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Abstract 
Large-language models (LLMs) have shown promising potential for extracting information from clinical notes. 
Deploying these models at scale can be challenging due to high computational costs, regulatory constraints, 
and privacy concerns. To address these challenges, we used synthetic data distillation to fine-tune smaller, 
open-source LLMs that achieve performance similar to that of larger models, including the teacher model. 
These smaller models can be run on less expensive local hardware or at a vastly reduced cost in cloud 
deployments. In this study, we used Llama-3.1-70B-Instruct to generate synthetic training examples in the form 
of question-answer pairs along with supporting information and model-assigned difficulty scores. These 
synthetic examples were used to fine-tune the smaller Llama-3.1-8B-Instruct model. We evaluated the 
performance of these models on an annotated synthetic dataset resembling clinical trial criteria, the i2b2 2018 
Clinical Trial Eligibility Challenge, and clinical notes reflecting the clinical trial for apixaban. The fine-tuned 
models outperformed the 8B-Instruct model on all tasks and in some cases even exceeded the performance of 
the larger 70B-Instruct model. This work demonstrates the potential of synthetic data distillation to enable more 
scalable and efficient clinical information extraction, which could be applied toward improving accuracy and 
efficiency of patient phenotyping and clinical-trial matching. 
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Introduction 
Research with real-world data typically relies on human-labeled data for training and validation. Though 
effective, human annotation can be costly, time-consuming, and prone to errors. Recent research suggests 
that few-shot capabilities of generative large language models (LLMs) can be used to annotate text data with 
reduced time and cost burden1–4. These capabilities of generative LLMs can be applied to information 
extraction from patient clinical notes. Traditional methods for information extraction include rule-based 
approaches, which can be limited by low recall due to user-defined rules and variability of medical texts, and 
supervised machine learning models, which can be limited by lack of labeled training data5–7. The zero- and 
few-shot capabilities of LLMs can enable more flexible and scalable information extraction from clinical notes 
without the need for extensive manual annotation. 
 
While promising, state of the art LLMs (such as GPT-48) are challenging to deploy in a scalable way in 
healthcare systems. Many of these models (including those from OpenAI, Anthropic, and Google) are 
proprietary and come with limited license terms. Concerns about patient privacy and lack of transparency in 
these proprietary models also lead to some hesitancy in their adoption for healthcare institutions9. Additionally, 
these models can be extremely large and require substantial computational resources (e.g., Llama 405B), 
limiting their deployment within typical health system IT settings10. So far, many of the successful deployments 
have been through partnerships where industry partners may subsidize cost or provide in-kind contributions in 
terms of compute and engineering. This may limit the number and type of institutions who are able to 
participate and the use cases they are able to apply generative AI to. Additionally, setting up these 
partnerships can require additional administrative lift (e.g., legal negotiation and information security 
evaluation) compared to performing analyses in existing environments, whether institution-hosted or existing 
private cloud deployments11. Even where solutions have been widely available, such as partnerships for draft 
inbox responses12, the ability to achieve similar performance with smaller models will make customizing 
models to a specific institution as well as serving inference requests at scale substantially cheaper and less 
cumbersome. 
 
Challenges in generative AI around scalability necessitate cost-effective and privacy-conscious solutions, 
which could be addressed through the development of open-source LLMs that can be integrated into existing 
healthcare system infrastructure. Open-source LLMs historically did not perform as well as their proprietary 
counterparts13 but recent progress has led to very competitive models across most evaluation metrics14. 
Recent efforts have been made to evaluate the capacity of locally deployable LLMs to extract clinical 
information with low hardware requirements15. Synthetic data generation, distillation, and instruction tuning 
offer an opportunity to close the gap between open-source and proprietary models. Larger models can 
generate synthetic data that can be used to fine-tune a smaller model for a given task, with the idea that the 
smaller model could mirror the performance of the larger model for that task. This process, called distillation, 
has been shown to improve performance of these models, particularly when there is less available labeled data 
such as paired patient-criterion matching annotations for patient-trial matching. It allows researchers to develop 
models with the potential for wider adoption through reducing computational cost without sacrificing 
performance. 
 
The ability to extract clinical information at scale from unstructured clinical notes could enhance patient 
phenotyping, which is important for research and clinical applications. Current phenotyping approaches often 
rely on structured data such as ICD codes, which are used for billing purposes and may not reflect the nuances 
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of the patient’s condition. This can limit analytical precision and potentially introduce biases when studying 
research outcomes. Unstructured clinical notes, which contain information including medical, social, and family 
history that may not be captured by structured data, could offer more granular and reliable insight into patient 
history, particularly in heterogeneous populations where there can be large differences in disease 
manifestation and progression16,17. LLMs can perform zero-shot information extraction from notes that improve 
phenotyping accuracy over the use of ICD codes, without the need for extensive manual annotation18.  
 
One potential application for these methods is in clinical trial recruitment, which requires a comprehensive 
evaluation of both clinical trial eligibility criteria and patient medical histories in order to appropriately match 
patients who meet trial requirements19–21. A recent study developed an LLM framework that used GPT-4 to 
predict patient eligibility on a criterion-level basis with explanations and achieved near expert-level 
performance22. Recent work comparing proprietary and open-source models suggested that distillation along 
with fine-tuning can improve performance of open-source LLMs for patient trial matching, approaching that of 
GPT-423. As opposed to Nievas et al.23, we used an open source model to generate the synthetic data, 
generated our data with MIMIC-III notes, and fine-tuned with QLoRA24. The fine-tuned models were evaluated 
against both the data used to create the synthetic question-answer pairs (MIMIC-III) as well as external data. 
Additionally, it is critical to use open-source models, even as the teacher. Deploying a model fine-tuned on 
GPT-4 outputs is likely against OpenAI’s terms of service25 as this would be deemed competing with OpenAI. 
As a whole, these developments show promise for the capacity of LLMs to aid in clinical information extraction 
for patient-trial matching but we observe in multiple evaluations performance is substantially higher when 
asking the model to answer single-order questions (e.g., what was the patient’s highest creatinine value?) as 
opposed to questions which require multiple steps (e.g., does this patient fit this trial’s eligibility criteria?). 
 
In this work we demonstrate the ability to perform synthetic data distillation for scalable clinical note annotation, 
using a large open-source model to generate realistic questions based on patient clinical records which can be 
used to train a smaller model that can perform inference. Additionally, we perform an ablation study to 
understand which types of synthetic data yield optimal performance and we conduct comprehensive 
evaluations against multiple datasets. This is critical, because we observe it is substantially easier to achieve 
strong performance against synthetic data with manual review as opposed to fully human generated 
evaluations. Alongside the work, we release source code which provides a framework for meaningful, clinical 
information extraction synthetic data generation (https://github.com/bbj-lab/clinical-synthetic-data-distil) and an 
annotation tool built around making the annotation process faster particularly when LLM predicted annotations 
are already available (https://github.com/bbj-lab/annotation-ui). We are also releasing two newly manually 
annotated datasets to Physionet, which will be available via the same data use agreement as MIMIC-III/IV : 1.) 
Annotated Synthetic Trial Criteria Questions: 1,000 questions generated by the large 70B model as 
Synthetic Data, which have been human-reviewed, and 2.) Apixaban Trial Criteria Questions: 2,300 
questions based on trial criteria from the ARISTOTLE apixaban clinical trial26,27. 
 
