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Abstract 

Purpose: To assess the diagnostic performance of various imaging modalities in detecting 

and monitoring prostate cancer across different disease stages using diagnostic test 

accuracy (DTA) and network meta-analysis (NMA). 

Methods: A systematic literature review was conducted to identify studies evaluating 

mpMRI, PSMA PET/CT, MRE, MRSI, BS, CT, PET, and other tracers for prostate cancer 

detection. Data on sensitivity, specificity, PPV, NPV, and detection rate were extracted 

and analyzed using NMA. 

Result: Across 123 studies involving 9,371 patients, 68Ga-P16-093 PET/CT and 

68Ga-PSMA-617 PET/CT showed high diagnostic accuracy in early-phase prostate 

cancer. For lymph node metastasis, 68Ga-PSMA-11 PET/MRI was the most sensitive. 

18F-DCFPyL PET/CT had the highest specificity and PPV, while 18F-PSMA-1007 

PET/CT had the highest NPV. In bone metastasis, 18F-PSMA-1007 PET/MRI excelled in 

sensitivity and NPV, while 18F-Fluciclovine PET/CT had the highest specificity and PPV. 

For biochemical recurrence, 18F-PSMA-1007 PET/CT had the highest lesion detection 

rate, and for different radiotracers, 18F-PSMA-1007 had the highest detection rate. 

Conclusion: This network meta-analysis comprehensively evaluated the diagnostic 

efficacy of various imaging modalities for prostate cancer across different stages. Our 

findings underscore the strengths and limitations of each imaging technique in detecting 

and staging prostate cancer.  
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Abbreviations 

ADT Androgen Deprivation Therapy 

BS Bone Scintigraphy 

BCR Biochemical Recurrence 

CAD Computer-Aided Diagnosis 

CI Confidence Interval 

CNN Convolutional Neural Network 

csPCa Clinically Significant Prostate Cancer 

CT Computed Tomography 

DCE-MRI Dynamic Contrast-Enhanced MRI 

DCFPyL Piflufolastat 

DRE Digital Rectal Examination 
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DR Detection Rate 

DTA Diagnostic Test Accuracy 

DWI Diffusion-Weighted Imaging 

EAU European Association of Urology 

EANM European Association of Nuclear Medicine 

ESTRO European Society for Radiotherapy & Oncology 

ESUR European Society of Urogenital Radiology 

ECE Extracapsular Extension 

FDG Fluoro-2-deoxy-D-glucose 

FN False Negative 

FP False Positive 

ISUP International Society of Urological Pathology 

miTNM Molecular Imaging Standardized Evaluation TNM 

Classification 
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mpMRI Multiparametric Magnetic Resonance Imaging 

MRSI Magnetic Resonance Spectroscopy Imaging 

MRE Magnetic Resonance Elastography 

NMA Network Meta-analysis 

NPV Negative Predictive Value 

OR Odds Ratio 

PCa Prostate Cancer 

PET Positron Emission Tomography 

PET/CT Positron Emission Tomography/Computed Tomography 

PET/MRI Positron Emission Tomography/Magnetic Resonance Imaging 

PI-RADS Prostate Imaging Reporting and Data System 

PPV positive predictive value 

PSA Prostate-Specific Antigen 

PSMA Prostate-Specific Membrane Antigen 
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QUADAS-2 Quality Assessment of Diagnostic Accuracy Studies 

RP Radical Prostatectomy 

Se Sensitivity 

Sp Specificity 

SPECT Single Photon Emission Computed Tomography 

SREs Skeletal-Related Events 

SUCRA Surface Under Cumulative Ranking Curve 

SUV Standardized Uptake Value 

SUVmax Maximum Standardized Uptake Value 

SVI Seminal Vesicle Invasion 

TP True Positive 

TN True Negative 

UBU Unspecific Bone Uptake 
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1. Introduction 

 

Prostate cancer is one of the most common malignant tumors of the male genitourinary 

system. According to the Global Cancer Statistics 2022 report, there were approximately 

1.46 million new cases of prostate cancer in 2022, accounting for 14.2% of new cancer 

cases in men, making it the second most common malignancy in men after lung cancer. 

Additionally, there were about 390,000 new deaths due to prostate cancer, representing 

7.3% of cancer-related deaths in men, ranking it fifth overall (1). Age has been identified 

as an independent risk factor for prostate cancer incidence (2). With the continuous 

growth and aging of the population, the incidence of prostate cancer is increasing 

annually, posing a serious threat to male health and presenting greater challenges and 

burdens to global public health systems (3, 4). Prostate cancer tends to exhibit subtle 

clinical manifestations in its early stages, leading many patients to seek medical attention 

only after the tumor has infiltrated or metastasized, significantly increasing mortality rates. 

In recent years, advancements in serology, imaging techniques, and surgical methods 

have contributed to higher detection rates and treatment success rates (5, 6). Among 

these, imaging examinations play a crucial role in screening, early diagnosis, tumor 

staging, surgical selection, and predicting the recurrence prognosis of prostate cancer (7, 

8). 

 

Currently, the main screening methods for prostate cancer are digital rectal examination 

(DRE) and serum prostate-specific antigen (PSA) testing. The introduction of PSA testing 
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has significantly increased the detection rate of prostate cancer. However, there is an 

ongoing debate about its contribution to the overdiagnosis and overtreatment of clinically 

insignificant tumors (9, 10). DRE has its limitations, particularly in detecting tumors 

located deep within the prostate or those that are smaller in size. A meta-analysis 

indicates that the sensitivity and specificity of DRE performed by primary care physicians 

are 0.51 and 0.59 (11). Therefore, the overuse of PSA testing and the low specificity and 

sensitivity of DRE necessitate the use of additional diagnostic methods to enhance the 

accuracy of prostate cancer screening. To improve tumor detection rates and achieve 

more accurate staging, the application of multiparametric magnetic resonance imaging 

(mpMRI) plays a crucial role in optimizing clinical diagnosis and biopsy procedures(12). 

MpMRI assesses the likelihood of tumor presence based on the Prostate Imaging 

Reporting and Data System (PI-RADS) and can enhance biopsy efficacy through visual 

guidance. A meta-analysis showed that when PI-RADS is correctly used, the pooled 

sensitivity for diagnosing prostate cancer is ([OR] 0.82, 95% CI [0.72-0.89]) and specificity 

is ([OR] 0.82, 95% CI [0.67-0.92])(13). Additionally, a study by Veeru demonstrated that 

compared to systematic biopsy methods, MRI-targeted biopsy (MRI-TB) has a higher 

detection rate for clinically significant prostate cancer ([OR] 1.16, 95% CI [1.09-1.24]) 

while identifying fewer cases of clinically insignificant prostate cancer (14). However, 

study data also show that the positive predictive value of suspicious mpMRI for clinically 

significant prostate cancer (csPCa) is about 40%-50%, and the negative predictive value 

is about 80%-90%, indicating that more than half of patients with positive mpMRI results 

underwent unnecessary prostate biopsies or overtreatment. Additionally, the diagnostic 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 1, 2024. ; https://doi.org/10.1101/2024.09.28.24314285doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.28.24314285
http://creativecommons.org/licenses/by/4.0/


sensitivity and specificity of mpMRI decrease for patients with a PI-RADS score of 3 (15, 

16). 

 

Other traditional imaging techniques, such as computed tomography (CT) and bone 

scintigraphy (BS), are still widely used in clinical practice, but each has its limitations. CT 

has low sensitivity for the initial diagnosis of prostate cancer and offers a single imaging 

mode, while BS is primarily used to assess bone metastasis in prostate cancer patients. 

Additionally, imaging modalities like magnetic resonance spectroscopy imaging (MRSI) 

and magnetic resonance elastography (MRE) are gradually maturing. However, these 

imaging techniques are generally used as auxiliary and supplementary diagnostic tools, 

and their cost-effectiveness and diagnostic efficiency still require further research (17). 

