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Summary
Functional genomics resources are critical for interpreting human genetic studies, however they
are predominantly from European-ancestry individuals. Here we present the Southern African
Blood Regulatory (SABR) resource, a map of blood regulatory variation that includes three
South Eastern Bantu-speaking groups. Using paired whole genome and blood transcriptome
data from over 600 individuals, we map the genetic architecture of 40 blood cell traits derived
from deconvolution analysis, as well as expression, splice, and cell type interaction quantitative
trait loci. We comprehensively compare SABR to the Genotype Expression (GTEx) Project and
characterize the thousands of African-enriched and African-specific regulatory variants mapped.
Finally, we demonstrate the increased utility of SABR for interpreting African association studies
by identifying putatively causal genes and molecular mechanisms through colocalization
analysis of 83 blood-relevant traits from the PAN-UK Biobank. Importantly, we make full SABR
summary statistics publicly available to support the African genomics community.

Introduction
Genome-wide association studies (GWAS) have transformed our understanding of human
diseases by revealing underlying biological mechanisms involved in their progression 1. This has
directly contributed to the development of new diagnostics, precision medicine approaches, and
treatments 2. However, the vast majority of associations are found in regulatory regions of the
genome, making it difficult to determine the causal genes and specific molecular mechanisms,
and thus gain novel biological insights 3. Functional genomics studies that integrate the genome
and multi-omics such as transcriptomics, proteomics, and metabolomics to map molecular
quantitative trait loci (QTL) have proven instrumental in bridging the gap between GWAS and
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mechanisms 4. For example, expression QTLs have been proposed to explain a proportion of
GWAS heritability, however the exact magnitude has been debated 5–7.

To date, the vast majority of GWAS and functional genomics studies have been carried out in
European-ancestry individuals, which has contributed to global disparities in our understanding
of, and ability to treat disease. As of 2020, almost 90% of all GWAS participants were of
European ancestry and over 70% of participants were recruited from just three countries 8.
While GWAS are becoming more diverse in terms of participant ancestry, a lack of
population-scale, ancestrally-aligned functional genomic studies is hindering their translation
into actionable discoveries 9.

This is particularly true for the African continent, which accounts for over 18% of the world’s
population and has the highest amount of human genetic diversity, but has been consistently
underrepresented in genomic research 10–12. Progress has been made mapping genetic diversity
on the continent, however there is still much work to be done 13–18. The phenotypic impacts of
this genetic diversity are being uncovered through GWAS that include continental African
participants, but are still limited 19–23. Functional genomic studies that map regulatory variation in
continental African cohorts exist but are relatively limited in the cell types captured or have
modest numbers of individuals compared to European-ancestry studies 24–28.

To help address this African functional genomics gap, we created the Southern African Blood
Regulatory (SABR) resource, a map of blood regulatory variation in Southern Africans that
includes three South Eastern Bantu-speaking (SEB) groups. Using the same gold-standard
methods as the GTEx consortium, we mapped the genetic architecture of blood cell traits
derived from deconvolution analysis, as well as expression, splice, and cell type interaction
QTLs 29. SABR identified thousands of African-enriched QTLs including many conditionally
independent eQTLs, and mapped more regulatory variation compared to GTEx whole blood
despite a smaller sample size. Finally, we carried out colocalization analysis of SABR QTLs with
blood relevant GWAS in African-ancestry individuals from the Pan-UK Biobank and identified
both known and novel putatively causal genes and molecular mechanisms for trait associations,
demonstrating the utility of the resource to the African genomics community.

Results

Whole Genome and Blood Transcriptome Sequencing of Three South Eastern
Bantu-speaking Groups in South Africa
Participants were selected for inclusion in SABR from the previously recruited AWI-Gen cohort
which had existing genotype data generated using the H3Africa SNP array for 10,603
individuals 13,19,30. The AWI-Gen cohort includes older adults randomly selected from established
population-based cohorts. They include the Agincourt and DIMAMO health and
socio-demographic surveillance systems in rural northern South Africa, and the urban Soweto
cohort at the Developmental Pathways for Health Research Unit in Gauteng 31,32. These three
AWI-Gen research centers recruited participants from eight major South African SEB groups,
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and three of these groups - Pedi or Bapedi (Sepedi speakers, Limpopo Province), Tsonga
(Shangaan ethnic group who speak Xitsonga, Mpumalanga Province), and Zulu (isiZulu
speakers, Gauteng Province) were included in this study (Figure 1a). Building on respectful and
sustained precedents of community involvement by public engagement teams of the host
research centers, participants were selected for inclusion in this study based on clustering
closely with one of the three SEB groups in principal component analysis and being minimally
related. Extensive site-specific community engagement was carried out to introduce and explain
the proposed study to community leaders and potential participants. Participants were invited
into the study and following informed consent, 750 were enrolled in the study, and had venous
whole blood collected for DNA and RNA extraction and sequencing.

