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Abstract 1 

Background: Mobile health clinics (MHCs) are effective tools for providing health services to 2 

disadvantaged populations, especially during health emergencies. However, patient utilization of 3 

MHC services varies substantially. Strategies to increase utilization are therefore needed to 4 

maximize the effectiveness of MHC services by serving more patients in need. The purpose of 5 

this study is to develop a statistical framework to identify and prioritize high-risk communities 6 

for delivery of MHCs during health emergencies. 7 

Methods: Prisma Health MHCs delivered COVID-19 vaccines to communities throughout South 8 

Carolina between February 20, 2021, and February 17, 2022. In this retrospective study, we use 9 

generalized linear mixed effects model and ordinal logistic regression model to identify factors 10 

associated with, and predict, MHC utilization for COVID-19 vaccination by census tract. 11 

Results: The MHCs conducted 260 visits to 149 sites and 107 census tracts. The site-level 12 

analysis showed that visits to schools (RR=2.17, 95% CI=1.47-3.21), weekend visits (RR=1.38, 13 

95% CI=1.03-1.83), and visits when the resources were limited (term 1: 7.11, 95% CI=4.43-14 

11.43) and (term 2: 2.40, 95% CI=1.76-3.26) were associated with greater MHC utilization for 15 

COVID-19 vaccination. MHC placement near existing vaccination centers (RR=0.79, 95% 16 

CI=0.68-0.93) and hospitals (RR=0.83, 95% CI=0.71-0.96) decreased utilization. Predictive 17 

models identified 1,227 (94.7%) census tracts with more than 250 individuals per MHC visit 18 

when vaccine resources were limited. Predictions showed satisfactory accuracy (72.6%). The 19 

census tracts with potential of high MHC demand had higher adolescent, 30-44 years old, non-20 

White populations, lower Primary Care Practitioners per 1,000 residents, fewer hospitals, and 21 

higher cumulative COVID-19 emergency department visits and deaths (compared to census 22 
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tracts in the low MHC demand category). After the vaccines became widely available, the 23 

demand at MHCs declined. 24 

Conclusion: These study findings can be used to improve MHC allocation by identifying and 25 

prioritizing medically underserved communities for strategic delivery of these limited resources. 26 
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Introduction 42 

The COVID-19 pandemic has affected the lives of millions worldwide, including nearly 43 

1.2 million deaths in the United States (US).[1] The pandemic has also exacerbated inequalities 44 

in health outcomes, compounded with ethnic minority groups and rural communities 45 

experiencing less access for testing, vaccination, and treatment services, and greater death 46 

rates.[2–8] These consequences underscored the need for strategies to reach vulnerable 47 

communities more effectively.[9,10] Mobile health clinics (MHCs) deliver quality healthcare 48 

services to medically underserved communities who lack access to healthcare resources and 49 

facilities, especially during health emergencies.[11–14] MHCs were used during the COVID-19 50 

pandemic for vaccination in the U.S. and different countries,[15–19] and mainly benefitted by 51 

rural communities and medically underserved populations.[11,12,20,21]  52 

However, the inability to effectively identify and prioritize high-risk communities has 53 

posed daunting challenges for decision makers and has led to less-than-optimal allocation 54 

strategies. This is especially problematic during phases of pandemics when resources are limited, 55 

as these phases correlate with periods of high transmission, morbidity, and mortality.[22–24] 56 

Less efficient allocation strategies have a disproportionate impact on medically underserved 57 

communities. For example, age-based allocation of COVID-19 vaccines adopted by states 58 

nationwide lead to inequity in vaccination uptake, with lower rates in economically 59 

disadvantaged neighborhoods that were at an increased risk for severe SARS-CoV-2 infection 60 

and death.[25–27] Alternatively, one study showed that the inclusion of geographic region into 61 

the prioritization process would have led to an estimated 18% decrease in COVID-19 related 62 

hospitalizations.[25] 63 
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Data-driven approaches can improve emergency planning and overall health outcomes by 64 

guiding timely delivery of essential resources to high-risk communities.[28–31] One study 65 

showed that prioritization of COVID-19 testing to high-risk areas is twice as likely to detect 66 

positive cases compared to random allocation of tests (e.g., based on population sized).[32] 67 

Moreover, utilization of MHC services can substantially vary by site location.[33,34] Site visits 68 

with low utilization are a missed opportunity to provide health care to individuals in need, and 69 

drastically reduce the potential impact of MHC services. Therefore, projecting low- and high-70 

demand areas at granular geographic levels can assist in optimizing the effectiveness of MHC 71 

services.[35] 72 

Various studies investigated the characteristics of individuals who used MHCs and 73 

community-level factors associated with MHC utilization.[36,37] Individuals who utilized the 74 

MHCs tend to be mostly ethnic minorities and uninsured persons.[34,38] MHCs had a higher 75 

uptake when they were located at places where the proportions of uninsured and non-white 76 

populations were higher, and primary care practitioner rates were lower.[34] Several studies built 77 

predictive models for COVID-19 vaccine uptake using structural equation models, machine 78 

learning-based approaches, and conceptual models.[39–42] However, these studies were 79 

conducted based on data for general populations rather than MHC users hence they did not target 80 

medically underserved populations. For such populations, geographic granularity is needed to 81 

effectively inform public health interventions, including MHCs. 82 

In this retrospective study, we develop predictive models to predict MHC utilization for 83 