 

The advent of positron emission tomography (PET) has provided a new direction for the 

diagnosis and treatment of prostate cancer. Initially, PET imaging used the 18F-FDG 

(Fluoro-2-deoxy-D-glucose) tracer, which has high sensitivity and can perform whole-body 

scans to detect small lesions and metastases throughout the body. Subsequently, the 

introduction of new tracers, such as 18F-NaF and 11C-choline, further enhanced PET's 

detection capabilities (18, 19). In recent years, prostate-specific membrane antigen 

(PSMA) PET has gained widespread recognition for its high sensitivity and specificity in 

diagnosing prostate cancer and assessing biochemical recurrence. PSMA is a membrane 

protein significantly overexpressed in prostate cancer tissue, with expression levels 

100-1000 times higher than in normal prostate tissue, making it an ideal target for 
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molecular imaging. Increasing evidence suggests that PSMA-PET/CT and 

PSMA-PET/MRI have higher diagnostic efficacy than traditional imaging techniques. The 

diversity of PSMA ligands also provides options for addressing individual differences in 

prostate cancer cases. Currently, the most commonly used ligands are 68Ga-PSMA-11, 

18F-DCFPyL (Piflufolastat), and 18F-PSMA-1007 (20). Meanwhile, it has been suggested 

that PSMA PET/CT may reduce the economic burden of high-risk patients through higher 

accuracy efficacy (21). However, PSMA PET is not without its limitations. Some studies 

indicate that while PSMA PET/CT has high specificity, its sensitivity can be inconsistent. 

Additionally, different tracers used in PSMA PET have varying diagnostic efficacies, and 

their absorption rates in different body parts can vary, raising concerns about abnormal 

uptake in normal or benign lesions leading to overdiagnosis and overtreatment (22). For 

PSMA PET/MRI, although it offers clearer contrast for soft tissues and studies have 

shown it to be more effective in diagnosing primary prostate cancer and biochemical 

recurrence (BCR) compared to mpMRI, its diagnostic performance compared to PSMA 

PET/CT remains unclear (23, 24) Moreover, PSMA PET/MRI is more expensive, has 

longer examination times, and is more challenging to implement in primary care settings. 

 

Currently, there is controversy regarding the diagnostic performance of PSMA-PET 

compared to other imaging modalities and among different ligands at various stages of 

prostate cancer. This study aims to evaluate the diagnostic effectiveness of different 

imaging methods in detecting and monitoring prostate cancer at different stages by 

analyzing existing literature data. 
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2. Method  

2.1 Protocol 

 

This systematic review and meta-analysis was conducted according to the Preferred 

Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) of diagnostic test 

accuracy (DTA) studies(25). The study protocol was registered on the International 

Prospective Register of Systematic Reviews (PROSPERO; registration ID 

CRD42021248896). 

The aim of this systematic review is to assess the diagnostic efficacy of different imaging 

methods in different stages of prostate cancer. The proposed systematic review aims to 

answer the following questions:  

i) Which imaging modality has higher diagnostic performance in the early stages of 

prostate cancer?  

ii) Which imaging method has greater accuracy in diagnosing lymph nodes and bone 

metastases in prostate cancer?  

iii) Which method has a higher lesion detection rate for biochemical recurrence of 

prostate cancer?  

iv) How does the diagnostic performance of combined imaging modalities compare to 

individual imaging methods at different stages of prostate cancer? 

 

2.2. Literature search 
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PubMed, Cochrane, and Embase were searched to identify reports published up to June 

30, 2024, addressing the diagnostic value of prostate cancer at different stages 

(early-stage prostate cancer, advanced-stage prostate cancer, metastatic prostate cancer 

including bone and lymph node metastasis, recurrent prostate cancer such as 

biochemical recurrent prostate cancer). The keywords used in our search strategy are 

reported in Table 1. Initial screening was performed independently by two investigators 

(Shi CD and Yu K) based on the titles and abstracts of the articles to identify ineligible 

reports. Reasons for exclusions were noted. Potentially relevant reports were subjected to 

a full-text review, and the relevance of the reports was confirmed after the data extraction 

process. Any discrepancies during the primary and secondary literature screening were 

resolved by referring to the senior authors (Wang WG and Lu J). 

 

Primary endpoint: To assess the diagnostic value of various examination methods for 

prostate cancer at different stages (including early-stage, advanced-stage, metastatic 

prostate cancer such as bone and lymph node metastasis, recurrent prostate cancer such 

as biochemical recurrent prostate cancer) using Diagnostic Test Accuracy meta-analysis. 

Since most of the patients with biochemical recurrence of prostate cancer could not be 

verified as true-positive or true-negative by pathology or follow-up investigations, the 

present study was conducted to compare the rate of lesion detection by different 

examination modalities in the biochemical recurrence section. 

Secondary endpoint: To further evaluate the specific diagnostic value of these 
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examination methods in different stages of prostate cancer, including early-stage, 

advanced-stage, metastatic prostate cancer, and recurrent prostate cancer, and to 

compare their sensitivity and specificity in detecting prostate cancer at specific stages. 

 

2.3. Inclusion and exclusion criteria 

  

The population, intervention, control, and outcomes (PICO) for this study were determined 

by the co-authors as follows: Inclusion criteria: ① The content of the article is designed as 

a diagnostic experimental study. ② Studies need to compare the diagnostic effectiveness 

of two or more imaging examinations on the same patient group (mpMRI, PSMA PET, 

MRSI, CT, BS, PET). ③ A study that includes histopathological results or obtains 

pathological evidence based on clinical data, other examinations, or follow-up results. ④ 

Studies that include results such as true positive (TP), true negative (TN), false positive 

(FP), false negative (FN), sensitivity (Se), specificity (Sp), positive predictive value (PPV), 

negative predictive value (NPV) and detection rate (DR) or studies that can derive these 

results through other data calculations. If incomplete data existed for TP, TN, FP, FN, 

NPV, or PPV, they were calculated using the known variables Se and Sp to complete the 

data. 

 

Exclusion criteria included: ① Duplicate literature; ② Non-original content such as 

reviews, letters to the editor, editorials, research protocols, case reports, brief 

communications, guidelines, and studies using other non-standard imaging modalities; ③ 
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Studies with a sample size of fewer than ten individuals or lacking original data; ④ 

Non-English articles. We excluded all studies that did not evaluate the diagnostic 

accuracy of prostate cancer assessment in comparison to the reference method, which 

refers to the established standard diagnostic procedure for prostate cancer. This study 

focused solely on original research investigating the diagnostic accuracy of prostate 

biopsy, histopathological examination, and follow-up content for reported cancers, which 

are invasive procedures commonly used for prostate cancer diagnosis. Additionally, we 

excluded articles not published in English and scanned the references of all included 

papers for additional relevant studies. 

 

2.4 Data extraction 

  

Two investigators independently extracted the following information from the included 

articles: author, publication year, patient number, tumor stage and grade, as well as Se, 

Sp, and the counts of TP, FP, FN, TN, or DR for the primary outcomes. Discrepancies 

were resolved by consensus with coauthors. 

 

2.5 Risk of Bias Assessment 

  

The risk of bias in the included studies was evaluated using the revised Quality 

Assessment of Diagnostic Accuracy Studies tool (QUADAS-2) (26). The index test was 

defined as the value of Multi-Stage Prostate Cancer detection using various imaging 
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modalities, with prostate needle biopsy and histopathology serving as the reference 

standard. Discrepancies were resolved through discussion and consensus. The quality of 

evidence for our pooled analyses was assessed across the patient selection, index test, 

reference standard, and flow and timing. Each domain was assessed for risk of bias, and 

the first three domains were evaluated for applicability concerns. 

2.6. Statistical analyses 

  

Network meta-analysis was conducted to analyze the diagnostic accuracy of 37 imaging 

modalities used to detect different stages of prostate cancer, as shown in Table 2, with 

comparison to cytological examination. For the assessment of diagnostic accuracy, 

pairwise analyses were conducted to estimate the odds ratio (OR) for recurrence 

detection and the corresponding 95% confidence interval (CI), which were calculated from 

sensitivity, specificity, positive predictive value, and negative predictive value in the 

included manuscripts. 