Results 
The process of knowledge distillation by generating synthetic question and answer pairs using a large model 
(Llama 3.1 70B-Instruct) to teach a smaller model (Llama 3.1 8B-Instruct) is described in Figure 1. This 
process worked by passing in a discharge summary to Llama 3.1 70B-Instruct along with prompt instructions 
(Available in Supplementary Table 1 and within source code) to create questions meeting specific criteria (e.g., 
yes/no, numeric, or questions that cannot not be answered based on the content of the note). In addition to 
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questions, the model was tasked with providing the section of the discharge summary an answer could b
found (e.g., Pertinent Results), the source or exact text that allowed the model to answer the question, a
as an explanation of why the answer was correct based on the source and rest of the note. The model w
also tasked with estimating the difficulty of the question it created (Supplementary Table 2).  
 
Next, these questions were filtered depending on which model was being fine-tuned (Table 1). For exam
8B-All includes all of the generated synthetic question and answer pairs, 8B-H-25K includes only the 25,
questions the 70B-Instruct model ranked hardest within each category, 8B-NB-Only includes the 25,000
hardest numeric and boolean (yes/no) questions, and 8B-No-S includes the 25,000 hardest questions of
type but does not finetune on any of the supporting information, namely the explanation, the section the 
believed the answer was in when generating the question, or the exact text which allowed for the model 
answer the question (source). Next, QLoRA fine-tuning (detailed in Methods) was performed for each of
question categories to result in four fine-tuned models (8B-All, 8B-H-25k, 8B-NB-Only, and 8-No-S) in ad
to the 2 instruct models open-sourced by Meta (8B-Instruct and 70B-Instruct) (Table 1).  
 
Figure 1. Synthetic Distillation Training Workflow. MIMIC-III records, outlined in green, are provided to th
70B-parameter Llama-3.1 model, which in turn generates the elements outlined in blue. After post-proce
the elements outlined in purple are provided to the 8B-parameter Llama-3.1 model for fine-tuning. 

 
Each model was evaluated on three tasks: (i) annotated synthetic trial criteria questions, (ii) i2b2 Clinical
Eligibility Criteria Cohort Selection shared task from the 2018 National NLP Clinical Challenges, and (iii) 
apixaban trial criteria. We report performance metrics including Balanced Accuracy, which measures the
average between sensitivity and specificity and can be used on imbalanced datasets, and Micro-F1 scor
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Micro-F1 was the primary metric used to judge the challenge, which permits direct comparison between our 
results and challenge entries (for the test set). 
 
Table 1. Comparison of the different models which were compared throughout the clinical information 
extraction tasks.  

 
 

Model 
Name 

Base Model 
Fine- 

Tuned 
Question 
difficulty 

Question Type Supporting 
information 
(Section, 
Source, 

Explanation) 
Boolean Numeric Boolean-

NA 
Numeric-NA 

70B- 
Instruct 

Llama-3.1 
70B-Instruct 

(Meta) 

 - ✔ ✔ ✔ ✔ ✔ 

8B- 
Instruct 

Llama-3.1 
8B-Instruct 

(Meta) 

 - ✔ ✔ ✔ ✔ ✔ 

8B-All Llama-3.1 
8B-Instruct 

(Meta) 

✔ All ✔ 
 

N=212,132 

✔ 
 

N=209,637 

✔ 
 

N=106,288 

✔ 
 

N=106,245 

✔ 

8B-H-25K Llama-3.1 
8B-Instruct 

(Meta) 

✔ 25K 
highest 
difficulty 

✔ 
 

N=25,000 

✔ 
 

N=25,000 

✔ 
 

N=25,000 

✔ 
 

N=25,000 

✔ 

8B-NB-
Only 

Llama-3.1 
8B-Instruct 

(Meta) 

✔ 25K 
highest 
difficulty 

✔ 
 

N=25,000 

✔ 
 

N=25,000 

  ✔ 

8B-No-S Llama-3.1 
8B-Instruct 

(Meta) 

✔ 25K 
highest 
difficulty 

✔ 
 

N=25,000 

✔ 
 

N=25,000 

✔ 
 

N=25,000 

✔ 
 

N=25,000 

 

 
Synthetic Data Evaluation 
We evaluated the performance of the 8B-Instruct, 70B-Instruct, and the fine-tuned models on a manually 
annotated subset of 1,000 generated examples from the hold-out test set described in the methods datasets 
subsection (Table 2). The 8B-All model achieves the best overall accuracy (89.30%), outperforming even the 
70B-Instruct model used for creating the synthetic data (76.20%). This was especially visible in the “NA” 
categories, where there appears to be a strong impact of training models explicitly on questions that cannot be 
answered based on the context (note) provided. Within each category, 8B-All and 8B-H-25k improved over 8B-
Instruct, reflecting the impact of fine-tuning. 8B-H-25k also outperformed 70B-Instruct overall, suggesting that 
while the model benefits from further fine-tuning, a relatively small dataset of 25k examples can still provide an 
appreciable benefit. Unsurprisingly, the 8B-NB-Only model which was not fine-tuned on any “NA” data 
struggles in both of the NA columns, but it does perform very well for numeric and boolean and is actually the 
top performer for numeric questions.   
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Table 2. Model Accuracy on a subset of manually annotated Synthetic Labels (70B). Reported values include 
the mean accuracy and 95% CI.  

 Accuracy Reported by Question Type 

 NA - Boolean 
(N = 241) 

NA - Numeric 
(N = 232) 

Numeric 
(N = 236) 

Boolean 
(N = 291) 

All Questions 
(N = 1000) 

70B-Instruct 69.5% 
(63.5%, 75.1%) 

81.8% 
(76.7%, 86.6%) 

61.7% 
(55.5%, 67.8%) 

88.6% 
(84.9%, 92.1%) 

76.1% 
(65.6%, 85.6%) 

8B-Instruct 27.7% 
(21.6%, 33.6%) 

78.4% 
(73.3%, 83.2%) 

79.2% 
(74.2%, 84.3%) 

87.3% 
(83.5%, 91.1%) 

68.4% 
(42.9%, 85.0%) 

8B-All 88.0% 
(83.8%, 91.7%) 

98.3% 
(96.6%, 99.6%) 

83.9% 
(78.8%, 88.1%) 

84.7% 
(80.8%, 88.7%) 

89.1% 
(84.3%, 95.4%) 

8B-H-25k 80.4% 
(74.9%, 86.1%) 

85.5% 
(80.6%, 90.1%) 

84.2% 
(79.2%, 88.6%) 

88.0% 
(84.2%, 91.1%) 

84.60% 
(79.9%, 90.3%) 

8B-No-S 78.9% 
(73.8%, 83.8%)  

89.3% 
(85.3%, 93.1%)  

80.6% 
(75.4%, 85.2%)  

83.5% 
(79.4%, 88.0%)  

83.0% 
(79.7%, 87.1%) 

8B-NB-Only 0.0% 
(0.0%, 0.0%) 

40.0% 
(33.6%, 46.6%)  

84.4% 
(79.2%, 88.6%)  

87.6% 
(83.5%, 91.1%)  

54.0% 
(22.2%, 87.0%) 

 
 
i2b2 Clinical Trial Eligibility Challenge Evaluation 
We next evaluated the performance of all base and fine-tuned models on the i2b2 2018 Clinical Trial Eligibility 
Challenge (Figure 2). Because we did not train on or otherwise use these data in our fine-tuning process we 
were able to assess the performance of models across both i2b2 train and test data.  
 