DNA samples were whole genome sequenced (WGS) to a median coverage of 5.1x (Figure
S1a-b, Table S1). Joint genotyping and imputation was performed from WGS data, including
relevant reference populations and previously generated high-pass sequencing data of
Southern African individuals, using an approach we have previously described that is optimized
for mid-pass WGS 16–18,33,34. In principal component analysis, Southern Africans formed a distinct
cluster from 1000 Genomes Gambian, Luhya, and Yoruba populations, and showed significant
variation across individuals (Figure 1b). Analysis within the SABR cohort alone clustered by
SEB group (Figure S1c). Given the genetic diversity of the SABR participants, we sought to
identify Southern African-enriched functional alleles and found 76 predicted high-impact coding
variants (CADD > 30) that were common in at least one SEB group (MAF > 2%) and enriched
versus 1000 Genomes Africans (MAF > 5x), including 27 stop-gain variants (Figure 1c, Table
S2).

Stranded RNA-sequencing depleting for globin gene transcripts was performed on RNA
extracted from venous whole blood, resulting in a median depth of 30M mapped read pairs, and
the resulting data showed acceptable quality metrics (Figure S1d, Table S1). In total, 614
samples passed both RNA-seq and genotyping quality control, and were used for QTL mapping.
Hidden transcriptome covariates to be included in QTL mapping were inferred using PEER
factors 35. As expected, they correlated with known biological and technical variables (Figure
S2) with PEER factors 1 and 3 being most strongly correlated with RNA integrity number (rho =
0.48, p = 4.30e-7) and DV200 (rho = 0.57, p = 1.16e-53), respectively (Figure S3a-b).
Importantly there was no strong separation by study site when clustering by these two factors
(Figure S3c-d). RNA-sequencing reads were used to quantify expression levels and intron
exclusion ratios of protein coding and long non-coding RNA (lncRNA) genes.

Cell Type Deconvolution
Whole blood is a highly dynamic tissue composed of many different circulating cell types, the
composition of which can change based on both genetics and the environment. While single-cell
RNA-sequencing provides the best characterization of blood cell types, it is still cost-prohibitive
at population scale. To estimate the relative abundance of relevant blood cell types, we applied
cell type deconvolution analysis to the bulk transcriptome data 36. Such an approach has
previously been used to successfully map cell type interaction eQTLs from bulk data in tissues
including whole blood 37. Using this approach, we were able to estimate the levels of 40
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blood-relevant cell types that had an enrichment score > 0 in at least 50% of individuals (Figure
2a, Table S3). Assuringly, the cell type enrichment score distributions were broadly similar to
those derived from GTEx whole blood samples (Figure S4). As expected, numerous PEER
factors were correlated with cell type enrichment estimates (Figure S5). PEER factors 1 through
3 were most positively correlated with erythrocytes (rho = 0.57, p = 4.83e-54), neutrophils (rho =
0.64, p = 0), and monocytes (rho = 0.53, p = 0), respectively. Cell type enrichment estimates
were also correlated with age and sex, with platelets showing the expected decrease in men
(rho = -0.26, p = 7.78e-11) 38. At least one cell type was significantly (p < 0.01) correlated with
asthma, diabetes, HIV infection, hypertension, obesity, and smoking status, demonstrating the
ability of deconvolution to capture disease relevant changes in cell type proportions (Figure 2b,
Figure S6) . Notably, HIV infection was correlated with decreased levels of regulatory T cells
(cor = -0.24, p = 1.22e-8) and CD4+ T cells (cor = -0.16, p = 1.22e-4) and increased levels of
CD8+ T cells (cor = 0.27, p = 9.72e-11), replicating known disease biology 39–41.