  

To assist in interpreting the diagnostic performance, the Surface Under the Cumulative 

Ranking Curve (SUCRA) was utilized to calculate the probability of prostate cancer at 

various stages, which is the best diagnostic method, employing a Bayesian approach. A 

higher SUCRA value indicated a superior rank for the intervention. For the consistency 

test, node-splitting assessments were conducted to determine the association between 

the direct and indirect evidence. Additionally, publication bias was evaluated using funnel 

plots. Stata 17.0 software was utilized for data analysis in this study.  
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3. Result  

3.1 Study selection and characteristics 

 

The literature search yielded 24,910 references with related content. During the screening, 

8,916 articles were removed due to duplication, and 1,5132 articles were excluded for 

irrelevance, specific screening process in Supplementary Figure 1. Of the full-text articles 

assessed, 739 articles were excluded based on screening criteria. 

  

Ultimately, after screening, a total of 123 relevant articles were included. Specifically, 38 

articles were included for the diagnosis of primary prostate cancer, involving 2,182 

patients; 25 articles were related to lymph node metastasis, involving 1,803 patients; 41 

articles were concerned with bone metastasis, involving 3,196 patients; and 37 articles 

were related to biochemical recurrence of prostate cancer, involving 2,190 patients. 

  

Supplementary Figures 2 and 3 show the results regarding the risk of bias and 

applicability, with red dots indicating a high risk of bias for each bias criterion, yellow dots 

indicating an unclear risk, and green dots indicating a low risk of bias. 

  

3.2 Network meta-analysis of diagnostic test accuracy for prostate cancer 

3.2.1 Early-phase prostate cancer  
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A total of 38 (23, 28-64) studies were included in this analysis. The networks of eligible 

comparisons are graphically represented in network plots on the diagnostic values of 

imaging modalities for the diagnosis of early-phase prostate cancer in Figure 1. In 

sensitivity comparisons, 18F-DCFBC PET/CT (Imaging14) was inferior to mpMRI 

(Imaging 2) (OR 0.13, 95% CI 0.02-0.75), 99mTc-PSMA SPECT/CT (Imaging 4) (OR 0.03, 

95% CI 0.00-0.97), 18F-DCFPyL PET/CT (Imaging 15) (OR 0.07, 95% CI 0.01-0.61), 

68Ga-P16-093 PET/CT (Imaging 29) (OR 0.01, 95% CI 0.00-0.95), and 68Ga-PSMA-11 

PET/MRI (Imaging30) (OR 0.09, 95% CI 0.01-0.62). The results of the current NMA 

revealed that 68Ga-P16-093 PET/CT (Image29) and 68Ga-PSMA-617 PET/CT (Image33) 

exhibited superior diagnostic efficacy in Se, Sp, PPV and NPV, as detailed in 

Supplementary Figure 4. 

  

In specificity comparisons, 18F-DCFPyL PET/CT (Imaging 15) was inferior to 18F-DCFBC 

PET/CT (Imaging 14) (OR 0.07, 95% CI 0.01-0.93) and 68Ga-PSMA-617 PET/CT 

(Imaging 33) (OR 0.05, 95% CI 0.00-0.70), while 18F-DCFPyL PET (Imaging17) was 

inferior to mpMRI (Imaging 2) (OR 0.02, 95% CI 0.00-0.35), 99mTc-PSMA SPECT/CT 

(Imaging 4) (OR 0.02, 95% CI 0.00-0.91), 18F-DCFBC PET/CT (Imaging 14) (OR 0.00, 95% 

CI 0.00-0.14), 18F-DCFPyL PET/MRI (Imaging 16) (OR 0.03, 95% CI 0.00-0.46), 

68Ga-PSMA-11 PET/MRI (Imaging30) (OR 0.02, 95% CI 0.00-0.36), 68Ga-PSMA-11 

PET/CT (Imaging 31) (OR 0.01, 95% CI 0.00-0.25), 68Ga-PSMA-11 PET (Imaging32) 

(OR 0.04, 95% CI 0.00-0.67), 68Ga-PSMA-617 PET/CT (Imaging 33) (OR 0.00, 95% CI 

0.00-0.09), and 68Ga-RM2 PET/CT (Imaging36) (OR 0.02, 95% CI 0.00-0.50). 
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In positive predictive value comparisons, 18F-DCFPyL PET (Imaging 17) was inferior to 

mpMRI (Imaging 2) (OR 0.25, 95% CI 0.07-0.90), 68Ga-PSMA-11 PET/MRI (Imaging 30) 

(OR 0.19, 95% CI 0.05-0.76), 68Ga-PSMA-11 PET/CT (Imaging31) (OR 0.20, 95% CI 

0.05-0.77), and 68Ga-PSMA-617 PET/CT (Imaging 33) (OR 0.06, 95% CI 0.01-0.42). 

68Ga-PSMA-617 PET/CT (Imaging33) was superior to 99mTc-MDP SPECT/CT 

(Imaging3) (OR 68.48, 95% CI 1.35-3483.61), 18F-choline PET/CT (Imaging 11) (OR 8.70, 

95% CI 1.27-59.80), 18F-DCFPyL PET/MRI (Imaging16) (OR 6.21, 95% CI 1.12-34.34), 

and 18F-DCFPyL PET (Imaging 17) (OR 16.60, 95% CI 2.39-115.03). There were no 

statistically significant differences in negative predictive value comparisons between 

imaging modalities and other tests, with detailed content presented in Supplementary 

Table 2. As such, the consistency model was applied to the current study (all p > 0.05). 

  

In the analysis of SUCRA values for different imaging modalities, sensitivity was highest 

for 68Ga-P16-093 PET/CT (Imaging29) (84.1%), specificity was highest for 

68Ga-PSMA-617 PET/CT (Imaging33) (88.1%), positive predictive value was highest for 

68Ga-PSMA-617 PET/CT (Imaging33) (90.5%), and negative predictive value was 

highest for 68Ga-P16-093 PET/CT (Imaging 29) (80.4%). Detailed content is presented in 

Figure 2, which combines four plots. 

  

3.2.1.1 Subgroup analysis: Peripheral invasion 
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In clinically significant prostate cancer, the primary outcome of nine studies was the 

diagnostic performance for csPCa. The results of the current NMA revealed that 

18F-DCFPyL PET/CT (Image 15) and 68Ga-PSMA-11 PET/MRI (Image 30) exhibited 

superior diagnostic efficacy in Se, Sp, PPV and NPV, as detailed in the Supplementary 

Figure 5. 

 

No significant statistical differences were observed in sensitivity comparisons among 

imaging modalities (P > 0.05). In specificity comparisons, 18F-DCFPyL PET (Image 17) 

was inferior to mpMRI (Image 2) (OR: 0.02, 95% CI: 0.00-0.22), 18F-DCFPyL PET/MRI 

(Image 16) (OR: 0.03, 95% CI: 0.00-0.34), 68Ga-PSMA-11 PET/MRI (Image 30) (OR: 

0.01, 95% CI: 0.00-0.14), and 68Ga-PSMA-11 PET/CT (Image31) (OR: 0.02, 95% CI: 

0.00-0.20). In positive predictive value (PPV), 18F-DCFPyL PET (Imaging 17) was weaker 

than mpMRI (Image 2) (OR: 0.24, 95% CI: 0.08-0.73), 68Ga-PSMA-11 PET/MRI (Image 

30) (OR: 0.14, 95% CI: 0.03-0.71), and 68Ga-PSMA-11 PET/CT (Image31) (OR: 0.23, 95% 

CI: 0.07-0.71). No significant statistical differences were found in negative predictive value 

(NPV) among imaging modalities, as detailed in Supplementary Table 3 

 

In the analysis of different imaging SUCRA values, 18F-DCFPyL PET/CT (Image15) had 

the highest sensitivity and NPV of 65.8 and 65.0, respectively, while 68Ga-PSMA-11 

PET/MRI (Image 30) had the highest specificity and PPV of 85.0 and 83.7, respectively. 

The details are shown in Figure 3 (four graphs combined). 
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Among the studies related to extracapsular extension (ECE), a total of eight studies 

involved the diagnosis of ECE. The results of the current NMA revealed that mpMRI 

(Image 2), 18F-PSMA-1007 PET/CT (Image 21), and 68Ga-PSMA-11 PET/MRI (Image 

30) exhibited superior diagnostic efficacy in Se, Sp, PPV and NPV, as detailed in the 

Supplementary Figure 6. No significant statistical differences were observed in sensitivity, 

specificity, PPV or NPV comparisons among imaging modalities. In the SUCRA values 

analysis, 68Ga-PSMA-11 PET/MRI (Image 30) had the highest sensitivity and NPV of 

83.0 and 78.1, respectively. 18F-PSMA-1007 PET/CT (Image 21) had the highest 

specificity of 78.3, while mpMRI (Image 2) had the highest PPV of 62.5. The details are 

shown in Figure 4 (four graphs combined). 

