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ABSTRACT

MRI-detected white matter hyperintensities (WMH) are often recognized as markers of

cerebrovascular abnormalities and an index of vascular brain injury, and are frequently

present in individuals with Alzheimer’s disease (AD). Given the emerging bidirectional

communication between the brain-body axis in both WMHs and AD, it is important to

understand their genetic underpinnings across the whole body. However, literature on this is

scarce.

We investigated the brain-body axis by breaking down heritability estimates of these

phenotypes across the whole body, – i.e., partitioning heritability. Our aims were to identify

genetic underpinnings specific to WMHs, and common between WMHs and AD, by

assessing (a) the partitioned heritability of WMHs and AD across the brain-body axis with

tissue-specific annotations, (b) the partitioned heritability of WMHs and AD across the

brain-body axis with cell-specific annotations, and (c) the genes associated with WMHs and

AD, and verifying their expression levels across the whole body.

Our tissue-specific analysis revealed that WMH-associated SNPs were significantly enriched

in tissues beyond the brain, namely liver, cardiovascular, and kidney – with liver being a

common tissue enriched for both WMHs and AD. Our cell-specific analysis showed

enrichment of vascular endothelial cells across the tissue types enriched for WMHs,

highlighting their central role in the development of WMHs. Additionally, our gene-level

analysis highlighted overlapping patterns of tissue enrichment for both WMHs and AD, and

showed interactions between WMH and AD associated genes.

Our findings provide new insights into the systemic influences potentially contributing to

WMH pathology, in particular, multi-system endothelial disorder. We hope that our

multisystemic genetic findings will stimulate future WMH-research into specific pathways

across the brain-body axis.
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1. INTRODUCTION

Established magnetic resonance imaging (MRI) markers of vascular brain injury include

white matter hyperintensities (WMHs), silent brain infarcts, microbleeds and enlarged

perivascular spaces 1. A meta-analysis by Debette et al. 1 found that among these markers,

extensive WMH volume was significantly associated with an increased risk of dementia,

including Alzheimer’s disease (AD) – the most prevalent of the dementias 2. WMHs appear

as bright spots on on T2-weighted fluid attenuated inversion recovery (FLAIR) MRI 3, and

often represent areas of axon injury/loss, demyelination, and some degree of edema 4,5.

Suggested vascular pathogenic mechanisms of WMHs include endothelial and associated

blood-brain barrier dysfunction, hypoperfusion due to altered cerebrovascular autoregulation

and reactivity, and cerebral amyloid angiopathy 6–8. The prevalence of WMHs increases

significantly with advancing age 9, affecting 11-21% of people around age 64 and rising to

94% by age 82 4,9. While observed in cognitively healthy adults, WMHs are more frequently

present in individuals with AD 10–12. Moreover, a growing body of evidence shows a link

between their presence and cognitive impairment, a key feature of AD 1,13.

WMHs are heritable, with family and twin studies estimating a genetic contribution of

55-73% 14–17 . Heritability is the proportion of the total phenotypic variance in a trait that is

attributable to the additive effects of common genetic variants, e.g., single nucleotide

polymorphisms (SNPs) 16. To date, three genome wide association studies (GWAS) 18–20 and

two GWAS-meta analyses 21,22 focusing on WMHs have identified multiple loci associated

with WMH burden. The seminal study by Fornage et al. 18 identified one locus on

chromosome 17q25, encompassing genes WBP2, TRIM47, TRIM65, MRPL38, FBF1, and

ACOX1. Novel associations were revealed at PLEKHG1 19, along with confirmations of

previous findings on TRIM47 and EFEMP1, as shown by 18 and 21, respectively. Since then,

additional studies using larger sample sizes (~18,000 20, ~50,000 22) have identified 18

additional loci for WMHs. Late-onset AD demonstrates similar heritability: 58-79% 23,24 and

evidence suggests a potential genetic overlap between WMHs and AD, particularly involving

inflammation-related genes 25. This overlap points to certain shared pathways that may

contribute to the development of both phenotypes.