COVID-19 vaccination in South Carolina (SC) during different phases of the pandemic. The 84 

projection of MHC utilization allows us to signify the low- and high-demand census tracts for 85 

MHC utilization and understand their characteristic differences. We also explore MHC logistical 86 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 29, 2024. ; https://doi.org/10.1101/2024.09.27.24314475doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.27.24314475
http://creativecommons.org/licenses/by/4.0/


5 
 

factors and community determinants that contribute to greater utilization after the high-demand 87 

regions are detected, ultimately aiming to inform policy, improve public health outcomes, and 88 

optimally allocate MHCs for greater utilization. 89 

Methods 90 

Setting 91 

Prisma Health is a SC-based healthcare organization that serves 1.2 million patients per 92 

year.[43] Prisma Health deployed MHCs to increase COVID-19 vaccination in underserved 93 

communities between February 20, 2021, and February 17, 2022. A detailed explanation of 94 

Prisma Health's MHC activities for COVID-19 vaccination program is provided in the 95 

literature.[34] 96 

Variables 97 

Data obtained from MHC visits included the name, time, date, and location of the visit 98 

site, site type, duration of the visit, and the number of individuals who received COVID-19 99 

vaccines. Site types include churches; public K-12 schools; universities; corporate locations such 100 

as business centers, homeless shelters; and other kinds of places such as community and wellness 101 

centers, supermarkets, and parks. Based on the data, we categorized the timing of the week 102 

(Monday to Thursday, Friday, or Weekend), determined time of the day (morning: before 12 pm, 103 

afternoon: from 12 to 4 pm, and evening: after 4 pm), visit number (first, second, and third or 104 

more), and zip code and census tract code of the visited sites.  105 

The community-level variables included census tract and zip code level demographic, 106 

socioeconomic, and health-related factors. Age, sex, race, ethnicity, median income, 107 

unemployment rate, labor force participation, and social vulnerability index (SVI) variables were 108 
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at the census tract level and linked to census tracts of the MHC site locations. These 109 

demographic and socioeconomic variables were obtained from the United States Census Bureau 110 

American Community Survey for 2021.[44] SVI is a measure that assesses the resilience of 111 

communities when faced with external stresses and is developed by the Agency for Toxic 112 

Substances and Disease Registry (ATSDR) at the Centers for Disease Control and Prevention 113 

(CDC).[45] The four components of SVI are socioeconomic status, household composition and 114 

disability, minority status and language, and housing and transportation.[46] Data related to 115 

health care access were obtained from The South Carolina Center for Rural and Primary 116 

Healthcare (SCCRPH) and is available at the zip code level.[47] These variables included the 117 

number of hospitals, primary care physicians (PCP) per 1000 residents, all-cause mortality rate 118 

per 1000 residents,  the percentage of uninsured individuals in each zip code, and the percentage 119 

of rural areas in each zip code is provided. We also included the number of vaccination centers 120 

within a 2-mile radius and the number of hospitals within a 3-mile radius of each MHC 121 

location.[48,49] Data for emergency department (ED) COVID-19 hospitalizations and deaths 122 

were obtained from  the South Carolina Revenue and Fiscal Affairs Office.[50] 123 

Statistical analysis 124 

We used negative binomial generalized linear mixed effects models to assess the 125 

relationship between site-related factors and MHC utilization for COVID-19 vaccination.  For 126 

the projection of MHC utilization, we aimed a ranking based approach of possible MHC 127 

utilization at census tract level. Therefore, we used ordinal logistic regression models for the 128 

ordered categorical outcome of the MHC utilization using demographic, socioeconomic, and 129 

health-related predictors. Details about the model descriptions are provided in the Supplementary 130 

Material. 131 
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The ordinal grouping of the MHC utilization consisted of number of individuals within 0-132 

19, 20-49, 50-99, 100-249, 250-399, and more than 400. These groupings were used both for the 133 

validation of the models built on available MHC data, and for the projection of MHC utilization 134 

for the remaining census tracts in SC. The validation stage is performed by randomly sampling 135 

training and validation sets from the entire MHC data available for 106 census tracts. The 136 

validation set included 25 randomly sampled census tracts and the remaining data is used for the 137 

training of the models. Once the models are trained, we predicted the MHC utilization in 25 138 

census tracts and compared it with the truth. If the predicted category is correctly predicted, we 139 

noted is as exact category prediction. However, if the predicted category was different than the 140 

truth, we noted the degree of deviation by checking how many categories the prediction was 141 

away from the truth, for instance, one group higher than truth or two groups lower than truth. We 142 

repeated the random sampling of 25 census tracts for 1,000 times independently, hence we 143 

approximated the accuracy of the prediction performance. For the variables available at the 144 