 

In studies related to Seminal Vesicle Invasion (SVI), the primary outcome of ten studies 

was the diagnosis of SVI. The results of the current NMA revealed that mpMRI (Image 2) 

and 18F-PSMA-1007 PET/CT (Image 21) exhibited superior diagnostic efficacy in Se, Sp, 

PPV and NPV, as detailed in Supplementary Figure 7. 

No significant statistical differences were observed in sensitivity, specificity, PPV, or NPV 

comparisons among imaging modalities. In the SUCRA values analysis, 18F-PSMA-1007 

PET/CT (Image 21) performed best in sensitivity, PPV, and NPV, with values of 83.3, 70.0, 

and 79.5, respectively. mpMRI (Image 2) performed best in specificity, with a value of 68.4. 

The details are shown in Figure 5 (four graphs combined). 
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3.2.2 lymph node metastasis 

 

This study included 25 (28-30, 32, 46, 50, 52, 58, 59, 65-80) articles on lymph node 

metastasis in the initial staging of prostate cancer. The networks of eligible comparisons 

are graphically represented in network plots, which depict the diagnostic values of 

imaging examinations for the diagnosis of lymph node metastasis in prostate cancer, as 

shown in Figure 6. The results of the current NMA revealed that MRI (Image 1), mpMRI 

(Image 2), CT (Image5), 18F-DCFPyL PET/CT (Image15), 68Ga-PSMA-11 PET/MRI 

(Image30) and 68Ga-PSMA-11 PET/CT (Image31) showed poor diagnostic efficacy in Se, 

Sp, PPV and NPV, as detailed in the Supplementary Figure 8. 

 

In the comparison of sensitivity, 68Ga-PSMA-11 PET/CT (Image 31) exhibited higher 

sensitivity than CT (Image 5) (OR: 4.63, 95% CI: 1.63-13.13) and mpMRI (Image 2) (OR: 

3.35, 95% CI: 2.14-5.24). Additionally, 68Ga-PSMA-11 PET/CT (Image 31) demonstrated 

an advantage in sensitivity compared to 18F-DCFPyL PET/CT (Image 15) (OR: 4.63, 95% 

CI: 1.63-13.13).  

 

However, there were no statistically significant differences in sensitivity when compared to 

18F-PSMA-1007 PET/CT (Image 21), 18F-PSMA-1007 PET/MRI (Image 22), and 

68Ga-PSMA-11 PET/MRI (Image 30). In the specificity analysis, 18F-DCFPyL PET/CT 

(Image 15) performed favorably, with higher specificity than CT (Image 5) (OR: 25.33, 95% 

CI: 9.00-71.25) and mpMRI (Image 2) (OR: 7.05, 95% CI: 1.86-26.63). It also showed an 
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advantage in specificity compared to 18F-PSMA-1007 PET/CT (Image 21) (OR: 8.71, 95% 

CI: 1.20-63.28), 18F-PSMA-1007 PET/MRI (Image 22) (OR: 66.28, 95% CI: 

2.64-1664.42), and 68Ga-PSMA-11 PET/CT (Image 31) (OR: 10.12, 95% CI: 2.6-39.18). 

In the comparison of positive predictive value (PPV), 18F-DCFPyL PET/CT (Image 15) 

outperformed 68Ga-PSMA-11 PET/CT (Image 31) (OR: 6.29, 95% CI: 1.26-31.49), CT 

(OR: 16.75, 95% CI: 5.33-52.69), and mpMRI (Image 2) (OR: 8.25, 95% CI: 1.71-39.93). 

In the comparison of negative predictive value (NPV), 68Ga-PSMA-11 PET/CT (Image 31) 

was stronger than CT (Image 5) (OR: 2.53, 95% CI: 1.44-4.47) and mpMRI (Image 2) (OR: 

1.48, 95% CI: 1.10-1.98), with no statistically significant differences compared to other 

imaging methods. Detailed data are presented in Supplementary Table 4. As such, the 

consistency model was applied to the current study, with all p-values > 0.05. 

 

In the analysis of SUCRA values for different imaging modalities, 68Ga-PSMA-11 

PET/MRI (Image 30) had the highest sensitivity, which was 82.9. 18F-DCFPyL PET/CT 

(Image 15) had the highest specificity and PPV, which were 96.4 and 90.0, respectively. 

18F-PSMA-1007 PET/CT (Image 21) had the highest NPV, which was 84.1. Detailed data 

are presented in Figure 7, which combines four plots. 

 

3.2.3 bone metastasis 

 

In the analysis of bone metastases in prostate cancer, a total of 41 (28, 73, 80-118) 

studies were included. The networks of eligible comparisons are graphically represented 
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in network plots on the diagnostic values of imaging examinations for the diagnosis of 

bone metastases in prostate cancer in Figure 8. The results of the current NMA revealed 

that 99mTc-PSMA SPECT/CT (Image 4), 18F-DCFPyL PET/CT (Image 15), 

18F-Fluciclovine PET/CT (Image 19), 18F-PSMA-1007 PET/CT (Image 21), 

18F-PSMA-1007 PET/MRI (Image 22), 68Ga-PSMA-11 PET/MRI (Image 30) and 

68Ga-PSMA-617 PET/CT (Image 33) exhibited poor diagnostic efficacy in Se, Sp, PPV 

and NPV, as detailed in Supplementary Figure 9. 

 

In the sensitivity analysis, 18F-PSMA-1007 PET/MRI (Image 22) demonstrated higher 

sensitivity compared to  99mTc-MDP SPECT/CT (Image 4) (OR: 58.15, 95% CI: 

3.19-1058.40), BS (Image 6) (OR: 142.35, 95% CI: 11.45-1769.55), 11C-choline PET/CT 

(Image 9) (OR: 42.29, 95% CI: 2.95-605.66), 18F-choline PET/CT (Image 11) (OR: 39.27, 

95% CI: 2.55-604.24), 18F-Fluciclovine PET/CT (Image 19) (OR: 31.61, 95% CI: 

1.35-740.03), 18F-NaF PET/CT (Image 20) (OR: 18.47, 95% CI: 1.27-269.18), and 

68Ga-PSMA-11 PET/MRI (Image 30) (OR: 42.67, 95% CI: 1.16-1570.95), but there were 

no statistically significant differences when compared to 18F-PSMA-1007 PET/CT (Image 

21), 18F-DCFPyL PET/CT (Image 15), and 68Ga-PSMA-617 PET/CT (Image 33). In 

terms of specificity, BS (Image 6) was lower than mpMRI (Image 2) (OR: 0.31, 95% CI: 

0.11-0.91), 11C-choline PET/CT (Image 9) (OR: 0.15, 95% CI: 0.04-0.50), 18F-choline 

PET/CT (Image 11) (OR: 0.18, 95% CI: 0.05-0.68), 18F-Fluciclovine PET/CT (Image 19) 

(OR: 0.10, 95% CI: 0.01-0.83), and 68Ga-PSMA-11 PET/CT (Image 31) (OR: 0.14, 95% 

CI: 0.06-0.31). For positive predictive value comparison, 68Ga-PSMA-11 PET/CT (Image 
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31) was higher than mpMRI (Image 2) (OR: 2.69, 95% CI: 1.08-6.70), BS (Image 6) (OR: 

6.84, 95% CI: 3.43-13.61), and 18F-NaF PET/CT (Image 20) (OR: 3.16, 95% CI: 

1.16-8.60). In terms of negative predictive value, 18F-PSMA-1007 PET/MRI (Image 22) 

generally performed better and had advantages over other imaging methods, except for 

no statistically significant differences compared to 18F-PSMA-1007 PET/CT (Image 21), 

68Ga-PSMA-11 PET/MRI (Image 30), 18F-Fluciclovine PET/CT (Image 19), 18F-DCFPyL 

PET/CT (Image 15), and 68Ga-PSMA-617 PET/CT (Image 33). The detailed content is 

shown in Supplementary Table 5. As such, the consistency model was applied to the 

current study (all p > 0.05). 