Moreover, WMHs are strongly associated with vascular risk factors like diabetes, smoking,

and hypertension, all of which have widespread impacts across the body 4,26. While

3

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted September 28, 2024. ; https://doi.org/10.1101/2024.09.27.24314431doi: medRxiv preprint 

https://paperpile.com/c/455W3L/Y4JvE
https://paperpile.com/c/455W3L/Y4JvE
https://paperpile.com/c/455W3L/n4pBm
https://paperpile.com/c/455W3L/cZqr
https://paperpile.com/c/455W3L/FsUw4+yi2cd
https://paperpile.com/c/455W3L/Q9bK+2r7z+4Z9N
https://paperpile.com/c/455W3L/quIo9
https://paperpile.com/c/455W3L/quIo9+FsUw4
https://paperpile.com/c/455W3L/Mu5h+jnih+dUif
https://paperpile.com/c/455W3L/Y4JvE+Elt5F
https://paperpile.com/c/455W3L/4Jsh+6qVz+LXtR+CbiT
https://paperpile.com/c/455W3L/LXtR
https://paperpile.com/c/455W3L/Q2Cm+KCGp+GRPy
https://paperpile.com/c/455W3L/i9CN+9MwP
https://paperpile.com/c/455W3L/Q2Cm
https://paperpile.com/c/455W3L/KCGp
https://paperpile.com/c/455W3L/Q2Cm
https://paperpile.com/c/455W3L/i9CN
https://paperpile.com/c/455W3L/GRPy
https://paperpile.com/c/455W3L/9MwP
https://paperpile.com/c/455W3L/WOF4+zoNM
https://paperpile.com/c/455W3L/y0uR
https://paperpile.com/c/455W3L/FsUw4+xcdkq
https://doi.org/10.1101/2024.09.27.24314431


traditionally seen as a cerebral issue, recent research suggests that the presence of WMHs in

the brain may reflect a broader multi-systemic condition. For example, (a) individuals with

small vessel disease, in whom WMHs are a hallmark feature 3, show an increased risk of

renal impairment 27, and (b) non-alcoholic fatty liver disease has also been associated with the

presence of WMHs 28. Similarly, AD, though primarily considered a brain disorder, has also

been linked to peripheral systems. In particular, the liver is involved in the clearance of

amyloid-beta, a hallmark of AD pathology 29 and studies also indicate the involvement of

systemic immune responses in AD 29,30.

Given the bidirectional communication between the brain-body axis in both WMHs and AD,

it is important to understand the commonalities and differences of their genetic underpinnings

across body systems. However, literature on this is scarce. One way to investigate the

brain-body axis is by breaking down heritability estimates of these phenotypes across the

whole body – i.e., partitioning heritability 31. Therefore, our aims are to identify genetic

underpinnings specific to WMHs, and common between WMHs and AD, by assessing (a) the

partitioned heritability of WMHs and AD across the brain-body axis with tissue-specific

annotations, (b) the partitioned heritability of WMHs and AD across the brain-body axis with

cell-specific annotations, and (c) the genes associated with WMHs and AD, and verifying

their expression levels across the whole body.

2. METHODS

2.1 Genome Wide Association Studies With Publicly Available Summary Statistics

We used the GWAS catalogue (https://www.ebi.ac.uk/gwas/) to identify GWAS summary

statistics for WMHs and AD. This catalogue provides comprehensive GWAS data on various

traits. Our search in GWAS catalogue was conducted using the following keywords: “White

matter hyperintensities”, “Alzheimer’s disease”. In addition we conducted a literature review

to identify GWAS summary statistics for WMHs by using the PubMed scientific database

with the following keyword combinations: “WMHs” AND “GWAS”; “White matter

hyperintensities” AND “GWAS”; "White matter hyperintensities" AND "Genome wide

association study". This search was completed in August 2024 and yielded 54 articles, from

which we included only those published in English and for which summary statistics were

available in our subsequent analysis (N=3). Summary statistics for AD were referenced from

the GWAS catalogue (https://www.ebi.ac.uk/gwas/) (Supplementary Table S1).
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2.2 Linkage Disequilibrium Score Regression (LDSC)

We employed linkage disequilibrium (LD) score regression (LDSC, version 1.0,

https://github.com/bulik/ldsc) 31 to estimate the proportion of phenotypic variance attributable

to common autosomal variants, expressed as SNP-based heritability (h2
SNP), for WMH and

AD studies. LD refers to non-random association of alleles at different loci in a population 32.