We evaluated two different values of two parameters, temperature and top_p (see Methods). We had a 
hypothesis that sampling strategies (i.e., higher temperature) might work well to force the model to provide an 
answer that aligned well with the explanation. However, we observed that the temperature did not not have a 
big impact, and a temperature of 0 slightly outperformed a higher temperature (Supplementary Table 3). The 
70B-Instruct model performed the best on both train and test data. The two fine-tuned models which included 
all types and supporting information (8B-All and 8B-H-25K) outperformed the base 8B-Instruct model. The fine-
tuned models that either did not include all types (8B-NB-Only) or did not include supporting information (8B-
No-S) had worse performance than the base 8B-Instruct model. 
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Figure 2. Comparison of model performance for the i2b2 (n2c2) Clinical Trial Eligibility Challenge. Evalu
includes the Training Set (A & C) because these data were not included during any of the pre-processing
hyperparameter selection or fine-tuning process of the models. All evaluations are zero-shot, but perform
on Training (A & C) are separated from Test set (B & D) for clarity. 

 
 
 
An interesting trend we observed throughout this work was the need to isolate criteria and thus the prom
provided to the models into questions which required only single order answers. This was illustrated whe
comparing the performance of both the base models and fine-tuned models for their ability to either a.) d
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answer a prompt question for a given criterion (i.e. direct boolean “yes” or “no”) vs. b.) extracting the numeric 
value relevant to the criterion and then performing post-processing to arrive at a boolean “yes” or “no” answer 
(Table 3). Within the i2b2 n2c2 challenge, two questions asked whether labs were abnormal (serum creatinine 
and hemoglobin levels). Across all models, numeric extraction followed by post-processing achieved higher 
performance compared to asking the model to directly answer the question. 
 
Table 3. Comparison between directly answering clinical trial criteria about laboratory value ranges vs. 
extracting a number and applying rules-based post processing to determine whether to answer “yes” or “no” 
(i.e., ask the model to return a number, if that number is above a range answer yes, otherwise answer no).  

Criterion 
Title 

Prompt
Type Prompt Question 

Extracted 
Value 
Processing 

Performance  

Balanced Accuracy Micro-F1 

70B 8B 8B-All 70B 8B 8B-All 

Creatinine Numeric What was the 
patient's highest 
recorded creatinine 
level? Answer NA if 
there are no values. 

<= 1.3: No 
> 1.3: Yes 
 
(Does not 
account for 
Sex) 

0.893 0.870 0.894 0.878 0.844 0.899 

Boolean Has the patient ever 
had a serum 
creatinine level above 
the upper normal 
limit? (Typically > 1.3 
mg/dL for men and 
1.1 mg/dL for 
women). 

None 0.825 0.763 0.819 0.788 0.715 0.791 

HbA1c Numeric What was the 
patient's highest 
recorded hemoglobin 
A1c (HbA1c) value? 
Answer NA if there 
are no values.  

>= 6.5: Yes 
 
Else: No 
 

0.949 0.783 0.896 0.937 0.729 0.875 

Boolean Has the patient ever 
had a hemoglobin 
A1c (HbA1c) level 
between 6.5 and 9.5 
inclusive? 

None 0.774 0.583 0.743 0.774 0.462 0.760 

 
 
Apixaban Trial Criteria Evaluation 
As the third evaluation task, we compared the performance of the base and fine-tuned models using manual 
annotations based on 23 questions resembling eligibility criteria from the apixaban clinical trial for a random 
sample of 100 patient notes from MIMIC-IV (Table 4). The fine-tuned 8B-All model achieved high performance 
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exceeding Balanced Accuracy and Micro-F1 of 0.8 across all criteria assessed, with an overall average 
Balanced Accuracy of 0.93 and Micro-F1 of 0.94. This fine-tuned model outperformed the 8B-Instruct 
(Balanced Accuracy = 0.84, Micro-F1 = 0.86) and even the 70B-Instruct model (Balanced Accuracy = 0.89, 
Micro-F1 = 0.92). The model fine-tuned on the most difficult 25,000 questions, 8B-Instruct-H-25K, achieved a 
similarly high performance across criteria (average Balanced Accuracy = 0.95, Micro-F= 0.94), suggesting that 
either less total questions may be needed for fine-tuning, or that more difficult questions offer greater value in 
fine-tuning.  
 
Table 4. Performance on clinical trial eligibility criteria for Apixaban.  

 Balanced Accuracy Micro-F1 

Criterion 8B- 
Instruct 

70B- 
Instruct 

8B-All 8B-H-25k 8B- 
Instruct 

70B- 
Instruct 

8B-All 8B-H-25k 

AST 54.0% 97.0% 94.3% 99.4% 0.54 0.97 0.94 0.99 

Bilirubin 100.0% 99.0% 100.0% 99.3% 1 0.99 1 0.99 

Creatinine 85.0% 80.0% 84.0% 85.0% 0.85 0.8 0.84 0.85 

Hemoglobin 96.0% 90.0% 98.0% 96.0% 0.96 0.9 0.98 0.96 

Platelets 78.0% 87.0% 79.6% 79.1% 0.75 0.87 0.8 0.81 

AFib 98.0% 81.7% 98.0% 98.0% 0.97 0.84 0.97 0.97 

Ablation for Afib 89.5% 64.6% 81.8% 98.0% 0.98 0.94 0.96 0.96 

Arterial Hypertension 99.4% 95.0% 97.7% 97.1% 0.99 0.98 0.96 0.95 

Bipolar Disorder 100.0% 100.0% 100.0% 100.0% 1 1 1 1 

Bleeding  91.6% 92.1% 89.4% 80.0% 0.91 0.85 0.89 0.8 

Blood Glucose 25.0% 84.0% 98.5% 94.0% 0.25 0.84 0.98 0.94 

Chads2 89.0% 94.0% 94.9% 97.6% 0.89 0.94 0.95 0.98 

Heart Failure 96.5% 98.0% 98.2% 99.0% 0.96 0.98 0.98 0.99 

Hemorrhagic 
Tendencies 60.3% 62.7% 85.6% 96.1% 0.52 0.78 0.89 0.92 

Left ventricular 
ejection fraction 72.0% 90.0% 94.9% 96.0% 0.72 0.9 0.95 0.96 

Depression 100.0% 95.3% 98.7% 97.5% 1 0.92 0.98 0.96 

Makes Medical 
decisions 79.5% 81.4% 95.3% 93.4% 0.91 0.9 0.91 0.93 

Peptic Ulcer Disease 75.0% 99.5% 92.9% 99.5% 0.94 0.99 0.99 0.99 

Prior Stroke 81.7% 86.2% 88.5% 89.2% 0.89 0.92 0.94 0.94 

Recent Stroke 75.3% 94.2% 94.2% 94.2% 0.86 0.89 0.89 0.89 

Schizophrenia 100.0% 100.0% 100.0% 100.0% 1 1 1 1 

Valvular Disease 87.2% 83.9% 86.8% 86.8% 0.95 0.92 0.93 0.93 
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requiring Surgery 