 

In the SUCRA ranking plot, 18F-PSMA-1007 PET/MRI (Image 22) showed the highest 

sensitivity and negative predictive value of 97.4% and 95.9%, respectively. For specificity 

and positive predictive value, 18F-Fluciclovine PET/CT (Image 19) had the highest 

SUCRA values of 74.2% and 76.3%, respectively. The detailed content is shown in Figure 

9 (four plots together). 

 

3.2.3.1 Subgroup Analysis Newly Diagnosed and Biochemically Recurrent Prostate 

Cancer  

 

The studies included in the bone metastasis analysis were categorized into two groups 

based on disease stage: newly diagnosed and biochemically recurrent prostate cancer. 

The remaining studies involved a mixed analysis of biochemical recurrence and newly 
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diagnosed and were not included in the subgroup analysis. Additionally, due to the 

unknown initial treatment types and androgen deprivation therapy (ADT) proportions in 

the studies involving biochemical recurrence patients, relevant subgroup analysis could 

not be conducted.  

 

In newly diagnosed prostate cancer bone metastases, a total of 17 studies were included. 

The results of the current NMA revealed that mpMRI (Image 2), 18F-DCFPyL PET/CT 

(Image 15), 18F-PSMA-1007 PET/MRI (Image 22), 68Ga-PSMA-11 PET/MRI (Image 30), 

68Ga-PSMA-11 PET/CT (Image 31), 68Ga-PSMA-11 PET (Image 32) and 

68Ga-PSMA-617 PET/CT (Image 33) exhibited poor diagnostic efficacy in Se, Sp, PPV 

and NPV, as detailed in Supplementary Figure 10. For sensitivity comparisons, the 

sensitivity of BS (Image 6) was lower than that of 18F-choline PET/CT (Image 11) (OR: 

0.20, 95% CI: 0.06-0.68), 18F-DCFPyL PET/CT (Image 15) (OR: 0.06, 95% CI: 0.01-0.72), 

18F-NaF PET/CT (Image 20) (OR: 0.13, 95% CI: 0.04-0.42), 18F-PSMA-1007 PET/MRI 

(Image 22) (OR: 0.03, 95% CI: 0.00-0.61), and 68Ga-PSMA-11 PET/CT (Image 31) (OR: 

0.11, 95% CI: 0.03-0.47). However, there was no statistical difference compared to 

mpMRI (Image 2) (OR: 0.09, 95% CI: 0.01-1.16) and 99mTc-MDP SPECT/CT (Image 3) 

(OR: 0.33, 95% CI: 0.06-1.90). In terms of specificity, BS (Image 6) specificity was lower 

than that of mpMRI (Image 2) (OR: 0.13, 95% CI: 0.02-0.89), 99mTc-MDP SPECT (Image 

7) (OR: 0.08, 95% CI: 0.01-0.53), and 68Ga-PSMA-11 PET/CT (Image 31) (OR: 0.14, 95% 

CI: 0.04-0.45). Similar to specificity, BS (Image 6) was lower than mpMRI (Image 2), 

99mTc-MDP SPECT (Image 7), and 68Ga-PSMA-11 PET/CT (Image 31) in positive 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 1, 2024. ; https://doi.org/10.1101/2024.09.28.24314285doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.28.24314285
http://creativecommons.org/licenses/by/4.0/


predictive value. When comparing negative predictive values, BS (Image 6) was lower 

than other imaging methods except for 68Ga-PSMA-617 PET/CT (Image 33), mpMRI 

(Image 2), and 99mTc-MDP SPECT/CT (Image 3). Specific details are shown in 

Supplementary Table 6. As such, the consistency model was applied to the current study 

(all p > 0.05). 

 

In the analysis of SUCRA values for different imaging techniques, 68Ga-PSMA-11 PET 

(Image 32) showed the best performance in sensitivity and negative predictive value, with 

values of 86.6% and 85.9%, respectively. 99mTc-MDP SPECT (Image 3) had the highest 

specificity of 82.3%. mpMRI (Image 2) showed the highest positive predictive value of 

82.1%. Specific details are shown in Figure 10.  

 

In biochemically recurrent prostate cancer bone metastases, a total of 17 studies were 

included. The results of the current NMA revealed that mpMRI (Image 2), BS (Image 6), 

11C-choline PET/CT (Image 9) and 68Ga-PSMA-11 PET/CT (Image 31) exhibited poor 

diagnostic efficacy in Se, Sp, PPV and NPV, as detailed in the Supplementary Figure 11. 

No statistical difference was found in sensitivity and negative predictive value 

comparisons between imaging examinations. In terms of specificity, BS (Image 6) was 

lower than mpMRI (Image 2) (OR: 0.20, 95% CI: 0.06-0.70), 11C-choline PET/CT (Image 

9) (OR: 0.10, 95% CI: 0.03-0.31), and 68Ga-PSMA-11 PET/CT (Image 31) (OR: 0.16, 95% 

CI: 0.06-0.44). In positive predictive value comparisons, BS (Image 6) was lower than 

11C-choline PET/CT (Image 9) (OR: 0.13, 95% CI: 0.04-0.41) and 68Ga-PSMA-11 
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PET/CT (Image 31) (OR: 0.17, 95% CI: 0.06-0.48), with no significant statistical difference 

compared to other imaging methods. Specific details are shown in Supplementary Table 7. 

As such, the consistency model was applied to the current study (all p > 0.05). 

 

In the SUCRA ranking chart, 18F-NaF PET/CT (Image 20) showed the highest sensitivity 

of 79.5%. In terms of specificity, 68Ga-PSMA-11 PET (Image 32) had the highest SUCRA 

value of 83.8%. For positive predictive value and negative predictive value, 

18F-Fluciclovine PET/CT (Image 19) and MRI (Image 1) performed best, with values of 

78.6% and 85.1%, respectively. Specific details are shown in Figure 11. 

  

3.2.4 biochemical recurrence 

 

In the investigation of biochemical recurrence, a total of 37 (28, 102, 108-110, 112, 

119-149) studies were included. The networks of eligible comparisons are graphically 

represented in network plots, showcasing the diagnostic values of imaging examinations 

for the diagnosis of biochemical recurrence of prostate cancer in Figure 12. Notably, 

68Ga-NeoB PET/MRI (Image 28) and 68Ga-PSMA-R2 PET/MRI (Image 35) did not form 

network relationships with other diagnostic methods and were therefore excluded from 

subsequent analyses. The results of the current NMA revealed that mpMRI (Image 2), BS 

(Image 6), 11C-choline PET/CT (Image 9) and 68Ga-PSMA-11 PET/CT (Image 31) were 

poor in terms of lesion detection rates, as detailed in the Supplementary Table 8. Ranked 

by SUCRA values, 18F-PSMA-1007 PET/CT (Image 21) exhibited the best performance 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 1, 2024. ; https://doi.org/10.1101/2024.09.28.24314285doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.28.24314285
http://creativecommons.org/licenses/by/4.0/


in detecting biochemical recurrence, with a rate of 98.1. The specific details are illustrated 

in Figure 13. 

 

3.2.4.1 Subgroup Analysis: Radioactive Markers 

 

Furthermore, this study conducted an additional analysis and comparison of the detection 

rates of biochemical recurrence in prostate cancer, classified according to radioactive 

tracers. Notably, two radioactive tracers, 68Ga-PSMA-R2 and 68Ga-NeoB, did not form 

network relationships with other tracers and were therefore excluded from subsequent 

analyses. The estimated scanning rate ratios for pairwise comparisons among the 

radioactive markers in the NMA are presented in Supplementary Table 9. Ranked by 

SUCRA values, 18F-PSMA-1007 exhibited the best performance in detecting biochemical 

recurrence, with a rate of 98.8. The detection rates of 64Cu-PSMA-617, 68Ga-PSMA-11, 

and 18F-DCFPyL were comparable, with rates of 74.9, 70.0, and 66.3, respectively. The 

specific details are illustrated in Figure 14. 