LD score regression (LDSC) computes an LD score by summarising the correlations of a

given SNP with all neighbouring SNPs within its downstream and upstream 100 kb flanks 31.

The GWAS test statistic χ2 is then regressed against the LD score, from which the slope is

rescaled to provide an estimate of h2
SNP, attributable to all SNPs considered by the LD score

analysis 31. For our analyses, we used precomputed LD scores based on 1,000 Genomes

Project data focusing on the European ancestry population 33.

2.3 Partitioned SNP- heritability analysis

We conducted stratified LDSC (s-LDSC; version 1.0) to identify which tissue types are

enriched for variants that significantly contribute to per-SNP heritability (h2
SNP) of WMHs

and AD. This analysis aimed to explain how specific genomic annotations (i.e.,

tissue-specific and cell-specific) disproportionately influence h2
SNP. In this context,

enrichment is defined as the ratio of heritability attributed to SNPs (h2
SNP) within a given

tissue type compared to the proportion of SNPs annotated for that same tissue type across the

autosomes. We utilised pre-computed LD scores from the 1,000 Genomes Project European

(EUR) subpopulation as the LD reference panel 34. These scores are based on common

autosomal SNPs from the HapMap project, with the major histocompatibility complex

(MHC) region excluded due to its dense gene content and long-range LD 34.

For data preparation, we utilised the LDSC script “munge_sumstats.py” which was run on

summary statistics files (GRCh38) for WMH and AD studies. The LD weights were derived

from non-MHC HapMap3 SNPs and applied in the regression analyses as

'weights_hm3_no_hla'. Our LD score regression analyses employed a full baseline model

(baselineLD_v1.2) along with detailed annotations as discussed below, using the

'--overlap-annot' parameter alongside minor allele frequency files ('1000G_Phase3_frq').
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2.3.1 Tissue-specific heritability

To characterise tissue-specific partitioned heritability across human tissues, we performed

s-LDSC on published GWAS summary statistics. This included data from three WMH studies

and six AD studies, analysing phenotypes of WMHs and AD across ten published

tissue-specific binary annotations 31. For each GWAS, enrichment of phenotype-associated

SNPs within each tissue-type was calculated. The top three -log10(enrichment_p) values

(representing strength of association) were used to interpret the data qualitatively and check

for enrichment patterns across the GWAS studies. Thereafter, a 5% false discovery rate

threshold was applied on enrichment_p to correct for multiple testing comparisons

(enrichment_p < 0.05) to statistically ascertain tissue types enriched for each study following

the qualitative assessment.

2.3.2 Cell-specific heritability

To characterise the cell-specific contribution towards heritability of these phenotypes

(WMHs, AD) within these enriched cell types, we partitioned heritability of phenotypes

across published cell-specific continuous annotations 35 for all cell-types associated with

tissues enriched for WMHs. -log10(enrichment_p) values were used to interpret the data

qualitatively and check for enrichment patterns across the GWAS studies. A 5% false

discovery rate threshold was applied to correct for multiple comparisons (enrichment_p <

0.05) to statistically identify cell types enriched across all WMH and AD studies after the

qualitative analysis.

2.4 Gene-based analysis

MAGMA analysis: MAGMA was used to provide a gene-level resolution to complement the

broader tissue- and cell-specific heritability insights from LDSC. We carried out a gene

analysis (testing the joint association of variants) in MAGMA (version 1.10) 36 to identify

genes associated with our two phenotypes, namely WMHs and AD. MAGMA's gene analysis

uses a multiple linear principal components regression to map all SNPs from inputted

summary statistics to their respective genes, evaluating the collective impact of all variants

within each of the protein-coding genes from the NCBI 38 database 36. This method leverages

an F-test to determine gene p-values, which are computed efficiently compared to

permutation-based methods. Gene-level association statistics were obtained by combining

p-values within defined windows surrounding each gene – 35 kb upstream and 10 kb

downstream – accounting for linkage disequilibrium using data from the European
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super-population of the 1,000 Genomes Project Phase 3 37. Significance was defined by

Bonferroni-corrected p-values (p < 0.05/total number of protein-coding genes).