ZCTA level, we partitioned the data into census tracts linked to that ZCTA weighting on the 145 

census tract population.  146 

Due to significant changes in vaccine eligibility and availability, we stratify the study 147 

period before and after March 31, 2021. There were significant policy changes on or near these 148 

dates regarding the targeted groups for vaccination in the US. For instance, individuals aged 16 149 

or older become eligible for COVID-19 vaccination on March 31. At the same time, COVID-19 150 

vaccines became more widely available at pharmacies, clinics, and other health-providing 151 

organizations.[51] As a sensitivity analysis, we also stratify the time period before and after May 152 

10, 2021, which is the date adolescents aged 12 to 15 were eligible for COVID-19 153 

vaccination.[52] 154 
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Results 155 

Descriptive summaries 156 

Between February 20, 2021, and February 17, 2022, the Prisma Health MHCs had 260 157 

visits to 149 locations in SC. These visits took place in 59 zip codes (of 424 zip codes) and 107 158 

census tracts (of 1,323 census tracts), and the MHC delivered 12,102 vaccines to 8,545 159 

individuals. Descriptive statistics for the individuals and site types have been provided in 160 

previous research.[34] The vaccine uptake at each site visit over one-year period is shown in 161 

Figure 1. Box plots are generated based on the site visits in each month represented by the red 162 

points. MHCs had higher demand per visit before March 31, 2021, when the vaccination 163 

resources were limited and there were restrictions on certain age groups. After this date, although 164 

the MHCs increased the frequency of its activities, utilization of MHCs per visit decreased. 165 

There was an exception of a school site with visits that occurred in July and August 2021 in 166 

which the MHC exceeded 600 vaccinations on both dates. 167 

Vaccine uptake based on the site type and the day and time of the visit for different 168 

vaccination terms (first term: before March 31, 2021, second term: between April 1 and May 9 of 169 

2021, and third term: after May 10, 2021) are summarized in Figure 2. The majority of the MHC 170 

events in the first term took place on weekends and mornings at churches, schools, and 171 

universities. Although MHCs started visits on different days and times in the second and third 172 

terms, overall MHC utilization per visit was not high especially on the third term.  Considering 173 

all terms, church visits mainly occurred on weekend mornings, and school and corporate visits 174 

Monday to Thursday afternoons. 175 

 176 
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 177 

Figure 1. Boxplot of vaccination counts at site visits per month between February 20, 2021, and 178 
February 17, 2022. Points show the number of vaccinated individuals at each site visit for 179 
different months and constitute the box plot. 180 

 181 

 182 
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 183 

Figure 2. Boxplot of vaccination counts based on different terms (before March 31, 2021, between April 1 and May 9 of 2021, and 184 
after May 10, 2021), site types, the day of the week, and the time of the day. 185 
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Site-related factors associated with MHC utilization 186 

The site-related factors associated with MHC utilization are shown in Table 1. Estimated 187 

relative risk (RR) with 95% confidence intervals (CI) represents the relative change in the MHC 188 

utilization with respect to a standard deviation increase in the continuous predictor variables, and 189 

a category change in the categorical variables. School visits and visits on Weekends, and visits 190 

within the first term (between February 20, 2021, and March 31, 2021) and second term 191 

(between April 1, 2021 and February 17, 2022) were associated with higher MHC utilization. 192 

Also, MHCs gained greater utilization at their second visits to a certain site. Having nearby 193 

vaccination centers and hospitals, and other types of site visits than schools, churches, corporate 194 

locations and homeless shelters decreased MHC utilization.   195 

Table 1: Results for negative binomial models that are adjusted for vaccination term, site type, 196 
day of the week, time of the day, visit number, visit duration, and population.  197 

 RR CI P-value 
Vaccination Term (Ref: Third term) 
   First Term 7.11 (4.43 - 11.43) <0.001 
   Second Term                2.40 (1.76 - 3.26) <0.001 
Site type (Ref: Church)    
   School 2.17 (1.47 - 3.21) <0.001 
   University            1.22 (0.68 - 2.17) 0.509 
   Corporate             1.19 (0.71 - 1.99) 0.520 
   Homeless              1.17 (0.49 - 2.80) 0.731 
   Other                 0.68 (0.48 - 0.97) 0.033 
Day of the week (Ref: Monday – Thursday) 
   Friday 1.32 (0.97 - 1.81) 0.079 
   Weekend 1.38 (1.03 - 1.83) 0.029 
Time of the day (Ref: Morning)    
   Afternoon  1.17 (0.78 - 1.74) 0.449 
   Evening 1.44 (0.84 - 2.47) 0.184 
Visit number (Ref: First visit)    
   Second 1.21 (1.01 - 1.45) 0.036 
   Third or more 0.96 (0.75 - 1.25) 0.778 
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 RR CI P-value 
Visit duration 1.00 (0.89 - 1.12) 0.993 
Population 1.06 (0.92 - 1.22) 0.429 
Number of nearby vaccination 
centers 0.79 (0.68 - 0.93) 0.003 
Number of nearby hospitals 0.83 (0.71 - 0.96) 0.015 