  

3.3 Bias analysis: Small sample effect estimation 

 

Funnel plots were drawn for the total effective outcome indicator to test for publication 

bias. The results showed that all studies were generally symmetrically distributed around 

the X = 0 vertical line, and most studies fell inside the funnel, whereas some fell at the 

bottom, suggesting a possible small sample effect (Figure 15). 
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4. Discussion 

  

In this systematic review and network meta-analysis, we comprehensively evaluated the 

diagnostic efficacy of various imaging modalities for prostate cancer at different stages, 

including early-phase, lymph node metastasis, bone metastasis, and biochemical 

recurrence. Our findings highlight the strengths and limitations of each imaging technique 

in detecting and staging prostate cancer. 

 

The 5-year survival rate of prostate cancer is highly correlated with tumor staging, and 

improving the accuracy of early diagnosis can significantly enhance patient survival rates 

(150). In the early diagnosis of prostate cancer, mpMRI is recommended before biopsy, 

and patients with PI-RADS ≤ 2 may be exempted from prostate cancer biopsy (151). 

Prostate-specific membrane antigen (PSMA) is a type 2 transmembrane glycoprotein that 

provides necessary metabolic substrates for cancer cell proliferation and invasion by 

mediating folate hydrolysis (152). In high-grade metastatic prostate cancer, particularly in 

aggressive, androgen-deprived, metastatic, and hormone-refractory PCa, PSMA 

expression is significantly increased and is currently the main target for detecting minimal 

prostate cancer lesions (153, 154). PSMA mediates folate hydrolysis, providing essential 

metabolic substrates for cancer cell proliferation and invasion. 

 

PET/CT tracers primarily encompass three functionalities: detecting cell division activity 
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(such as radiolabeled choline, acetate, fluorodeoxyglucose, amino acids), targeting 

cancer-specific membrane proteins or receptors (like prostate-specific membrane antigen, 

gastrin-releasing peptide receptors), and compounds specifically binding to bone 

metastases (e.g., radiolabeled sodium fluoride) (155). Due to PSMA's involvement in the 

PI3K/AKT growth pathway related to prostate cancer metastasis (156), PSMA-PET can 

better reflect the overall tumor burden in the body (157). 

  

The PSMA/PET evaluation system integrates PSMA expression V (based on background 

contrast) and PSMA expression Q (using SUV values), where significantly higher PSMA 

expression than the liver is considered a typical pathological feature of prostate cancer 

(158). This system demonstrates higher SUVmax values in more aggressive tumors, 

further confirming its diagnostic efficacy (159). Multi-Parametric MRI (mpMRI) combines 

anatomical imaging (such as T2-weighted MRI, which differentiates anatomical structures 

based on water molecule relaxation time differences and possesses excellent spatial 

resolution) with functional imaging (including Diffusion-Weighted Imaging (DWI) to assess 

water molecule diffusion in tissue structures, where tumor regions appear as high signals; 

and DCE-MRI to evaluate angiogenesis and perfusion characteristics through contrast 

agent injection, providing information on tumor blood supply) (160). Studies have shown 

that the combined use of mpMRI and PSMA PET/CT significantly improves the negative 

predictive value and sensitivity of diagnosis (31), which may be related to the targeted 

biopsy capabilities of PSMA PET/CT for patients with metal implants. In the imaging 

diagnosis of prostate cancer, MRI-TRUS fusion imaging has become a clinically preferred 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 1, 2024. ; https://doi.org/10.1101/2024.09.28.24314285doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.28.24314285
http://creativecommons.org/licenses/by/4.0/


option (7). 

 

Establishing a high-precision diagnostic method for early-stage prostate cancer is crucial 

for reducing unnecessary biopsies and the associated risks of overtreatment and invasive 

injuries to patients. Current research indicates that Digital Rectal Examination (DRE) 

performs poorly in early screening for prostate cancer, potentially increasing the risk of 

overtreatment and unnecessary physical harm (11, 161). Particularly in middle-aged men, 

the diagnostic efficacy of DRE is inferior to PSA screening. Therefore, screening and 

diagnostic strategies for prostate cancer should comprehensively consider patients' 

expected lifespan and health status. According to the 

EAU-EANM-ESTRO-ESUR-ISUP-SIOG guidelines, local treatment is recommended for 

patients with an expected lifespan exceeding ten years, while those with a shorter lifespan 

(e.g., <10 to 15 years) may be more suitable for active surveillance or androgen 

deprivation therapy (162). 

 

The accuracy of mpMRI (multiparametric magnetic resonance imaging) in early diagnosis 

of prostate cancer is highly dependent on the professional expertise of imaging specialists. 

However, with the deep integration of computer science and medical imaging technology, 

particularly the application of advanced computer-aided diagnosis (CAD) techniques such 

as Convolutional Neural Networks (CNNs), the precision of mpMRI in the early detection 

of prostate cancer has been significantly enhanced (163). This advancement provides 

strong technical support for the early and precise diagnosis of prostate cancer. 
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In advanced cases, bone metastasis is one of the leading causes of death (164). Planar 

bone scintigraphy (BS) using Technetium-99m (99mTc) diphosphonates is currently a 

primary imaging modality for assessing high-risk prostate cancer, characterized by low 

cost, high sensitivity, and low specificity (165). Bone activation induced by hormonal 

therapy can result in heterogeneous bone uptake, masking bone metastasis(166). False 

positives mainly occur in noncancerous bone conditions of the spine and ribs (91). 

 

The axial skeleton is the primary site of skeletal-related events (SREs) in prostate cancer 

(167). In the diagnosis of advanced disease, PSMA PET/CT demonstrates higher 

accuracy, lower radiation exposure, and fewer equivocal diagnostic lesions compared to 

traditional imaging modalities such as CT and bone scans (168), as well as higher 

interobserver agreement (169). In the selection of molecular hybrid imaging ligands, 

18F-PSMA-1007 is primarily eliminated via the hepatobiliary route, while 68Ga-PSMA-11 

is excreted through both the hepatobiliary and urinary systems; thus 18F-PSMA-1007 

exhibits better diagnostic performance (170), especially in lesions around the bladder 

(171), unspecific bone uptake (UBU) (172), and soft tissue surrounding the lesion (90). 

Delayed imaging can be used to increase diagnostic accuracy in patients with high 

bladder urine activity (173). 

 

In the assessment of single bone metastasis lesions, 18F-NaF PET/CT demonstrates 

superiority over 68Ga-PSMA PET/CT (174). This is attributed to its longer half-life (175) 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 1, 2024. ; https://doi.org/10.1101/2024.09.28.24314285doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.28.24314285
http://creativecommons.org/licenses/by/4.0/


and higher interobserver agreement (176). Compared to PET/CT, PET/MRI exhibits 

greater sensitivity in the early diagnosis of bone metastases, albeit with a higher economic 

burden (177). Muehlematter et al. found that PSMA-PET/MRI is more sensitive than 

mpMRI in detecting extracapsular extension and seminal vesicle invasion in prostate 

cancer (45). PSMA PET also reveals the expression of PSMA in tumor-related metastatic 

lesions, providing a basis for potential PSMA radioligand therapy (178). Studies have also 

shown that 99mTc-PSMA SPECT/CT outperforms 99mTc (Methylene 

Diphosphonate)-MDP SPECT/CT in diagnosing bone metastases in patients with small 

lesions or low PSA levels. Due to differences in PSA diagnostic thresholds (99mTc-PSMA 

SPECT/CT: 2.635 ng/mL; 99mTc-MDP SPECT/CT: 15.275 ng/mL) and late imaging, 

99mTc-PSMA SPECT/CT remains the preferred choice for patients with low PSA levels 

(115, 179). In assessing metastatic prostate cancer (mPCa), PSMA PET/CT defines 

significant increases in PSMA uptake or a >30% increase in tumor PET volume as criteria 

for disease progression, effectively curbing overtreatment of non-clearly progressive 

prostate cancer (180).  