Diabetes 98.3% 82.2% 99.1% 98.3% 0.97 1.00 0.99 0.98 

Average 

84.0% 
(75.9%, 
90.5%) 

88.7% 
(84.3%, 
92.6%) 

93.5% 
(90.9%, 
96.1%) 

94.2% 
(90.9%, 
96.9%) 

0.863 
(0.783-
0.934) 

0.904 
(0.873-
0.934) 

0.945 
(0.920,0.96

6) 

0.943 
(0.912, 
0.971) 

 
There were some criteria where base 8B-Instruct model had relatively lower performance, including extraction 
of aspartate aminotransferase (AST) (Balanced Accuracy = 0.54, Micro-F1 = 0.54), blood glucose (Balanced 
Accuracy = 0.25, Micro-F1 = 0.25), and left ventricular ejection fraction (Balanced Accuracy = 0.72, Micro-F1 = 
0.72). The use of the larger 70B-Instruct model dramatically improved performance for these criteria, 
exceeding Balanced Accuracy and Micro-F1 of 0.84. The fine tuned models 8B-All and 8B-H-25k performed 
comparably to the 70B model, and in some cases outperformed it. All three models for the AST criteria led to 
Balanced Accuracy and Micro-F1 scores of 0.94 and above. For blood glucose, the fine-tuned models 8B-All 
(Balanced Accuracy = 0.98, Micro-F1 = 0.98) and 8B-H-25k (Balanced Accuracy = 0.94, Micro-F1 = 0.94) 
achieved higher performance than the 70B-Instruct model (Balanced Accuracy = 0.84, Micro-F1 = 0.84). For 
identification of hemorrhagic tendencies, the model fine-tuned on the 25k most difficult questions led to the 
biggest performance improvement (Balanced Accuracy = 0.96, Micro-F1 = 0.92) compared to both the 8B-All 
(Balanced Accuracy = 0.96, Micro-F1 = 0.92) and 70B-Instruct models (Balanced Accuracy = 0.96, Micro-F1 = 
0.92) . 
 
For some criteria, the 70B-Instruct model did not perform as well as any of the 8B-Instruct models, including 
the base model. This was the case when detecting the presence of atrial fibrillation (8B-Instruct: Balanced 
Accuracy = 0.98, Micro-F1 = 0.97; 70B-Instruct: Balanced Accuracy = 0.65, Micro-F1 = 0.84) and whether 
there was planned/past ablation for atrial fibrillation (8B-Instruct: Balanced Accuracy = 0.89, Micro-F1 = 0.98; 
70B-Instruct: Balanced Accuracy = 0.65, Micro-F1 = 0.94). There were also some criteria, including creatinine 
and platelets, where the models did not perform as well as other criteria as no model exceeded 0.85 for either 
balanced accuracy or micro-F1. Of the manually annotated notes, 60% did not have a numeric value for 
platelet count available in the note, while only 3% did not have a serum creatinine value available 
(Supplementary Table 4). This rate may be at least in part due to the fact that the de-identification process for 
MIMIC-III seemed to accidentally redact some platelet values. During the manual annotation process we did 
not observe this occurring with other laboratory values.  
 
Resource requirements 
Data distillation allowed the models to be run with vastly reduced resource requirements compared to the 70B-
Instruct model. All model evaluation was done on the Center for Research Informatics’ "Randi" cluster at the 
University of Chicago. The cluster's GPU nodes each contain 8 Nvidia A100 GPU's with two 16-core 3.0-GHz 
AMD Milan processors. We monitored seconds/example, tokens in/second, and tokens out/second for both the 
8B-parameter and 70-B parameter architectures and reported these in Figure 3. These differences could 
translate into meaningful cost savings. For example, performing a study of the Apixaban criteria (23 questions) 
for 10,000 patients to identify a cohort on the least expensive cloud provider would be $3,132 less expensive 
for the 8B vs. 70B parameter models (see Supplementary Table 5 for a comparison of current rates among the 
main providers). In this example, running the 8B-parameter model would cost less than $1,000 (0.535 sec./ex. 
* 230k ex. * 1/3600 hr./sec. * $27.2/hr. = $929), while the 70B-parameter model would cost over $4,000 (2.34 
sec./ex. * 230k ex. * 1/3600 hr./sec. * $27.2/hr. = $4066). 
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Figure 3. Comparison of inference speed across model sizes and evaluation tasks.  

 
Discussion 
In this study, we present an approach to improve the scalability of open-source LLMs for clinical informa
extraction using synthetic data distillation. We used the larger Llama-3.1-70B-Instruct to generate synthe
data, consisting of question-answer pairs with supporting information and difficulty scores. These were u
fine-tune the smaller Llama-3.1-8B-Instruct model. We also explored the impact of fine-tuning on differen
amounts and subsets of synthetic data (including one fine-tuned with all data, one fine-tuned with only th
hardest 25K questions, one fine-tuned without questions where the note does not contain the answer - N
and one fine-tuned without any supporting information). We observe that the inclusion of NA and suppor
information was critical to the high performance of fine-tuned models especially when applied to fully hum
generated evaluations as opposed to synthetic data with human review. When evaluating the accuracy o
these models based on manually annotated synthetic data, we found that the model fine-tuned on all syn
data (8B-All) achieved a high overall accuracy that exceeded that of a larger base model (70B-Instruct). 
found that these fine-tuned models also performed well across different clinical tasks, including the i2b2 
Clinical Trial Eligibility Challenge and a dataset designed to resemble real eligibility criteria from the apix
clinical trial. The fine-tuned models can achieve performance comparable to, and in some cases exceed
that of even the larger model that served as the teacher. Even when fine-tuning is performed using only 
subset of the hardest questions in the synthetic dataset, the performance still improves over base model
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suggesting that targeted fine-tuning with less data can still be beneficial. Finally, we release several artifacts 
we believe will be beneficial to researchers further developing approaches for clinical information extraction: a.) 
source code - both the framework for synthetic data generation for clinical information extraction model fine-
tuning as well as the annotation tool which allowed for faster manual review of LLM pre-annotated notes, and 
b.) datasets - two manually annotated datasets (Annotated Synthetic Trial Criteria Questions and Apixaban 
Trial Criteria Questions) which will allow for researchers to evaluate future methods for clinical information 
extraction.  
 