 198 

 199 

Model Validation 200 

The agreement between the predicted and actual category of MHC utilization is 201 

summarized in Table 2 using term-based models (term 1: before March 31, 2021, term 2: after 202 

April 1, 2021). Overall, 72.6% of model predictions were within +/- 1 of the true vaccine uptake 203 

group as described in the methods. The models predicted the exact category of the outcome in 204 

30.5% of the validation observations, and they predicted one group either a higher or lower 205 

category than the actual category for 42.1% of the validation observations.  206 

Table 2: Results for prediction accuracy. Number of census tracts that have the same and 207 
deviated observed and predicted category for term-based predictions (term 1: before March 31, 208 
2021, term 2: after April 1, 2021). 209 

 Term-based 
Predictions 

Predicted Category N (%) 
5 groups higher than truth - 
4 groups higher than truth - 
3 groups higher than truth 197 (0.8) 
2 groups higher than truth 2,598 (10.4) 
1 group higher than truth 5,394 (21.6) 
Exact group 7,635 (30.5) 
1 group lower than truth 5,136 (20.5) 
2 group lower than truth 2,974 (11.9) 
3 group lower than truth 926 (3.7) 
4 group lower than truth 140 (0.6) 
5 group lower than truth - 

 210 

 211 
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Vaccine projections for census tracts 212 

We projected the MHC utilization for all census tracts of SC. These models use the 213 

characteristics of census tracts that MHCs visited as the predictors and projected the ordinal 214 

category of MHC utilization in other census tracts. The projections are performed prior and post 215 

March 31, 2021. The number of census tracts in each category of predicted MHC utilization is 216 

shown in Table 3 for both cases. Projected MHC utilization per visit prior to March 31, 2021, 217 

was substantially higher at most census tracts (Figure 3). Results for 12-months and for cutoff 218 

term of May 10, 2021, are provided in Figure S1 in the Supplementary Material. There were 32 219 

(2.5%) census tracts that were projected to receive more than 400 visitors at a single MHC visit, 220 

and 1,195 (92.2%) census tracts projected to receive relatively high utilization with 250 to 399 221 

individuals, whereas only 69 (5.3%) census tracts were estimated to be utilized by under 249 222 

individuals. On the other hand, the models predicted overall low MHC utilization starting from 223 

April 1, 2021, where only 181 (14.0%) census tracts would receive between 50 and 99 224 

individuals, and 86.1% of census tracts would have low utilization. 225 

Census tracts categorized in the highest and lowest MHC utilization categories had 226 

substantial differences in some of their community-level characteristics (Table 4). Compared to 227 

the low MHC utilization category, the highest category census tracts had a higher proportion of 228 

individuals under 18 years of age and 30-44 age group, a higher proportion of non-White and 229 

Hispanic individuals. More importantly, these census tracts had lower PCP rates, lower number 230 

of hospitals, higher cumulative COVID-19 ED visits and deaths prior to MHCs were deployed 231 

on February 20, 2021. Sensitivity analyses for the cutoff date of May 10, 2021, and for 12-month 232 

term are also performed, and the results are provided Tables S2-S6, respectively.  233 
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Table 3: Number of census tracts (N) for each category of the projected MHC utilization. 234 
Projections are made for an MHC visit at any time before March 31, 2021, and after April 1, 235 
2021.  236 

 
Grouping 

Before  
March 31  

After  
April 1  

 N = 1,296 (%) N = 1,296 (%) 
0-19 - 973 (75.0) 
20-49 - 142 (11.0) 
50-99 4 (0.3) 181 (14.0) 

100-249 65 (5.0) - 
250-399 1,195 (92.2) - 

400+ 32 (2.5) - 
 237 

 238 

  239 

Figure 3: Projected MHC utilization for COVID-19 vaccination at census tracts at different time 240 
periods (pre and post March 31, 2021). 241 

 242 
 243 
 244 
 245 
 246 
 247 
 248 
 249 
 250 
 251 
 252 
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Table 4: Characteristics of census tracts that are projected to have high (groups: 250-399 and 253 
400+) and low (groups: 50-99 and 100-249) MHC utilization for COVID-19 vaccination before 254 
March 31, 2021. Median values with IQR and p-values for significance of the difference of 255 
medians are provided. 256 