  

After primary treatment, biochemical recurrence (BCR) of prostate Cancer may occur, 

which can be classified as a negative or fossa-confined disease, lymph nodal, or distant 

metastatic disease. The three-year recurrence-free rate gradually decreases among these 

patients (181). Accurate tumor localization is crucial for guiding subsequent salvage 

therapies (175). Approximately 40% of patients may experience biochemical recurrence 

within five years after definitive treatment (182). Among patients with biochemical 
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recurrence, 24%-34% will develop overt metastatic disease within 15 years after surgery 

(183). BCR is defined as a rise in PSA levels to ≥0.2 ng/ml in patients treated with radical 

prostatectomy or an increase in PSA to ≥2 ng/ml above the nadir in the case of primary 

radiotherapy, in accordance with the Phoenix criteria(184). In some cases of recurrent 

prostate cancer within the prostatic fossa, diagnostic accuracy can be improved by the 

administration of furosemide (185). 

 

When detecting lymph node metastasis in radical prostatectomy, PSMA PET/CT exhibits 

high sensitivity and specificity for lymph nodes larger than 5mm (186). The primary 

manifestation of prostate cancer recurrence after radical prostatectomy is the presence of 

early enhancement foci confined to the prostatic fossa (fossa-confined disease). 

Post-treatment, the Prostate Imaging Reporting and Data System (PI-RADS) is no longer 

applicable, regardless of whether the prostate cancer was treated surgically or with 

primary therapy (187). Diffusion-weighted imaging-Magnetic Resonance Imaging 

(DWI-MRI) is the most accurate sequence for detecting prostate cancer recurrence (188). 

When diagnosing BCR, PSMA exhibits higher sensitivity and specificity compared to 

18F-choline and 18F-fluciclovine, which rely heavily on PSA levels (123, 189). 

 

The primary site of prostate cancer recurrence is at the bladder-ureter anastomosis, 

followed by the anterior or posterior bladder neck. In the diagnosis of local recurrence, 

PET-MRI demonstrates better recognition than PET-CT (190). 18F-PSMA-1007 PET/CT 

is highly specific for diagnosing lymph node recurrence after radical prostatectomy (RP), 
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with a specificity of up to 99% (176, 191). Radiocomposites, such as 

18F-NOTA-GRPR-PSMA, may represent a future direction for enhancing diagnostic 

efficacy (191). PSMA-PET exhibits high sensitivity for patients with high PSA levels, high 

Gleason scores, and rapid PSA doubling time (PSA-DT) (192). As PSMA PET/CT can be 

influenced by the androgen signaling pathway, it is typically recommended to wait at least 

three months after initiating ADT or second-generation anti-androgen therapy before 

performing a PSMA PET/CT scan (193). 

 

This network meta-analysis offers a comprehensive evaluation of the diagnostic efficacy 

of diverse imaging modalities in the detection and staging of prostate cancer across 

various stages, including early-phase disease, lymph node metastasis, bone metastasis, 

and biochemical recurrence. Our findings emphatically highlight the strengths and 

limitations of each imaging technique in the context of prostate cancer detection and 

staging. However, due to limitations in medical and economic resources, a subset of 

patients remains unable to access more precise imaging modalities. As a result, 

high-precision examinations are often reserved for patients with advanced or overtly 

progressing diseases.  

 

This study is also subject to several limitations. Firstly, the utilization of varying reference 

standards for different aspects of the study, along with the acquisition of some data 

through follow-up, may potentially impact the research findings. Secondly, the existence 

of potential publication bias, whereby some negative results may remain unpublished due 
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to their non-significance, could also influence the research outcomes. Furthermore, the 

fact that some studies did not directly report raw data, with some data instead derived 

through calculations, may introduce discrepancies compared to the original data. 

Additionally, factors such as varying ethnic groups, different clinical scenarios, and the 

absence of long-term follow-up for emerging technologies can also exert an impact on the 

results. Finally, this study analyzed the efficacy of specific imaging methods for the 

diagnosis of prostate cancer. In the included literature, certain imaging methods were less 

well documented or involved a smaller total number of patients, and there may have been 

some bias when they were compared with each other. Consequently, further exploration 

of this issue necessitates multi-center, large-sample studies to gain a deeper 

understanding. 

 

5. Conclusion 

 

Our study contributes to the guidance of imaging modalities for prostate cancer across 

various stages. By utilizing appropriate imaging techniques, we have mitigated the 

potential harm caused by invasive procedures to patients. Additionally, we have provided 

cost-effective imaging methods for managing potential multi-stage prostate cancer 

conditions, thereby reducing the financial burden on patients during their medical journey. 

With the continuous development of ligands, precise diagnosis for an even wider range of 

prostate cancer stages, at a more granular level, will become a reality in the future. 

Appendix 
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Figure Legend 

Figure 1: 

• Title: Network plots on the diagnostic values of imaging modalities for the 

diagnosis of early-phase prostate cancer. 

• Description: This figure displays the network of eligible comparisons graphically, 

illustrating the diagnostic values of various imaging modalities used for the 

detection of early-phase prostate cancer. 

 

Figure 2: 

• Title: SUCRA values for different imaging modalities in early-phase prostate 
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cancer diagnosis based on sensitivity, specificity, positive predictive value (PPV), 

and negative predictive value (NPV). 

• Description: This figure presents the Surface Under the Cumulative Ranking 

Curve (SUCRA) values for various imaging modalities, indicating their relative 

diagnostic performance in early-phase prostate cancer detection based on 

sensitivity, specificity, PPV, and NPV. 

 

Figure 3: 

• Title: SUCRA values for different imaging modalities in clinically significant 

prostate cancer diagnosis based on sensitivity, specificity, positive predictive 

value (PPV), and negative predictive value (NPV). 

• Description: This figure presents the Surface Under the Cumulative Ranking 

Curve (SUCRA) values for various imaging modalities, indicating their relative 

diagnostic performance in clinically significant prostate cancer detection based on 

sensitivity, specificity, PPV, and NPV. 

 

Figure 4: 

• Title: SUCRA values for different imaging modalities in extracapsular extension 

prostate cancer diagnosis based on sensitivity, specificity, positive predictive 

value (PPV), and negative predictive value (NPV). 

• Description: This figure presents the Surface Under the Cumulative Ranking 

Curve (SUCRA) values for various imaging modalities, indicating their relative 
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diagnostic performance in extracapsular extension prostate cancer detection 

based on sensitivity, specificity, PPV, and NPV. 

 

Figure 5: 

• Title: SUCRA values for different imaging modalities in seminal vesicle invasion 

prostate cancer diagnosis based on sensitivity, specificity, positive predictive 

value (PPV), and negative predictive value (NPV). 

• Description: This figure presents the Surface Under the Cumulative Ranking 

Curve (SUCRA) values for various imaging modalities, indicating their relative 

diagnostic performance in seminal vesicle invasion prostate cancer detection 

based on sensitivity, specificity, PPV, and NPV. 

 

Figure 6: 

• Title: Network plots on the diagnostic values of imaging modalities for the 

diagnosis of lymph node metastasis prostate cancer. 

• Description: This figure displays the network of eligible comparisons graphically, 

illustrating the diagnostic values of various imaging modalities used for the 

detection of lymph node metastasis prostate cancer. 

 

Figure 7: 

• Title: SUCRA values for different imaging modalities in lymph node metastasis 

prostate cancer diagnosis based on sensitivity, specificity, positive predictive 
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value (PPV), and negative predictive value (NPV). 

• Description: This figure presents the Surface Under the Cumulative Ranking 

Curve (SUCRA) values for various imaging modalities, indicating their relative 

diagnostic performance in lymph node metastasis prostate cancer detection 

based on sensitivity, specificity, PPV, and NPV. 

 

Figure 8: 

• Title: Network plots on the diagnostic values of imaging modalities for the 

diagnosis of bone metastasis prostate cancer. 

• Description: This figure displays the network of eligible comparisons graphically, 

illustrating the diagnostic values of various imaging modalities used for the 

detection of bone metastasis prostate cancer. 

 

Figure 9: 

• Title: SUCRA values for different imaging modalities in bone metastasis prostate 

cancer diagnosis based on sensitivity, specificity, positive predictive value (PPV), 

and negative predictive value (NPV). 

