurrent c.159_162delGGAG;
p.(Arg53Serfs*13) variant. (A) Local ancestry analysis of chromosome 15 for three ONT-seq WGS
samples (see Methods for details) containing the c.159_162delGGAG; p.(Arg53Serfs*13) variant.
Dashed vertical line illustrates the location of the variant. (B) hg38 genome browser view of a 328
kb region encompassing the variant identified. Light blue vertical bars indicate homozygous
alternative SNPs. All three samples appear to carry an almost identical homozygous haplotype
which is inferred to be of Middle Eastern origin. (C) Phylogeny of the six haplotypes in the three
samples alongside 135 published Middle Eastern individuals (see Methods for details, a subset of
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the branch is presented here). The three samples (six haplotypes) investigated in this study cluster
together (red box).
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