 High Utilization 
N = 1,227 

Low Utilization 
N = 69 

 
P-value 

% Age under 18 21.6 (18.0-25.1) 20.1 (13.9-23.4) 0.044 
% Age 18-29 14.1 (11.0-17.5) 16.3 (12.6-34.7) 0.001 
% Age 30-44 18.3 (15.0-21.5) 16.2 (11.5-19.7) 0.011 
% Age 45-64 26.5 (23.0-29.9) 25.7 (16.9-31.0) 0.263 
% Age over 65 17.4 (13.4-21.8) 16.7 (11.9-21.7) 0.398 
% Male 48.5 (45.9-51.1) 49.8 (46.9-53.0) 0.030 
% Non-white 35.6 (20.5-55.1) 25.8 (9.1-37.5) 0.009 
% Hispanic 4.8 (2.8-7.9) 3.7 (2.7-5.9) 0.022 
SVI 0.5 (0.3-0.8) 0.6 (0.3-0.8) 0.053 
Income (×$1000) 55.3 (42.6-71.3) 46.9 (34.0-62.6) 0.007 
% Unemployed 4.6 (2.6-7.6) 4.2 (2.6-6.9) <0.001 
PCP rate 0.3 (0.0-0.8) 3.9 (0.5-16.0) <0.001 
Hospitals 0.0 (0.0-1.0) 0.9 (0.2-1.5) <0.001 
% Uninsured 10.9 (8.8-12.3) 10.2 (7.7-11.6) 0.426 
Mortality rate 51.3 (40.7-60.7) 50.3 (38.3-60.3) 0.797 
% in Poverty 11.0 (7.1-15.7) 14.0 (10.2-17.3) 0.006 
% in Rural 28.0 (5.0-60.0) 15.0 (0.2-62.4) 0.102 
COVID-19 ED visits 1,189 (658-2,012) 846 (504-1,260) 0.002 
COVID-19 deaths 64 (35-99) 41 (22-70) 0.002 

 257 

 258 

Discussion 259 

This study aims to serve as a tool to improve the MHCs’ activities by providing important 260 

insights from the utilization of MHCs during COVID-19 vaccination across South Carolina, 261 

highlighting the potential to optimize resource allocation by identifying high-uptake areas and 262 

understanding the factors influencing MHCs' success. The findings underscore the importance of 263 

strategically deploying MHCs to maximize vaccine reach, particularly among underserved and 264 

vulnerable populations.  265 
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Operational factors including site type (e.g., church, school, etc.), day, and time of the 266 

week were significantly associated with vaccine uptake. Notably, visits to schools and visits 267 

conducted on weekends were linked to higher vaccine uptake. During the pre- and post-March 268 

31, 2021, 72.7% and 38.6% of MHC visits were conducted on weekends with median utilization 269 

of 199 (IQR: 112 - 243) and 23 (IQR: 10 – 38) per visit, respectively.[34] Although the school 270 

visits were similar for pre- and post-March 31, 2021 with 18.2% and 18.5%, the utilization per 271 

visit was 200 (IQR: 184 - 217) and 45 (IQR: 24 - 77) making highest utilized location for post-272 

March 31, 2021 followed by universities 27 (IQR: 17 - 36). These findings suggest that MHCs 273 

can achieve a more significant impact by targeting educational institutions and scheduling visits 274 

on days and times that are more convenient for community members. Moreover, the presence of 275 

nearby vaccination centers and hospitals was found to negatively impact MHC utilization. This 276 

suggests that MHCs are particularly valuable in areas with limited access to fixed-site 277 

vaccination centers, highlighting the importance of strategic placement in underserved regions. 278 

The predictive models identified 1,227 census tracts with higher potential for vaccine 279 

uptake, which had a higher rate of uninsurance and mortality, a higher proportion of ethnic 280 

minority populations and adolescents, and were in rural areas. These findings are consistent with 281 

MHC-centered studies conducted for other states and cities.[36–38] In this study, we found 282 

additional healthcare-related factors associated with MHC utility. Census tracts with lower rates 283 

of primary care practitioners, hospitals, and other vaccination sites had higher MHC utilization 284 

compared to the low-demand census tracts, highlighting the potential of MHC utilization at 285 

locations with limited healthcare resources and facilities. The role of predictive models is to act 286 

as a classifying or categorization mechanism that identifies areas and communities that are more 287 

likely to use the MHCs given the limited data from previous MHC visits. A possible setting for 288 
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MHC allocation could be to use the existing data and base on the categorical projection of new 289 

areas such as census tracts that MHC could possibly get high demand. As MHCs conduct visits 290 

to more places relying on the projected high-demand areas, the models can be validated and 291 

updated based on the new data. Hence this framework will allow an optimal deployment of 292 

MHCs to gain the highest utilization especially by ones who need these services the most.  293 

The time component of projections for MHC utilization at the census tract level provides 294 

important decision-making implications for public health planning. Before March 31, 2021, the 295 

models predicted high MHC utilization in most census tracts, reflecting the high demand for 296 

vaccines during the initial rollout phase. However, after this date, the predicted utilization 297 

decreased significantly, indicating the need for continuous assessment and adaptation of MHC 298 

deployment strategies as the pandemic evolves and vaccine availability at other providers 299 

changes. 300 

This study has several limitations. First, there were substantial changes in vaccine 301 

eligibility and availability which affected the MHC utilization. The retrospective design and 302 

reliance on limited data may not capture all relevant factors influencing MHC utilization. These 303 

factors may also differ from state to state. Future research should consider prospective studies 304 

and incorporate additional factors such as community engagement and outreach efforts to 305 

provide a more comprehensive understanding of MHC effectiveness. To extend the similar 306 

framework to other states, countries, and to different diseases, one needs to consider the 307 

determinants of the regions and the disease.   308 

In conclusion, this study provides a framework for optimizing the deployment of MHCs 309 

in future health emergencies by identifying factors associated with higher vaccine uptake and 310 

predicting areas of high utilization. Predicting the highest- and lowest-demand census tracts for 311 
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MHC utilization provides categorized importance structure for public health planning and 312 

resource allocation.  Strategic allocation of MHCs based on these insights can enhance the timely 313 

delivery of essential resources to the most vulnerable communities during health emergencies 314 

and ultimately save more lives. 315 

 316 
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Appendix 
 

Model description 

Negative binomial generalized linear mixed effects model:  

log (𝜇𝜇𝑖𝑖𝑖𝑖) =  𝐗𝐗𝑖𝑖𝑖𝑖T 𝛽𝛽 +  𝑏𝑏𝑗𝑗 +  𝑐𝑐𝑖𝑖𝑖𝑖 

The model assumes the following conditions: 