GWAS of Deconvoluted Cell Types
The genetic architecture of blood cell counts has proven to be directly relevant to disease
biology and therapeutic development, but GWAS have largely been limited to cell types
measured in standard complete blood count (CBC) tests 42,43. This study presented an
opportunity to carry out GWAS of more comprehensive cell types in an underrepresented group.
Using the deconvolution estimates we identified 24 loci genome-wide significantly (p < 5e-8)
associated with 19 cell types (Figure 2c, Table S4). Importantly, we replicated the well-known
association of the ACKR1 Duffy-null allele with reduced neutrophil counts (rs2814778, p =
1.06e-19, beta = -0.87) 44. We also identified novel associations, including between an
African-enriched allele and natural killer T cells (rs9979271, p = 5.47e-15, beta = 0.52) and a
locus containing an African-enriched missense variant in SLC22A11 and M2 Macrophages
(rs75976740, p = 4.55e-8, beta = -0.48) (Figure S7). In total 6 of 22 unique lead cell type GWAS
variants were enriched in Africans versus all other 1000 Genomes continental populations (MAF
Africans > 5x all other continental populations), and 3 were enriched in SABR compared to 1000
Genomes Africans (MAF SABR > 5x 1000 Genomes Africans), highlighting the power of diverse
cohorts to uncover novel genetic associations for even well-studied traits.

cis-QTL Mapping
We mapped cis genetic effects on gene expression (eQTLs) and splicing (sQTLs) for protein
coding and long non-coding RNA genes using the same gold-standard approach as the GTEx
consortium 29. eQTLs were mapped in each of the three SEB groups independently and jointly.
The joint approach yielded the highest number of eVariants that were rare in at least one of the
three groups (MAF < 1%), the highest estimated number of true positives (Storey’s pi1 = 0.86),
and contained the vast majority of genes with a significant eQTL (eGenes) mapped across all
four approaches (14,191 of 14,750 = 96%, Figure S8, Table S5), so this approach was used for
all analyses moving forward, including for sQTL mapping.

Jointly mapping QTLs in all three SEB groups combined, at least one significant (FDR < 0.05)
eQTL was mapped for 14,191 of 16,708 (85%) expressed genes and at least one significant
sQTL was mapped for 3,778 of 10,184 (37%) spliced genes (Figure 3a, Table S6-9). The top
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associated expression (e) and splice (s) variants showed the expected distribution of distance to
transcription start site, minor allele frequency, and slope (Figure S9-10). SABR cis-QTLs
genotyped in GTEx whole blood, which included roughly 12% African American-ancestry
individuals, replicated well (eQTLs: Storey’s pi1 = 0.72, slope Spearman rho = 0.81, sQTLs: pi1
= 0.79, rho = 0.87, Figure S11), demonstrating the robustness of cis-QTL mapping across
cohorts and populations. When accounting for sample size, there was an over 50% increase in
the number of genes with significant expression and splice QTLs compared to GTEx whole
blood (Figure S12). This does not account for technical differences between the studies,
however it does illustrate the advantage of carrying out QTL mapping in a cohort with higher
levels of genetic diversity compared to those that are largely of European ancestry.

Independent cis-eQTL Mapping
African-ancestry individuals exhibit the highest levels of genetic diversity and therefore would be
expected to have a high degree of regulatory allelic heterogeneity 14,16. This presents an
opportunity for QTL studies to map multiple, independent signals per gene. To this end, we
carried out independent cis-eQTL mapping using a stepwise regression approach and
uncovered widespread allelic heterogeneity, with a total of 60,808 conditionally independent
cis-eQTLs mapped (Table S10-11). There was a median of 4 and mean of 4.3 conditionally
independent cis-eQTLs per gene (Figure 3b). This compares to a mean of 1.7 cis-eQTLs per
gene in GTEx whole blood with a roughly equivalent sample size (670 in GTEx vs 614 in
SABR), again demonstrating the power of QTL mapping in a genetically diverse cohort.