The use of LLMs to extract information from clinical notes has already demonstrated the potential to improve 
upon traditional methods relying on rule-based methods or extensive manual annotation. While proprietary 
models, such as GPT-3 and GPT-4, have shown strong performance for this purpose, their deployment in 
healthcare settings can be limited by computational costs and licensing barriers22. Our findings align with 
recent research suggesting that fine-tuning open-source models with synthetic data can improve their 
performance across clinical information extraction tasks, bringing it closer to that of proprietary models23. By 
generating synthetic data, this approach also reduces reliance on manually labeled data. The use of smaller, 
open-source models that can perform well opens the door for broader adoption of LLMs in the healthcare 
settings in a cost-effective and privacy-compliant manner. The reduced computational requirements of these 
smaller models can make them more accessible to hospitals with limited healthcare IT infrastructure. Another 
advantage of this approach is the adaptability, as smaller models can be better tailored to the specific needs of 
individual hospitals. As more resource-efficient LLMs such as Llama 3.2 continue to evolve, we can extend this 
approach to even smaller models28. 
 
By enabling scalable information extraction from unstructured notes, this approach presents a promising 
opportunity for retrospective research through its potential impact on enhancing patient phenotyping. This is 
particularly important when studying complex and heterogeneous patient populations, where phenotyping 
approaches relying solely on structured data, such as ICD codes, fall short. Better phenotyping can result in 
improved quality and relevance of retrospective studies.    
 
While this has exciting potential, we also note some of the limitations and challenges identified through manual 
review of the synthetic data generated by Llama-3.1-70B-Instruct that may begin to elucidate failure modes for 
these models. In general, the model struggled with ranges when forming numeric questions. In multiple 
instances, a range (e.g. 60-70%) would be collapsed to one of its limits (60% or 70%) in a numerical answer. In 
at least one instance, the model had difficulty comparing a range and a given value outside that range (e.g. 
concluding that >70% precludes 50%). This contrasts with the model's generally consistent ability to locate the 
highest or lowest value in a sequence of measurements (e.g. finding the highest blood pressure recorded in a 
note containing multiple readings). 
 
The model also sometimes struggled with redacted data and contextual understanding.  In one instance, the 
model identified numbers in a redaction tag as the answer to a question. This tag would have contained the 
correct answer prior to redaction. The tag itself, “[**3-22**]”, contained numbers and this may have contributed 
to the model’s confusion. In another example, the model successfully identified the inappropriately partially-
redacted “[churgg [**Doctor Last Name **] disease” as Churg-Strauss disease. In another case, the model 
correctly identified a patient's hemoglobin value but then incorrectly concluded that it fell below the normal 
range. This conclusion would have been correct had the patient been male; however, the patient was female 
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and the reference range is lower for females. In another case, the model asked if a female over 70 was “a 
candidate for future pregnancy?” Interestingly, the model was also able to identify and parse a fishbone 
diagram within a note correctly answering questions about lab values contained within the diagram. 
 
The model also sometimes lacked creativity when generating questions with unspecified answers. To generate 
questions that could not be answered using the contents of a note, the model seemed to commonly inquire 
about BMI (height and weight measurements are recorded separately from these notes and so are often not 
contained in the text) and the results from a 6-minute walking test (6MWT). In the full test set containing 42,498 
instances, we found 997 questions related to BMI (98.7% of which resolved n/a) and 666 questions related to a 
6-minute walk test (all of which resolved n/a). The model would also ask about measurements from a patient 
prior to them seeking medical attention, which are typically unavailable in these notes. Additionally, the models 
would sometimes struggle with repetitive generation. In the test set, we found 1,676 (3.94%) questions 
containing “creatinine”. Admittedly, our prompt for numeric type questions included an example “What was the 
patient's highest creatinine measurement recorded in the note?” However, a majority (1,151) of these 
questions were of na-numeric, boolean, or na-boolean type, and none of those prompts mention creatinine.  
 
We found that carefully worded prompts could help to avoid some of the issues described in the previous 
section. By rewording questions, we could deter the model from drawing inferences and obtain less ambiguous 
question-answer pairs. For questions that asked if a patient had a history of X, where X was not mentioned in 
the note, the model would sometimes conclude that a patient did not have a history of X because X was not 
mentioned in the note, and other times conclude that the question could not be definitively answered from the 
contents of the note. This ambiguity could be resolved by modifying the question to ask if a patient’s history of 
X could be found in the note. This is especially critical because it allows us to use a combination of clinical 
expertise and post-processing to knowingly make assumptions where appropriate about whether X would have 
been in the note if they had it, as opposed to the model making this assumption for us without our knowledge. 
In a similar vein, questions on the highest recorded value of Y could be reworded to ask about the highest 
value of Y found in the note. Instead of asking if a patient’s measurement for Z fell within a normal range, we 
could ask the model to return the patient’s measurement for Z and then evaluate if Z fell within the standard 
reference range as a separate step. This allowed us to avoid having the model reason about ranges of values, 
a known area of difficulty. 
 
Developing resource-efficient LLMs to extract relevant information from clinical notes is a rapidly advancing 
discipline with many open questions. For example, there may be better ways to make the distillation process 
more data-efficient. In this work, we showed how fine-tuning on only a fraction of the synthetic dataset (e.g. 8B-
H-25k) still appreciably enhances the base 8B-Instruct model. Different criteria for selecting a subset of the 
fine-tuning data may better maintain performance while decreasing data requirements29,30. Ordering the fine-
tuning set by increasing difficulty and interleaving question types may also help31.  
 
Future work could consider whether a metric besides micro-F1 could better characterize good performance. 
We used micro-F1 in part because it benchmarked the original i2b2 challenge. However, some researchers 
view patient-clinical trial matching as a ranking problem and consequently report metrics like normalized 
discounted cumulative gain at k and precision at k22,23. We could also consider the optimal way to handle 
ambiguity in notes. Unlike tabular or structured data that typically complies to a strict format, notes often 
include estimates and conjectures, especially when discussing medical history. There are often question marks 
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next to past diagnoses and values reported. Another potentially interesting extension of this work can look into 
how data from multiple notes could be combined. Many people have a medical history spanning decades. For 
selection criteria involving disease progression or patient history, multiple notes may be required to obtain a 
complete answer. Combining records in a time-aware manner remains an open problem. 
 
Synthetic data distillation and fine-tuning of smaller, open-source LLMs that can be locally deployed within 
existing healthcare IT infrastructures can serve as a scalable alternative to more resource-intensive, 
proprietary models for clinical information extraction. The ability for scalable extraction of information from 
unstructured clinical notes allows for broader adoption in diverse healthcare system settings, with the potential 
to strengthen retrospective research by enabling more precise and accurate phenotyping. This work 
contributes to efforts to support the effective and practical integration of LLMs in healthcare settings, with the 
ultimate goal of supporting medical research to improve patient outcomes.  
 