𝒀𝒀𝒊𝒊𝒊𝒊: Number of individuals utilized the mobile health clinic (MHC) at i-th site visit in the j-th 

census tract. The outcome variable 𝑌𝑌𝑖𝑖𝑖𝑖 follows the negative binomial distribution 

𝑌𝑌𝑖𝑖𝑖𝑖~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝜇𝜇𝑖𝑖𝑖𝑖,𝜃𝜃) where 𝜇𝜇𝑖𝑖𝑖𝑖 is the mean of the negative binomial distribution at i-th site visit 

in the j-th census tract and 𝜃𝜃 is the dispersion parameter. 

𝐗𝐗𝒊𝒊𝒊𝒊𝐓𝐓 : Vector of fixed effects for the i-th site visit in the j-th census tract. Fixed effects included the 

census tract population, visit term (term 1: before March 31, 2021, and after March 31, 2021), 

site category (food banks, schools, universities, corporate, homeless shelters, and other), time of 

the week (Monday to Thursday, Friday, and weekend), time of the week (morning, afternoon, 

and evening), visit number (first, second, and third or more), and the duration of the visit. The 

number of vaccination centers and hospitals close to the MHC location is added to the model 

separately to avoid collinearity between these variables. The visit time changed to (term 1: before 

May 10, 2021, and after May 10, 2021) for the sensitivity analysis. 

𝒃𝒃𝒋𝒋: Random effect for the j-th census tract with 𝑏𝑏𝑗𝑗~𝑁𝑁(0,𝜎𝜎𝑏𝑏2) 

𝒄𝒄𝒊𝒊𝒊𝒊: Random effect for the i-th site in the j-th census tract 𝑐𝑐𝑖𝑖𝑖𝑖~𝑁𝑁(0,𝜎𝜎𝑏𝑏2) 

Ordinal logistic regression model 

Let Y be the ordered categorical outcome of number of individuals utilized the MHC in a census 

tract {1: 10-19, 2: 20-49, 3: 50-99, 4: 100-249, 5: 250-399, and 6: more than 400 individuals}. 

Ordinal logistic regression calculates the logged odds of being equal or less than a specific 

category k of the outcome variable. The cumulative logit model (proportional odds model) can 

be expressed as: 

log
𝑃𝑃(𝑌𝑌𝑖𝑖 ≤ 𝑘𝑘|𝑋𝑋𝑖𝑖)

1 − 𝑃𝑃(𝑌𝑌𝑖𝑖 ≤ 𝑘𝑘|𝑋𝑋𝑖𝑖)
=  𝛼𝛼𝑘𝑘 − 𝐗𝐗𝑖𝑖T𝛽𝛽 

𝑌𝑌𝑖𝑖: The ordered categorical outcome {1: 10-19, 2: 20-49, 3: 50-99, 4: 100-249, 5: 250-399, and 6: 

more than 400 individuals} of MHC for i-th census tract.  
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𝐗𝐗𝑖𝑖T: The vector of fixed effects for the i-th census tract. These effects include vaccination term, 

number of visits conducted to the census tract, census tract level population, proportion of 

individuals within 30-44, 45-64, and 65+ years of ages, proportion of males, non-White, 

unemployed, labor force participation, uninsured, under poverty, social vulnerability index 

(SVI), median income, primary care physicians per 1,000 people, all-cause mortality rate, 

hospital presence, and percent of rural areas. Variables that are available for zip codes are 

transformed to census tract level by weighting on the population of a census tract living in 

different zip codes.  

Finally, 𝛼𝛼𝑘𝑘 are the threshold parameters (cut-points) separating the adjacent categories of the 

ordinal response. 

 
Table S1: Characteristics of census tracts that are projected to have high (group: 50-99) and low 
(groups: 0-19 and 20-49) MHC utilization for COVID-19 vaccination after April 1, 2021. 
Median values with IQR and p-values for significance of the difference of medians are provided. 
 