Characterization of MAGMA-prioritised genes: Statistically significant genes (p <

0.05/number of protein coding genes) identified for WMHs and AD were then assessed and

compared for their enrichment in different tissues and cell types across the brain-body axis

using the human protein atlas (https://www.proteinatlas.org/). Enriched tissue and cell types

were subsequently compared against the enriched tissues identified using LDSC analysis.

This comparative approach was designed to explore how the genes associated with these

phenotypes (i.e., WMHs, AD) relate to the cellular and tissue-specific enrichments found in

the LDSC results. Interactions between significant WMH- and AD-associated genes were

analysed using the STRING database (https://string-db.org/, accessed date: 19th Sep 2024).

To identify enriched genetic pathways, k-means clustering (k=5) was applied to the

interaction data obtained from STRING. Genes for WMHs were further compared to assess

overlap with genes associated with AD (http://www.alzgene.org/).

2.5 Gene-set enrichment analysis

We used MAGMA (version 1.10) to identify significant genes sets associated with our

phenotypes – WMHs and AD. Specifically, we used MAGMA gene-set analysis to assess

over-representation of biological functions based on gene annotations using curated gene sets

and gene ontology (GO) terms obtained from the Molecular Signature Database (MsigDB

v5.2). In this context, over-representation refers to the comparison between the observed gene

sets and the set of all genes considered in the GWAS analysis, including those mapped from

SNPs during the gene analysis. Gene sets with Bonferroni-corrected p < 0.05 were considered

to be significantly enriched.

3. RESULTS

3.1 Publicly Available GWAS Summary Statistics

Following our review of the PubMed literature and GWAS database (approach described in

section 2.1), we identified three WMH GWAS studies with publicly available summary

statistics 19,20,38 and sample sizes ranging from 11,226 to 33,200 participants. To ensure

consistency in linkage disequilibrium patterns for LDSC analysis, following our review of

GWAS catalogue for AD we included six studies published 2013 onwards due to their larger
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sample sizes (N = 74,046 to 636,674) and use of predominantly European cohorts 39–44..

Further details on these studies for WMHs and AD are illustrated in Figure 1, which also

provides a comprehensive summary of the sample sizes used.

Figure 1: Bar plot showing number of participants per GWAS study included in our analyses.
(“p” and diagonal line pattern indicates proxy cases). Abbreviations: AD, Alzheimer’s
disease; WMH, White matter hyperintensity.

Although the study by Smith et al. 38 did not focus solely on WMHs, it remains relevant due

to its use of the image-derived phenotype (IDP_T2_FLAIR_BIANCA_WMH_volume) for

accurately quantifying WMH volumes. This phenotype, captured via the widely used

automated BIANCA method 45 for WMH detection, enriched our analysis by increasing

sample size and enhancing our understanding of the genetic basis of WMHs.

3.2 Tissue and Cell-Specific Partitioned Heritability Analysis Results

Following qualitative and statistical analyses, we identified a significant enrichment of

WMH-associated SNPs in four distinct tissues. Displayed in Figure 2A, these findings were

supported by both visual (greyed cells) and statistical indicators (greyed cells with an

asterisk). WMH-associated-SNPs were significantly enriched in four tissues: Cardiovascular

and kidney enrichments were observed in WMH only, while central nervous system (CNS)

and liver enrichments were found common to both WMH- and AD-associated-SNPs (Figure

2A). Notably, we observed that the same three tissue types, i.e., immune, liver, and other

were enriched in non-proxy AD studies (Figure 2A) as compared to CNS, connective bone,

gastrointestinal, immune, liver, other for proxy AD studies (Figure 2A).
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Figure 2: Enrichments using tissue and cell specific annotations for WMHs and AD.
A) Enriched tissues for phenotypes (WMHs and AD) following false discovery rate
correction which was applied on -log10(enrichement_p) values. * indicates tissues that
survive false discovery rate correction. B) Graph showing cells (circle outlined using dashed
lines) and tissue types (circle outlined using solid line) enriched for WMH associated-SNPs
(solid arrow line) and cell-types enriched for overlapping tissues between WMHs and AD
(dashed arrow line). Abbreviations: AD, Alzheimer’s disease; CNS, Central nervous system;
WMH, White matter hyperintensity