Conditionally independent eQTLs showed marked differences from primary eQTLs, with
decreasing MAF, increasing distance to eGene TSS, and decreasing effect size as a function of
conditional index (Figure S13a-d). Furthermore, a number of additional eVariants with predicted
high impact were captured by conditional analysis, including 14 stop-gain variants (Figure
S13e).

cis-ieQTL Mapping
Cell type interaction eQTLs (ieQTLs) were mapped for 21 cell types that were either medically
relevant, or prevalent in whole blood using the same approach as the GTEx Consortium 37. This
approach includes an interaction term between genotype and deconvoluted cell type score to
capture cis-eQTLs where the slope is dependent on the estimated enrichment of a given cell
type. All 21 cell types had at least one significant ieGene mapped (FDR < 5%), with a total of
499 ieQTLs across 360 genes (Figure 3c, Table S12-13). Mapped ieQTLs included those with
cell type specific effects, for example an ieQTL associated with increased expression of FGFR2
in eosinophils, which is also the blood cell type the gene is most highly expressed in (Figure 3d).
Of the 360 ieGenes, 287 were mapped in only one cell type, suggesting that each captured a
unique regulatory architecture (Figure S14).

Both this study and Kim-Hellmuth et al. mapped neutrophil ieQTLs using the same cell type
deconvolution approach in whole blood, which provided an opportunity for replication analysis.
However, full summary stats were not available for Kim-Hellmuth et al., so we were unable to
test SABR ieQTLs for replication in GTEx. Instead, we tested GTEx ieQTLs for replication in
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SABR. We note that differences in LD structure could reduce the replication of GTEx ieQTLs in
SABR. Nonetheless, we observed replication that was strongly dependent on the significance of
the GTEx ieQTL (Figure S15). Replication ranged from strong for the top 150 most significant
GTEx ieQTLs (Storey’s pi1 = 0.73, slope Spearman rho = 0.30, p = 2.08e-4) to moderate for the
top 800 GTEx ieQTLs (pi1 = 0.25, rho = 0.19, p = 1.10e-7). This shows that the consistent
mapping approach between the two studies results in robust replication of the most significant
ieQTLs mapped.

A Map of Southern African Blood Regulatory Variation
As this was the largest blood transcriptome regulatory map generated to date in a continental
African population, we sought to characterize the number of African-enriched (more common in
continental African populations) or African-specific (only observed in continental African
populations) regulatory variants identified. We therefore characterized lead QTL variants as
globally common, African-enriched, African-specific, SABR-enriched, and enriched in each
separate SABR group (see Supplementary Methods - Variant Annotations for specific
definitions). It is important to note that the labels were not mutually exclusive, for example, a
variant could be both African-specific and SABR-enriched. Based on these definitions, 35% of
all eQTLs mapped were African-enriched and 6.7% were African-specific (Figure 4a). While less
substantial as an overall proportion, hundreds of QTLs were SABR-enriched or specific, or
enriched in one of the three SABR groups, demonstrating the substantial diversity of regulatory
variation across African populations. Examples of African regulatory variation include an
African-enriched eQTL for NIPSNAP3A (rs34856872, p = 1.35e-61, beta = -1.44) that is a
predicted stop-gain variant present at 3.9% frequency in 1000 Genomes African populations
and 3.4% in SABR (Figure 4b), and a SABR-specific sQTL for KIF16B (rs138620712, p =
3.36e-28, beta = 2.03) that is a predicted splice donor variant absent from 1000 Genomes
Africans and present at 2.1% in SABR (Figure 4c). Finally, we found that conditionally
independent eQTLs were much more likely to be enriched or specific in Africans, the SABR
cohort, and SABR groups as compared to primary QTLs (Figure 4d).

PAN-UKBB African GWAS Colocalization
To demonstrate the utility of a continental African transcriptome QTL resource for interpreting
GWAS, we selected 83 traits where blood is a potentially relevant tissue and performed
colocalization analysis with PAN-UK Biobank (PAN-UKBB) GWAS from African-ancestry
individuals (Table S14). Given the relatively modest sample size of these GWAS (maximum of
6,636 individuals), we performed colocalization analysis for all loci with a suggestive GWAS
signal (p < 5e-6) and a significant QTL (FDR < 5%), at two stringency thresholds (see methods).
This resulted in 53 of 83 GWAS traits colocalizing with at least one QTL, and a total of 105
genes colocalizing with at least one GWAS trait, collapsing across QTL types (Table S15).
Analyzing QTL types independently, at the lenient threshold 91 eQTLs, 26 sQTLs, and 5 ieQTLs
showed evidence of colocalization (Figure 5a). Collapsing by gene and GWAS trait across
QTLs, hematological phenotypes had the highest number of colocalizations, followed by
gastroenterology, cardiovascular, and metabolic traits (Figure 5b). Annotating the unique set of
lead variants across all loci with evidence of colocalization revealed that 13.8% were entirely
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absent in European-ancestry individuals (1000 Genomes Europeans MAF = 0) and 30.6% were
African-enriched (Figure 5c, Table S16).