 High Utilization 
N = 181 

Low Utilization 
N = 1,115 

 
P-value 

% Age under 18 21.3 (17.7-25.3) 21.6 (18.0-25.0) 0.480 
% Age 18-29 13.4 (10.5-16.0) 14.5 (11.4-18.1) 0.002 
% Age 30-44 19.3 (15.9-22.6) 17.7 (14.7-20.9) <0.001 
% Age 45-64 27.3 (23.6-30.6) 26.3 (22.5-29.7) 0.006 
% Age over 65 16.0 (12.7-21.2) 17.7 (14.1-22.0) <0.001 
% Male 48.5 (46.1-50.8) 48.5 (45.9-51.4) 0.862 
% Non-white 35.1 (23.0-54.4) 34.8 (18.9-54.3) 0.949 
% Hispanic 5.7 (3.6-8.3) 4.5 (2.6-7.4) <0.001 
SVI 0.29 (0.14-0.53) 0.57 (0.32-0.80) <0.001 
Income (×$1000) 69.8 (55.7-90.1) 50.5 (39.3-63.2) <0.001 
% Unemployed 4.3 (2.2-6.6) 4.8 (2.7-8.0) <0.001 
PCP rate 0.2 (0.0-0.6) 0.4 (0.1-0.9) <0.001 
Hospitals 0.0 (0.0-0.2) 0.1 (0.0-1.0) <0.001 
% Uninsured 9.2 (7.0-11.6) 11.0 (9.0-12.5) <0.001 
Mortality rate 42.3 (33.6-50.1) 54.0 (44.6-63.2) <0.001 
% in Poverty 7.7 (4.8-11.2) 12.6 (8.8-16.6) <0.001 
% in Rural 10.6 (1.8-44.7) 34.1 (6.8-64.4) <0.001 
Hospitalizations 1,271 (796-2,014) 1,106 (640-1,980) 0.072 
Dead 57 (32-92) 64 (33-100) 0.050 
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Figure S1: Projected MHC utilization for COVID-19 vaccination at census tracts at different 
time periods (12-months, and pre and post May 10, 2021). 
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Table S2: Results for prediction accuracy. Number of census tracts that have the same and 
deviated observed and predicted category for 12-month predictions, and term-based predictions 
(term 1: before May 9, 2021, term 2: after May 10, 2021). 

 12-Month 
Predictions 

Term-based 
Predictions 

Predicted Category N (%) N (%) 
5 groups higher than truth - 18 (0.1) 
4 groups higher than truth 4 (0.0) 11 (0.0) 
3 groups higher than truth 286 (1.1) 409 (1.6) 
2 groups higher than truth 2,678 (10.7) 1,841 (7.4) 
1 group higher than truth 5,110 (20.4) 5,898 (23.6) 
Exact group 7,158 (28.6) 6,539 (26.2) 
1 group lower than truth 4,869 (19.5) 5,495 (22.0) 
2 group lower than truth 3,069 (12.3) 3362 (13.4) 
3 group lower than truth 1,402 (5.6) 1,213 (4.9) 
4 group lower than truth 365 (1.5) 214 (0.9) 
5 group lower than truth 47 (0.2) - 

 

 

 

Table S3: Number of census tracts (N) for each category of the projected MHC utilization. 
Projections are made for an MHC visit at any time during 12-month period (February 20, 2021, 
to February 17, 2022), before May 9, 2021, and after May 10, 2021. 

 
Grouping 

 
12-Month 

Before  
May 9  

After  
May 10  

 N = 1,296 (%) N = 1,296 (%) N = 1,296 (%) 
0-19 914 (70.5) 5 (0.4) 753 (58.1) 
20-49 187 (14.4) 388 (29.9) 540 (41.7) 
50-99 192 (14.8) 455 (35.1) 2 (0.2) 

100-249 2 (0.2) 447 (34.5) 1 (0.1) 
250-399 1 (0.1) - - 

400+ - 1 (0.1) - 
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Table S4: Characteristics of census tracts that are projected to have high (groups: 50-99, 100-
249, and 400+) and low (groups: 0-19 and 20-49) MHC utilization for COVID-19 vaccination 
before May 9, 2021. Median values with IQR and p-values for significance of the difference of 
medians are provided. 

 High Utilization 
N = 903 

Low Utilization 
N = 393 P-value 

% Age under 18 21.0 (17.5-24.6) 22.7 (18.8-26.1) <0.001 
% Age 18-29 13.9 (10.7-17.7) 14.8 (12.3-18.1) 0.007 
% Age 30-44 18.5 (15.2-21.8) 17.5 (14.2-20.9) 0.009 
% Age 45-64 27.1 (23.6-30.5) 25.1 (21.0-28.6) <0.001 
% Age over 65 17.1 (13.2-22.0) 17.9 (14.2-21.7) 0.122 
% Male 48.9 (46.6-51.6) 47.4 (44.6-50.4) <0.001 
% Non-white 31.5 (18.0-51.0) 39.8 (25.3-59.1) <0.001 
% Hispanic 5.4 (3.4-8.5) 3.1 (2.0-5.8) <0.001 
SVI 0.4 (0.2-0.7) 0.6 (0.4-0.8) <0.001 
Income (×$1000) 61.2 (47.8-78.9) 43.1 (34.8-53.7) <0.001 
% Unemployed 4.5 (2.3-7.0) 5.1 (3.1-8.4) <0.001 
PCP rate 0.3 (0.0-0.7) 0.5 (0.1-1.5) <0.001 
Hospitals 0.0 (0.0-1.0) 0.2 (0.0-1.0) 0.001 
% Uninsured 10.7 (8.3-12.6) 10.7 (9.0-11.8) 0.727 
Mortality rate 48.0 (38.6-56.8) 58.7 (49.6-66.1) <0.001 
% in Poverty 10.1 (6.1-14.5) 14.4 (10.6-18.4) <0.001 
% in Rural 14.9 (2.4-45.7) 59.7 (33.2-92.5) <0.001 
COVID-19 ED visits 1,339 (796-2,091) 843 (430-1,432) <0.001 
COVID-19 deaths 67 (40-104) 46 (22-76) <0.001 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table S5: Characteristics of census tracts that are projected to have high (groups: 20-49, 50-99, 
and 100-249) and low (group: 0-19) MHC utilization for COVID-19 vaccination after May 10, 
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2021. Median values with IQR and p-values for significance of the difference of medians are 
provided. 