Methods 
Base synthetic data distillation 
In this section, we describe our knowledge distillation process which uses a large model, Llama-3.1-70B-
Instruct, to generate training examples for the smaller model, Llama-3.1-8B-Instruct (Figure 1):  
 
1. Synthetic Data Generation. For each patient record, we used Llama-3.1-70B-Instruct32 to generate different, 
patient note-specific questions similar to clinical trial eligibility criteria of a given type (Exact language available 
in Supplementary Table 1 and source code). We prompted the model to supply its answers in json format. 
Each json includes the following: (1) the question; (2) the question type; (3) the answer, (4)  the section of the 
note containing the answer (e.g., Past Medical History, Plan, etc.); (5) the verbatim source of the answer from 
the clinical note; (6) a difficulty level for the question on a scale of 1-10; and (7) an explanation justifying the 
answer choice, including how the source helped to answer the question.  
 
We included the following question types: “boolean” (answer "Yes” or “No”), "numeric", "na-boolean", and "na-
numeric", where the "na" types corresponded to questions that could not be answered relying on the 
information in the note but seemed like they would be applicable to this patient and are similar to clinical trial 
eligibility criteria. For "na" type questions, we stipulated the section to be "Not Found" and the source was "Not 
in Note." The purpose of the “na” types as well as the supporting data was to try to teach the model not to 
provide seemingly confident answers (i.e., hallucinations) when there doesn’t exist sufficient evidence in the 
note to draw a conclusion. See Supplementary Table 6 for example questions of each type. For the specific 
language used to generate each question type, including the specific example supplied in the prompt, see 
Supplementary Table 1. 
 
We generated 212,132 boolean question and answer (Q&A) pairings, 209,637 numeric Q&A pairings, 106,288 
“na-boolean” Q&A pairings, and 106,245 “na-numeric” Q&A pairings. The number of questions arose from 
running the synthetic data generation process on 10,000 discharge summaries, where the model was asked to 
generate 20 boolean questions (10 with yes as the answer and 10 with no), 20 numeric questions, and 10 of 
each “na” category. The model tended to provide slightly more than the requested number of questions per 
note. The number of questions of each type per difficulty score assigned by Llama-3.1-70B are described in 
Supplementary Table 2.  
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2. Data Programming. For each question type, we select the 25,000 most difficult questions according to the 
LLM-estimated difficulty rating and randomly split them into a training and test set at a 90%-10% ratio. We 
perform post-processing to extract our requests from the json response and handle malformed json outputs. 
The datasets are randomly shuffled prior to fine-tuning. 
 
3. Limited Human Review. To ensure data quality for the fine-tuning process, we manually reviewed a random 
sample containing 1,000 questions generated by Llama-3.1-70B-Instruct. For this purpose, we developed an 
open-source tool that facilitates record review from within a web browser (https://github.com/bbj-lab/annotation-
ui). Users with minimal technical experience can check patient records against the generated question-answer 
pairs and refine answers if needed. Statistics about the numbers of questions which required refinement are 
available in Supplementary Table 1. Manual review allowed us to both profile the accuracy of the synthetic 
data generation process and to better understand common failure modes. 
 
4. QLoRA Fine-tuning. After data programming and limited human review, we used the refined synthetic 
dataset to perform supervised fine tuning on an instance of Llama-3.1-8B32. Specifically, we fine-tuned with 
QLoRA24, a quantized version of Low-Rank Adaptation (LoRA:33). LoRA fine-tunes the attention weights in a 
pre-trained transformer with a low-rank update (a d×k matrix BA, where B is d×r and A is r×k where 

r≪min{d,k}) that significantly reduces the number of required parameters and does not add to inference 

latency. QLoRA operates on a quantized transformer, i.e. one that uses 4-bit as opposed to 16-bit parameters, 
to further reduce memory requirements and uses paged optimizers that manage the exchange of memory 
between GPU and CPU components. 
 
5. Inference - Sampling hyperparameter selection. 
During generation, we tested different values of temperature and top_p (specifically temperatures of 0 and 1 
and top_p of 0.5 and 0.95). Temperature controls the randomness of sampling, with higher temperatures 
corresponding to more novelty in generated output. However, increasing temperature may also make text less 
coherent and hallucinations more likely. Consequently, higher values of temperature are often used for creative 
tasks, while lower values are used for dialoguing about matters of fact. Chang et al [2023]34 hypothesized that 
lower values of temperature may be better suited to question-answering with attribution. The top_p parameter 
controls nuclear sampling35, with higher values corresponding to a more permissive threshold for filtering. 
 
Setting temperature = 0 and top_p = 1 results in a nearly deterministic, greedy sampling strategy that aims to 
select the most likely token given the current context. Setting temperature = 1 and top_p = 0.5 restricts tokens 
to come from a likely subset of the token set, but otherwise samples according to the predicted odds. We limit 
this parameter evaluation to the i2b2 n2c2 challenge and report the full results for all parameters in 
Supplementary Table 3. Because we did not see a benefit when increasing the temperature we fixed 
temperature = 0 and top_p = 1 for all other evaluations.  
 
Versions of Fine-tuned Models (Ablation study on fine-tuning data selection - Table 1) 
Each version fine-tuned the Llama-3.1-8B-Instruct released by Meta as the base model.  
 
All (Labeled 8B-All). Fine-tuning was performed with the complete dataset, using question, answer, question 
type, section, source, and explanation as described in the methods.  
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Hardest (Labeled 8B-H-25k). To determine the performance impact of reducing training set size, we selected 
the 25,000 questions the model determined had the highest difficulty in Step #1 (Synthetic Data Generation) 
for each question type. This subset of the original training data was then used to fine tune the model. 
 
Hardest Boolean and Numeric (Labeled 8B-NB-Only). To determine the impact that n/a questions have on 
model fine tuning, we selected the most difficult 25,000 questions for only the boolean and numeric types 
(dropping “na-boolean” and “na-numeric”) from the original dataset for fine-tuning. 
 
No Support (Labeled 8B-No-S). To determine the usefulness of including textual references and an 
explanation of the correct answer, we dropped the section, source, and explanation from the original training 
set and fine-tuned the model with this data. 
 
Datasets 
Annotated Synthetic Data 
We evaluate methods on a held-out set of 42,498 synthetic examples generated in an identical manner to the 
dataset used for fine-tuning. The breakdown of examples by type was as follows: 10,722 (25.2%)  boolean, 
10,666 (25.1%) numeric, 10,664 (25.1%) na-boolean, and 10,446 (24.6%) na-numeric. From this set, we drew 
a random sample containing 1,000 examples and manually annotated it as described in the “Limited Human 
Review” subsection of our methods, correcting questions, answers, and explanations when necessary. We 
provided a summary of this dataset in Supplementary Table 1 and have released a copy of it on Physionet. 
 
i2b2 2018 National NLP Clinical Challenges (n2c2): Cohort Selection  
We evaluate methods on the clinical trial eligibility criteria cohort selection shared task from the 2018 National 
NLP Clinical Challenges36. Track 1 contains 288 de-identified longitudinal medical records for patients with 
diabetes, many of whom are at risk for heart disease. The records are manually annotated according to 13 
selection criteria adapted from real clinical trials and split into a 202-patient training set and 86-patient test set. 
At the time of the challenge, the top-performing team adopted a rule-based method to obtain a micro-F1 score 
of 0.91 on the test set. Other teams achieved similar results (F1 > 0.9) with hybrid approaches; for example, 
cTakes 37 was used by 3 of the top 5 teams to extract knowledge from the text. Because we only use this 
dataset to test zero-shot extraction and do not train on it, we are able to evaluate the model performance on 
both the training and test sets to have a larger sample size.  
 