Many colocalizing African-enriched QTLs were not identified in any GTEx tissue, including an
eQTL for SUSD6 that colocalized with ICD defined lipid disease (rs10140437, PP4 = 0.85)
present at 17.5% frequency in 1000 Genomes Africans (Figure 5d) and both an eQTL and sQTL
for C12orf4 that colocalized with serum phosphate levels (rs116827959, PP4 = 0.94) present at
15.4% in 1000 Genomes Africans (Figure S16). Other colocalizing QTLs were not identified in
GTEx whole blood, for example a sQTL that colocalized with waist circumference (rs59909741,
PP4 = 1.00) present at 23.5% frequency in 1000 Genomes Africans (Figure 5e), or were
identified in GTEx whole blood but were orders of magnitude more significant in SABR (Figure
S17). This included a stop-gain variant eQTL for CD36 at 11.5% frequency in 1000 Genomes
Africans that colocalized with alkaline phosphatase levels (rs3211938, PP4 = 1.00, Figure
S17d). Taken together, these results demonstrate the clear utility of a large, continental African
QTL resource for interpreting GWAS in African-ancestry individuals.

Discussion
As the largest continental African QTL study to date, the Southern African Blood Regulatory
(SABR) resource is a small but significant step towards closing the functional genomics gap for
global populations. By using a standard approach to data processing and QTL mapping, we
have enabled direct comparison of this resource to GTEx, and by making full summary statistics
publicly available, it is well placed to become widely used to support genetics research in Africa.

Although SABR does not have the same broad tissue diversity as GTEx, whole blood is
nonetheless an ideal tissue for capturing immune function, which is frequently a target of natural
selection and shows differences across populations 45. Furthermore, whole blood captures a
diversity of cell types that can be interrogated through deconvolution analysis, which is not true
of transformed cells such as fibroblasts or lymphoblastoid cell lines that are commonly used in
QTL studies 25. While blood is not always a causal tissue for disease, the majority of cis-eQTLs
are shared across tissues provided the gene is expressed, and large scale blood eQTL studies
have identified increasing numbers of regulatory variants that are active in other tissues 29,46.

The SABR resource more extensively explored whole blood as a tissue through analyses of
additional deconvoluted cell types compared to previous population-scale studies 37. We showed
that these additional deconvoluted cell types can capture disease-relevant biology, for example
changes in CD4+ and CD8+ T cell levels during HIV infection. However, an important limitation
of the approach is that estimates for many cell types have not yet been validated. We also
showed that cell type enrichment estimates are suitable traits for GWAS, and can identify novel
cell type associations that are not captured by standard complete blood counts. Genetic studies
of blood cell traits have uncovered novel biology and contributed to the development of new
therapies 42,43. This supports carrying out additional deconvolution studies of whole blood
transcriptomes in global populations to gain further insight into the genetic architecture of
immune traits.
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There are both opportunities and challenges when carrying out QTL studies with genetically
diverse cohorts. First, it can be challenging to generate high quality genotype data, given that
high-pass WGS still remains prohibitively expensive at population scale, and suitable reference
panels for genotype imputation are often lacking 33,47. Here, we demonstrated that mid-pass
WGS offers a cost-effective alternative that is suitable for QTL studies. We also demonstrated
that QTL studies with genetically diverse cohorts have the opportunity to map significantly more
regulatory variants. For example, SABR mapped 50% more QTLs accounting for sample size
versus GTEx whole blood. Further still, despite the smaller sample size, SABR mapped 2.5x the
number of conditionally independent eQTLs per gene as compared to GTEx whole blood. The
enrichment of population-enriched eQTLs in secondary signals suggests that conditional
analyses and large sample sizes should be the standard approach for QTL mapping in diverse
populations. Another consideration is that data from admixed individuals can be challenging for
standard QTL mapping methods, although approaches have been successfully developed that
take into account local ancestry to address this 48,49. Finally, QTL resources from populations
with smaller haplotype blocks (e.g. African populations) as compared to European-ancestry
individuals can enable better fine-mapping of trans-ancestry GWAS signals 25.