 High Utilization 
N = 543 

Low Utilization 
N = 753 P-value 

% Age under 18 20.8 (17.4-24.4) 22.0 (18.1-25.5) 0.001 
% Age 18-29 13.2 (10.0-16.8) 14.8 (12.2-18.5) <0.001 
% Age 30-44 18.5 (15.1-21.8) 18.0 (14.8-21.2) 0.132 
% Age 45-64 27.7 (24.5-31.2) 25.7 (21.8-29.1) <0.001 
% Age over 65 16.7 (13.0-22.4) 17.7 (14.0-21.7) 0.013 
% Male 49.0 (47.0-51.5) 48.1 (45.0-51.0) <0.001 
% Non-white 28.4 (16.1-46.4) 39.3 (23.9-58.4) <0.001 
% Hispanic 5.9 (3.8-9.4) 4.0 (2.3-6.7) <0.001 
SVI 0.3 (0.1-0.6) 0.6 (0.4-0.8) <0.001 
Income (×$1000) 68.6 (55.9-88.0) 46.6 (37.1-56.9) <0.001 
% Unemployed 4.1 (2.2-6.2) 5.2 (3.0-8.3) <0.001 
PCP rate 0.2 (0.0-0.6) 0.4 (0.1-1.1) <0.001 
Hospitals 0.0 (0.0-1.0) 0.1 (0.0-1.0) <0.001 
% Uninsured 10.4 (7.9-12.6) 10.8 (9.0-12.1) 0.063 
Mortality rate 43.7 (36.0-53.0) 56.0 (47.4-64.2) <0.001 
% in Poverty 8.2 (5.3-12.1) 13.5 (9.7-17.3) <0.001 
% in Rural 7.6 (1.4-28.1) 51.2 (17.8-82.6) <0.001 
COVID-19 ED visits 1,478 (904-2,349) 953 (515-1,635) <0.001 
COVID-19 deaths 69 (43-104) 56 (26-90) <0.001 
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Table S6: Characteristics of census tracts that are projected to have high (groups: 20-49, 50-99, 
100-249, and 250-399) and low (group: 0-19) MHC utilization for COVID-19 vaccination any 
time during 12-month period. Median values with IQR and p-values for significance of the 
difference of medians are provided. 

 High Utilization 
N = 382 

Low Utilization 
N = 914 P-value 

% Age under 18 21.3 (17.3-25.5) 21.6 (18.1-24.9) 0.472 
% Age 18-29 13.1 (9.9-16.0) 14.6 (11.9-18.4) <0.001 
% Age 30-44 18.9 (14.9-22.4) 17.9 (14.9-21.0) 0.008 
% Age 45-64 26.8 (23.1-30.1) 26.4 (22.7-29.8) 0.267 
% Age over 65 17.3 (13.3-22.9) 17.3 (13.5-21.4) 0.894 
% Male 48.7 (46.3-51.2) 48.4 (45.8-51.2) 0.190 
% Non-white 35.7 (22.2-57.4) 34.6 (19.6-52.0) 0.587 
% Hispanic 5.2 (3.1-8.1) 4.6 (2.7-7.5) 0.043 
SVI 0.4 (0.1-0.7) 0.6 (0.3-0.8) <0.001 
Income (×$1000) 69.6 (53.2-91.3) 50.4 (39.2-62.6) <0.001 
% Unemployed 4.5 (2.3-7.1) 4.7 (2.7-7.6) <0.001 
PCP rate 0.2 (0.0-0.6) 0.4 (0.1-1.0) <0.001 
Hospitals 0.0 (0.0-0.4) 0.2 (0.0-1.0) <0.001 
% Uninsured 9.6 (7.3-12.0) 10.9 (9.0-12.4) <0.001 
Mortality rate 44.6 (35.3-53.9) 53.6 (44.6-62.6) <0.001 
% in Poverty 8.1 (4.8-11.8) 12.7 (9.2-16.5) <0.001 
% in Rural 15.0 (1.8-49.3) 34.0 (6.9-64.3) <0.001 
COVID-19 ED visits 1,155 (627-1,999) 1,151 (661-2,005) 0.951 
COVID-19 deaths 54 (29-87) 66 (36-101) <0.001 
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