Apixaban Clinical Trial 
We also evaluate methods on clinical trial eligibility criteria resembling those of the 2011 ARISTOTLE trial 
comparing apixaban to warfarin26. We developed 23 human-generated boolean and numeric questions 
assessing these criteria (Supplementary Table 4). Using these questions, we manually annotated notes for 
2300 total question-answer pairs within MIMIC-IV38,39. Notes from MIMIC-IV were taken from after 2012 to 
ensure no overlap with any of the notes from MIMIC-III which were used to generate synthetic data. We are 
releasing the dataset and manual annotations to Physionet and will make them available under the same data 
use terms as MIMIC-III/IV.  
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Supplementary Information 
 
Supplementary Table 1. Synthetic data format and annotation summary 
We manually annotated 1000 fine-tuning examples generated by Llama-3.1-70B. Overall, 872 of the questions 
remained unchanged after manual review. A breakdown by question type occurs in the following table. The 
column “occurrence in data” corresponds to the frequency with which the question occurred in the dataset and 
the “percentage requiring editing” corresponds to how often that type of question needed to be edited. The 
“request provided” and “example provided” both correspond to sections in the prompt used during data 
generation. 
 
type occurrence in 

data 
percentage 
requiring editing 

request provided example provided 

boolean 29.1% 15.6% Give a list of 10 total, different, patient note-specific 
questions similar to clinical trial eligibility criteria. 5 
should have 'No' as the correct answer and 5 should 
have 'Yes' as the answer. 

```json 
    [ 
        {{ 
            "question" : "Does the note state that the 
patient is breathing normally on room air?", 
            "type": "Yes/No", 
            "answer": "No", 
            "section": "History of Present Illness", 
            "difficulty": "2", 
            "source": "She currently is dependent on 
oxygen and wears 1.5-2 liters around the clock", 
            "explanation": "The note states that she 
relies on oxygen and provides the amount as 
1.5-2 liters so she is not breathing room air. We 
can assume since she is receiving o2 
supplementation and dependent on it, she 
cannot breathe normally on room air." 
        }}, 
   ]``` 

numeric 23.6% 5.8% Give a list of ten different, realistic, patient note-specific 
questions similar to clinical trial eligibility criteria with a 
numeric answer (only generate questions if numeric 
answers are appropriate, otherwise end the response). 
All questions should be specific, many numeric values 
can be listed more than once so make sure to specify 
first, last, at admission, on discharge, highest, lowest, 
on a specific date, within ED / ICU etc.. 

```json 
    [ 
        {{ 
            "question": "What was the patient's 
highest creatinine measurement recorded in the 
note?", 
            "type": "Numeric", 
            "answer": "1.4", 
            "section": "Pertinent Results", 
            "difficulty": "4", 
            "source": "12/03/2023: CREAT: 1.4 \n 
12/07/2023: CREAT: 1.1", 
            "explanation": "The highest CREAT 
measurement was 1.4 because the only other 
creatinine measurement was 1.1 on 
12/07/2023." 
        }}, 
    ]``` 
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na-boolean 24.1% 14.8% Give a list of 5 Yes/No questions that are not 
answerable using the note. These should be questions 
which seem like they would be applicable to this patient 
and are similar to clinical trial eligibility criteria but 
cannot be answered based on the information in the 
note. These questions need to be things where the 
answer cannot be assumed simply because something 
is not mentioned (e.g., They should not be questions 
about whether the patient has been diagnosed with 
serious or chronic diseases because if they were it 
would be mentioned in the note, since it is not 
mentioned we can assume the answer is no rather than 
NA. Do not generate questions where Yes or No is 
known or can be inferred. 

```json 
    [ 
        {{ 
            "question" : "Does the note state the 
patient has ever taken aspirin for MI 
prevention?", 
            "type": "Yes/No", 
            "answer" : "N/A", 
            "section": "Not Found", 
            "source" : "Not in Note", 
            "difficulty": "4", 
            "explanation": "The note does not include 
medication history. It only includes medications 
prescribed during this encounter. If there were a 
medication history we would check the list to see 
if is present. If it was present we would answer 
Yes, if it were not present we would answer No 
but because there is no medication history we 
answer N/A" 
        }}, 
    ]``` 

na-numeric 23.2% 13.4% Give a list of 5 questions asking for numeric answers 
but where the note does not contain the answer. These 
should be questions which seem like they would be 
applicable to this patient and are similar to clinical trial 
eligibility criteria but cannot be answered based on the 
information in the note. 

```json 
    [ 
        {{ 
            "question" : "What was the patient's 
highest A1C recorded in the note during the 
hospitalization?", 
            "type": "Yes/No", 
            "answer" : "N/A", 
            "section": "Not Found", 
            "source" : "Not in Note", 
            "difficulty": "4", 
            "explanation": "The note does not include 
an A1C value during the hospitalization and we 
cannot infer a value for this patient." 
        }}, 
    ]``` 
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Supplementary Table 2. Number of questions Llama 3.1 70B assigned each difficulty to during the synthetic 
data generation process.  

Difficulty Boolean Numeric NA - Boolean NA - Numeric 
0 0 4 0 0 
1 95,963 14,968 223 303 
2 89,754 69,031 2,794 3,655 
3 22,327 78,494 11,508 12,537 
4 3,519 41,809 20,491 17,930 
5 416 4,663 32,053 28,579 
6 123 530 24,448 22,430 
7 9 20 10,116 12,040 
8 13 50 3,984 7,029 
9 0 1 671 1,733 

10 8 71 0 9 
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Supplementary Table 3. Performance on i2b2 2018 Clinical Trial Eligibility Challenge (Table form of Figure 2). 
 

 Data Parameters Balanced 
Accuracy 

Micro-F1 

  Temperature Top_p 

8B  Train 0 1 0.690 0.842 

1 0.5 0.681 0.810 

Test 0 1 0.735 0.847 

1 0.5 0.737 0.819 

70B  Train 0 1 0.814 0.901 

1 0.5 0.815 0.897 

Test 0 1 0.840 0.886 

1 0.5 0.835 0.881 

Fine-tuned 
8B-H-25k  

Train 0 1 0.737 0.872 

1 0.5 0.720 0.864 

Test 0 1 0.756 0.875 

1 0.5 0.750 0.881 

Fine-tuned 
8B-All 

Train 0 1 0.740 0.880 

1 0.5 0.720 0.883 

Test 0 1 0.760 0.874 

1 0.5 0.745 0.878 
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Fine-tuned 
8B-NB-Only 

Train 0 1 0.681 0.828 

1 0.5 0.680 0.832 

Test 0 1 0.703 0.836 

1 0.5 0.680 0.832 

Fine-tuned 
8B-No-S  
 

Train 0 1 0.632 0.831 

1 0.5 0.626 0.825 

Test 0 1 0.683 0.809 

1 0.5 0.674 0.800 

 
 
Supplementary Table 4. Apixaban annotated data summary 
There were 23 questions (15 boolean, 8 numeric) answered per patient, so for a total of 100 patients there 
were 2300 questions. Since there are 100 patients, the count of each answer for each question is the same 
number as the percentage. 
 