Even with a limited sample size we uncovered novel cell type associations with potential
health-relevance. For example, we identified a locus including a missense variant in SLC22A11
present at 11% frequency in SABR and absent in other African continental reference
populations, that was associated with a transcriptomic signature for M2 macrophages, an
immune cell type that is important for the resolution of inflammatory disease. Intriguingly, this
locus has been associated with gout, an inflammatory response to monosodium urate crystals in
joints, in European-ancestry individuals and M2 macrophages have been proposed to be
elevated in chronic gout as a reparative response 50,51. SLC22A11 encodes a urate transporter,
thus it is possible that the African-enriched missense variant impacts blood urate levels, gout
risk, and thus M2 macrophage levels, although a gout GWAS in a population where this allele is
prevalent would be required to determine this. Integrating both cell type GWAS and QTL results
also has the potential to uncover novel disease biology. For example, an African-enriched
stop-gain variant was identified as a strong cis-eQTL for NIPSNAP3A. This variant was also
nominally associated with increased CD4+ memory T cell levels in cell type deconvolution
analysis (p = 4.68e-3), which matches the phenotype observed in mouse knockout studies of
the gene 52. This human genetic link suggests that NIPSNAP3A may have potential as a target
for modifying CD4+ memory T cell levels, which has relevance to autoimmune diseases, cancer,
and infectious diseases including HIV/AIDS 53–55. It is however important to recognize that the
health relevance of trait associations might be different across populations. This is exemplified
by Duffy-null associated neutrophil count (DANC), which is phenotypically benign in
African-ancestry individuals, demonstrating the importance of carrying out clinical and precision
medicine studies with underrepresented groups 44,56.

The most common application of QTL resources is to uncover the specific genes and molecular
mechanisms underlying genetic associations. By systematically integrating SABR with
PAN-UKBB GWAS carried out in African individuals through colocalization analysis, we
identified at least one putative causal gene and mechanism for each of over 50 traits. This
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included identifying novel trait-gene associations. For example, an African-enriched eQTL for
SUSD6 colocalized with lipid disease and the directionality suggested that lower expression is
associated with increased risk. This gene has not previously been nominated as a causal gene
for lipid disease, however the colocalization agrees with observations from mouse studies,
where knockout of SUSD6 was associated with decreased HDL and increased liver enzyme
levels, markers of lipid disease 52. Similarly, an African-enriched sQTL for LPIN1 colocalized with
waist circumference, and this gene has not been previously associated with body composition
traits. However, it is known to play a role in lipid metabolism and mouse knockout studies have
identified multiple lipid and fat distribution phenotypes, making it a plausible causal gene 52,57.
The strongest evidence for colocalization observed (PP4 = 0.99) was between a CD36
African-enriched stop-gain eQTL and alkaline phosphatase (ALP) levels. Reduced expression of
CD36 was associated with decreased ALP levels, indicating that loss of function could be
protective in the context of liver disease. Indeed, the stop-gain variant is significantly associated
with increased HDL levels in GWAS (p = 3.00e-27) and mouse studies have shown the gene is
involved in fatty acid metabolism, with disruption in liver protecting from steatosis and improving
lipid profiles 58,59. Across all colocalizations, 13.8% of lead variants were entirely absent in
Europeans and 30.6% were African-enriched, clearly demonstrating the need for African
functional genomics resources.

Studies that integrate the genome and omics in diverse populations are becoming increasingly
common and include the plasma proteome and metabolome 60,61. However, transcriptome
studies based on RNA-sequencing still offer the greatest breadth and depth in a cost-effective,
single assay due to the untargeted nature of the underlying technology. This allows many
molecular traits to be quantified from a single data type, as demonstrated by the cell type
deconvolution, expression, and splicing analyses in the SABR resource. Future versions of the
resource could be expanded to include additional molecular phenotypes such as alternative
transcription start site usage and polyadenylation using the same data 62. While blood is most
frequently collected for transcriptome studies, non or minimally invasive biospecimens such as
hair, urine, or skin biopsy could be used in future studies to explore additional biology 63. Finally,
multi-omic studies have revealed that data types are often complementary rather than
redundant with one another, each capturing a unique aspect of tissue biology 46.