• Description: This figure presents the Surface Under the Cumulative Ranking 

Curve (SUCRA) values for various imaging modalities, indicating their relative 

diagnostic performance in bone metastasis prostate cancer detection based on 

sensitivity, specificity, PPV, and NPV. 
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Figure 10: 

• Title: SUCRA values of different imaging modalities based on sensitivity, 

specificity, positive predictive value (PPV) and negative predictive value (NPV) in 

the diagnosis of bone metastases in newly diagnosed prostate cancer. 

• Description: This figure presents the Surface Under the Cumulative Ranking 

Curve (SUCRA) values for various imaging modalities, indicating their relative 

diagnostic performance in the detection of bone metastases in newly diagnosed 

prostate cancer based on sensitivity, specificity, PPV, and NPV. 

 

Figure 11: 

• Title: SUCRA values of different imaging modalities based on sensitivity, 

specificity, positive predictive value (PPV) and negative predictive value (NPV) in 

the diagnosis of biochemically recurrent prostate cancer bone metastases. 

• Description: This figure presents the Surface Under the Cumulative Ranking 

Curve (SUCRA) values for various imaging modalities, indicating their relative 

diagnostic performance in the detection of biochemically recurrent prostate cancer 

bone metastases based on sensitivity, specificity, PPV, and NPV. 

 

Figure 12: 

• Title: Network plots on the diagnostic values of imaging modalities for the 

diagnosis of biochemical recurrence cancer. 

• Description: This figure displays the network of eligible comparisons graphically, 
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illustrating the diagnostic values of various imaging modalities used for the 

detection of biochemical recurrence of prostate cancer. 

 

Figure 13: 

• Title: SUCRA values for different imaging modalities in biochemical recurrence of 

prostate cancer diagnosis based on detection rate (DR). 

• Description: This figure presents the Surface Under the Cumulative Ranking 

Curve (SUCRA) values for various imaging modalities, indicating their relative 

diagnostic performance in biochemical recurrence of prostate cancer detection 

based on detection rate (DR). 

 

Figure 14: 

• Title: SUCRA values for different radiotracers in the diagnosis of biochemical 

recurrence of prostate cancer based on detection rate (DR). 

• Description: This figure presents the Surface Under the Cumulative Ranking 

Curve (SUCRA) values for various radiotracers, indicating their relative diagnostic 

performance in biochemical recurrence of prostate cancer detection based on 

detection rate (DR). 

 

Figure 15: 

• Title: Funnel plots of various imaging modalities for different stages of prostate 

cancer. 
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• Description: (A) Funnel plot of early prostate cancer; (B) Funnel plot of clinically 

significant prostate cancer; (C) Funnel plot of extracapsular extension; (D) Funnel 

plot of seminal vesicle invasion; (E) Funnel plot of lymph node metastasis; (F) 

Funnel plot of bone metastasis; (G) Funnel plot of bone metastases in newly 

diagnosed prostate cancer; (H) Funnel plot of bone metastases in biochemically 

recurrent prostate cancer; (I) Funnel plot of biochemical recurrence of prostate 

cancer; (J) Funnel plot of biochemically recurrent prostate cancer with different 

radiotracers. 

 

Table Legend 

Table 1: 

• Title: Keywords used in the literature search strategy. 

• Description: This table lists the keywords used in the literature search to identify 

relevant studies for the systematic review and meta-analysis. 

Table 2: 

• Title: Overview of imaging modalities included in the network meta-analysis. 

• Description: This table provides an overview of the different imaging modalities 

considered in the network meta-analysis, including their abbreviations and full 

names. 

 

Supplementary Materials Legend 

Supplementary Figure 1: 
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• Title: Literature screening process and its corresponding results. 

• Description: This supplementary figure illustrates the literature screening process 

and the number of articles included or excluded at each stage of the screening 

process. 

 

Supplementary Figure 2: 

• Title: QUADAS 2 individual study results. A: Results of quality assessment of 

early-phase prostate cancer; B: Results of quality assessment of lymph node 

metastasis in prostate cancer; C: Results of quality assessment of bone 

metastases from prostate cancer; D: Results of quality assessment of 

biochemically recurrent prostate cancer. 

 

Supplementary Figure 3: 

• Title: Overall summary bar graphs of risk of bias and applicability concerns across 

studies using the Quality Assessment of Diagnostic Accuracy Studies-2 

(QUADAS-2). A: Results of quality assessment of early-phase prostate cancer; B: 

Results of quality assessment of lymph node metastasis in prostate cancer; C: 

Results of quality assessment of bone metastases from prostate cancer; D: 

Results of quality assessment of biochemically recurrent prostate cancer. 

 

Supplementary Figure 4: 

• Title: Forest plots of early-phase prostate cancer 
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Supplementary Figure 5: 

• Title: Forest plots of clinically significant prostate cancer 

 

Supplementary Figure 6: 

• Title: Forest plots of extracapsular extension of prostate cancer 

 

Supplementary Figure 7: 

• Title: Forest plots of seminal vesicle invasion of prostate cancer 

 

Supplementary Figure 8: 

• Title: Forest plots of lymph node metastasis of prostate cancer 

 

Supplementary Figure 9: 

• Title: Forest plots of bone metastasis of prostate cancer 

 

Supplementary Figure 10: 

• Title: Forest plots of bone metastases in newly diagnosed prostate cancer 

 

Supplementary Figure 11: 

• Title: Forest plots of bone metastases in biochemically recurrent prostate cancer 
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Supplementary Table 1: 

• Title: Characteristics of studies reporting imaging modalities for the diagnosis of 

prostate cancer at various stages. 

• Description: This supplementary table provides detailed characteristics of studies 

included in the systematic review, organized by the stage of prostate cancer 

(early-phase, lymph node metastasis, bone metastasis, biochemical recurrence). 

•  

Supplementary Table 2: 

• Title: Detailed results of pairwise comparisons in the network meta-analysis for 

early-phase prostate cancer diagnosis. 

• Description: This supplementary table presents detailed results of pairwise 

comparisons between imaging modalities in the network meta-analysis for 

early-phase prostate cancer diagnosis. 

•  

Supplementary Table 3: 

• Title: Detailed results of pairwise comparisons in the network meta-analysis for 

clinically significant prostate cancer  

• Description: This supplementary table provides detailed results of pairwise 

comparisons between imaging modalities in the network meta-analysis for lymph 
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node metastasis detection in prostate cancer. 

 

Supplementary Table 4: 

• Title: Detailed results of pairwise comparisons in the network meta-analysis for 

lymph node metastasis diagnosis. 

• Description: This supplementary table provides detailed results of pairwise 

comparisons between imaging modalities in the network meta-analysis for lymph 

node metastasis detection in prostate cancer. 

•  

Supplementary Table 5: 

• Title: Detailed results of pairwise comparisons in the network meta-analysis for 

bone metastasis diagnosis. 

• Description: This supplementary table outlines detailed results of pairwise 

comparisons between imaging modalities in the network meta-analysis for bone 

metastasis detection in prostate cancer. 

 

Supplementary Table 6: 

• Title: Detailed results of pairwise comparisons in the network meta-analysis for 

bone metastases in newly diagnosed prostate cancer. 

• Description: This supplementary table presents detailed results of pairwise 

comparisons between imaging modalities in the network meta-analysis for bone 

metastases in newly diagnosed prostate cancer. 
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Supplementary Table 7: 

• Title: Detailed results of pairwise comparisons in the network meta-analysis for 

bone metastases in biochemically recurrent prostate cancer. 

• Description: This supplementary table presents detailed results of pairwise 

comparisons between imaging modalities in the network meta-analysis for bone 

metastases in biochemically recurrent prostate cancer. 

 

Supplementary Table 8 

• Title: Detailed results of pairwise comparisons in the network meta-analysis for 

biochemical recurrence prostate cancer. 

• Description: This supplementary table presents detailed results of pairwise 

comparisons between imaging modalities in the network meta-analysis for 

biochemical recurrence of prostate cancer. 

 

Supplementary Table 9 

• Title: Detailed results of pairwise comparisons in the network meta-analysis for in 

detection rates of biochemical recurrence in prostate cancer, classified according 

to radioactive tracers. 

• Description: This supplementary table presents detailed results of pairwise 

comparisons between imaging modalities in the network meta-analysis for 

detection rates of biochemical recurrence in prostate cancer, classified according 
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to radioactive tracers. 
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