Boolean 

 Question Answer Count (%) 

1 Does the note describe the patient as having atrial 
fibrillation (afib)? Answer "No" if the note describes the 
patient as having afib secondary to another reversible 
cause. 

Yes 71 (71%) 

No 29 (29%) 

2 Does the note describe the patient as ever being 
diagnosed with depression or major depressive disorder 
(MDD)? Answer "No" unless the note describes a 
diagnosis or history of depression. 

Yes 23 (23%) 

No 77 (77%) 

3 Does the note describe the patient as ever being 
diagnosed with schizophrenia or any schizoaffective 
disorders? Answer "No" unless the note describes a 
diagnosis or history of a schizoaffective disorder. 

Yes 2 (2%) 

No 98 (98%) 

4 Does the note describe the patient as ever being 
diagnosed with bipolar disorder?  Answer "No" unless the 
note describes a diagnosis or history of bipolar disorder. 

Yes 5 (5%) 

No 95 (95%) 
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5 Does the note describe the patient as ever having any 
hemorrhagic tendencies or blood dyscrasias? Answer 
"No" unless the note describes a diagnosis or history of 
hemorrhagic tendencies or blood dyscrasias. 

Yes 18 (18%) 

No 82 (82%) 

6 Does the note describe the patient as having a stroke 
during this admission or within the last month? (Answer 
"Yes" for any recent stroke if the date is unclear, answer 
"No" if no stroke is mentioned or a prior stroke occurred but 
it was not recent) 

Yes 16 (16%) 

No 84 (84%) 

7 Does the note describe the patient as ever having peptic 
ulcer disease? 

Yes 6 (6%) 

No 94 (94%) 

8 Does the note describe the patient as having serious 
bleeding in the past 6 months? Answer "No" unless the 
note describes a serious recent bleeding issue. 

Yes 20 (20%) 

No 80 (80%) 

9 Does the note describe the patient as having a planned or 
past ablation procedure for afib? Answer "No" unless the 
note includes information about a past or planned ablation 
for afib. 

Yes 5 (5%) 

No 95 (95%) 

10 Does the note describe the patient as ever having valvular 
disease (stenosis) requiring surgery? Answer "No" if there 
is mention of stenosis without surgery. 

Yes 10 (10%) 

No 90 (90%) 

11 Does the note describe the patient as having heart 
failure? 

Yes 53 (53%) 

No 47 (47%) 

12 Does the note describe the patient as having diabetes 
mellitus (DM1, DM2, T2D, T1DM, T2DM)? 

Yes 44 (44%) 

No 56 (56%) 

13 Does the note describe the patient as having arterial 
hypertension (high bp e.g. >140, or HTN)? This includes 
pre-existing hypertension and treated hypertension. 

Yes 82 (82%) 

No 47 (47%) 

14 Does the note describe the patient as ever having a stroke 
or transient ischemic attack (TIA)? Answer "No" unless 
the note includes information about the patient having a 
prior stroke or TIA 

Yes 19 (19%) 

No 81 (81%) 

15 Does the note describe the patient as being unable to 
make medical decisions upon discharge? Answer "No" 
unless there is evidence the patient cannot make their own 
medical decisions. Answer "Yes" if there is clear mention of 
dementia or the patient is deceased. 

Yes 13 (13%) 

No 87 (87%) 
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Numeric 

 Question Mean 
value 

Median 
value 

Standard 
deviation 

Range NAs 

1 What is the lowest platelet 
count (PLT) mentioned in 
the note? Answer "NA" if 
no platelet count (PLT) is 
available in the note. 

148.53 147.50 90.8 15-364 60 (60%) 

2 What is the highest total 
bilirubin (TotBili, Bili) 
mentioned in the note? 
Answer "NA" if no bilirubin 
value is available in the 
note. 

0.903 0.600 1.11 0.2-6.8 33 (33%) 

3 What is the highest 
aspartate 
aminotransferase level 
(AST) mentioned in the 
note? Answer "NA" if no 
AST value is available in 
the note. 

194.4 36.0 1049.597 8-8627 33 (33%) 

4 What is the highest serum 
creatinine (Creat) 
mentioned in the note? 
Answer "NA" if no 
creatinine value is 
available in the note. 

1.586 1.200 1.199 0.5-7.8 3 (3%) 

5 What is the lowest 
hemoglobin (HGB) 
mentioned in the note? 
Answer "NA" if no HGB 
value is available in the 
note. 

10.21 10.15 2.054 6.0-15.9 2 (2%) 

6 What is the highest 
CHADS2 score 
mentioned? Answer "NA" 
if no CHADS2 score is in 
the note. 

3.95 3.50 1.39 1-6 80 (80%) 

7 What is the lowest left 
ventricular ejection 
(LVEF, ef, ejection 
fraction) fraction 

47.89 50.00 14.4 20-75 53 (53%) 
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mentioned in the note? 
Answer "NA" if no LVEF is 
in the note, Answer 55 if 
the lowest value is 55%% 
or greater. 

8 What is the highest blood 
glucose lab mentioned? 
Answer "NA" if no blood 
glucose score is in the 
note. 

142.1 126.0 52.2 78-412 3 (3%) 

 
 
Supplementary Table 5. Hourly GPU rates  
This table contains posted hourly rates for 8 x A100 GPU instances in the Eastern US region, rounded to the 
nearest cent from 3 major providers. The exact hardware specification is found in the Instance column. 
Websites were available as of September 27 2024, and are available on the Internet Archive. 
 
Service Provider Instance Price / hour Source 

Azure Microsoft ND96asr A100 v4 $27.20 https://azure.microsoft.com/en-us/pricing/details/machine-learning/ 

cloudML Google a2-highgpu-8g $29.39 https://cloud.google.com/compute/all-pricing 

AWS Amazon p4d.24xlarge $32.77 https://aws.amazon.com/ec2/instance-types/p4/ 

 
Supplementary Table 6. Example generated questions by type. 
The following table contains 3 example questions for each question type.  
 
Type Question 

boolean Does the patient have a history of septic thrombophlebitis? 

Was the patient's oxygen saturation below 90% upon admission? 

Is the patient's hemoglobin level within the normal range? 

numeric What was the patient's age at admission? 

What was the patient's highest recorded WBC count? 

What was the patient's INR on 2181-5-21? 

na-boolean Is the patient's anemia related to a chronic disease? 

Is the patient a current smoker? 
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Has the patient undergone any prior surgery on the right upper extremity? 

na-numeric What is the patient's peak oxygen consumption during a cardiopulmonary exercise test? 

What is the patient's estimated glomerular filtration rate (eGFR) upon admission? 

What is the patient's 6-minute walk test distance? 
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