Given the vast genetic diversity of the African continent, SABR (Southern Africa) and others like
the African Functional Genomics Resource (Western and Eastern Africa) are just a small part of
the many functional genomic studies that are required 25. This is also true of African
genome-wide association studies, which are making progress but still lag behind those carried
out with European-ancestry populations. Developing these resources with the input of
participating communities and in a way that benefits them is essential and will directly contribute
to our understanding of diseases with specific relevance to African people 64–66. Together, these
will work towards a vision of precision medicine with the potential to improve the health of the
billions of people living on the continent.
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Figures

Figure 1. The Southern African Blood Regulatory (SABR) study includes diverse Southern
African genetics across three South Eastern Bantu-speaking groups. A) SABR blood
transcriptome QTL study design. B) Principal component analysis of SABR participants and
African-ancestry reference groups (1000G = 1000 Genomes, H3A = H3Africa). C) CADD score
and allele frequency of predicted high-impact variants enriched in at least one of the three South
African groups (CADD > 30, AF > 2% and AF > 5x 1000 Genomes Africans in any population).
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Figure 2. Cell type deconvolution analyses of whole blood transcriptome data. A) Distribution of
cell type enrichment scores calculated using xCell for 40 blood relevant cell types stratified by
lineage - hematopoietic stem cells (HSCs, red), lymphoid cells (blue), myeloid cells (green). B)
Heatmap of Pearson correlations between binary traits and cell type enrichment scores with cell
types labeled by lineage. C) Combined Manhattan plot of 19 cell type enrichment GWAS with at
least one genome-wide significant hit (p < 5e-8, dotted red line), with nearest genes and cell
types listed for each locus.
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Figure 3. Expression, splice, and cell type interaction cis-QTL mapping in whole blood. A)
Number of genes tested (red) and significant (blue, FDR < 5%) for expression and splice
cis-QTLs, stratified by gene type. B) Number of conditionally independent cis-eQTLs mapped
per eGene. C) Number of significant cis interaction eQTLs (ieQTLs) mapped across 21 different
cell types stratified by lineage. D) Example of a cis-ieQTL for FGFR2 that is dependent on
eosinophil enrichment levels (interaction term p-value = 2.22E-13).
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Figure 4. A map of Southern African blood regulatory variation. A) Characterization of lead
cis-QTL variants based on global allele frequencies. B) Example of an African-enriched
predicted stop-gain eQTL for NIPSNAP3A (rs34856872, MAF 1000G Africans = 3.9%). C)
Example of a SABR-specific predicted splice donor variant sQTL for KIF16B (rs138620712,
MAF SABR = 2.1%). D) Population enrichment and specificity of conditionally independent
cis-eQTLs stratified by index shown as a proportion of total number of eVariants in each index.
Note, for panels (A) and (D) variants can have more than one label (e.g. African-specific and
SABR-enriched). Allele frequency labels are defined in Supplementary Methods - Variant
Annotations.
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Figure 5. Colocalization of SABR QTLs with PAN-UKBB African GWAS. A) Number of
colocalizations per QTL type. B) Number of colocalizations flattening at the gene-level across
QTL types and summarizing based on GWAS trait category. C) Characterization of lead
colocalization variants based on global allele frequencies. D-E) Locus plot of colocalization
between an African-enriched SUSD6 eQTL and lipid disease (D, lead variant rs10140437, PP4
= 0.85), and LPIN1 sQTL and waist circumference (E, rs59909741, PP4 = 1.00). In each panel:
SABR QTL is shown on top, and GWAS on bottom, lead variant from colocalization analysis is
indicated with rsID and set to reference with LD calculated using 1000 Genomes Africans. Allele
frequency labels are defined in Supplementary Methods - Variant Annotations. Two thresholds
for colocalization were used: lenient (red, PP4 > 0.50 and PP4 / (PP3 + PP4) > 0.80), and strict
(blue, PP4 > 0.80).
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