Cell analysis within the four tissues enriched with WMH-associated-SNPs shows that 16/64

cell-types were also enriched, with vascular endothelial cells (vECs) being enriched in all

four tissues. The tissue with the highest proportion of cell-types showing

WMH-associated-SNPs enrichment was the liver (5/9 cell-types, 55%), followed by CNS

(6/18 cell-types, 33%). While WMHs and AD both showed enrichment in CNS and liver

tissues, in the CNS, cell-specific analysis highlighted enrichment in distinct cerebellar

cell-types, with inhibitory interneurons and Purkinje cells being enriched for AD and WMHs,

respectively (Figure 2B). Cell-specific analyses on liver cells showed no

AD-associated-SNPs enrichment.
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3.3 Gene-based Analysis Results

3.3.1 MAGMA analysis findings

WMH findings: MAGMA gene analysis identified 39 genes significantly (p < 0.05/total

number of protein-coding genes) associated with the WMH phenotype, across studies (N=3).

Among these, four genes were recurrently associated in more than one study. Specifically,

MTHFD1L was significantly associated with WMH phenotype in all three studies 19,20,38,

while NBR1, TMEM106A, and BRCA1 were found to be significant in two studies 20,38.

Expression of these 39 genes in tissue types across the brain-body axis checked using human

protein atlas showed high tissue specificity and enrichment for 18/39 genes with top five

enriched tissues being: brain (8/39), liver (5/39), testis (4/39), kidney (3/39), and heart (3/39)

(Table 1, Figure 3).

AD findings: In our MAGMA gene analysis for AD, a total of 291 genes were found to be

statistically significantly associated with AD (Supplementary Table S2) with 117/291 of them

being associated significantly in more than one study. Expression of these 291 genes in tissue

types across the brain-body axis checked using human protein atlas showed high tissue

specificity and enrichment for 164/291 genes with top five enriched tissues being: brain

(37/291, 12.7%), testis (30/291, 10.3%), liver (28/291, 9.6%), lymphoid (25/291, 8.6%), and

bone marrow (17/291, 5.8%) (Supplementary Table S2). These findings are in-line with our

findings from LDSC analysis where AD-associated SNPs were enriched not just in the CNS

but also in the liver.

Gene
symbol

Gene name
(HPA)

Tissue
(HPA cluster #)

Gene function
(HPA)

FAM167A Family with sequence similarity 167 member A ^brain (#61) Neuronal signalling

MCF2L2 MCF.2 cell line derived transforming
sequence-like 2

brain_neuronal (#17) Synaptic function

MTMR9 Myotubularin related protein 9 brain_neuronal (#17) Synaptic function

MTHFD1L Methylenetetrahydrofolate dehydrogenase
(NADP+ dependent) 1 like

^brain_cerebellum (#65) Nervous system
development

PRAG1 PEAK1 related, kinase-activating pseudokinase 1 ^brain_cerebellum (#65) Nervous system
development

KLHL32 Kelch like family member 32 brain_oligodendrocytes_
(#9)

Myelination

RND2 Rho family GTPase 2 brain_oligodendrocytes_
(#9)

Myelination

CCDC85A Coiled-coil domain containing 85A ^brain_non-specific
(#34)

Mixed function
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ARL5B ADP ribosylation factor like GTPase 5B ^liver (#83) Metabolism

NSUN6 NOP2/Sun RNA methyltransferase 6 ^liver (#83) Metabolism

PPP1R3B Protein phosphatase 1 regulatory subunit 3B ^liver (#83) Metabolism

G6PC1 Glucose-6-phosphatase catalytic subunit 1 ^liver & kidney (#1) Metabolism

MSRA Methionine sulfoxide reductase A ^liver_kidney_non-speci
fic (#43)

Mitochondrial
translation

TMEM106A Transmembrane protein 106A ^kidney_thyroid gland
(#51)

Unknown function

GATA4 GATA binding protein 4 ^heart_non-specific
(#68)

Protein processing

PTGES3L Prostaglandin E synthase 3 like ^heart_skeletal muscle
(#14)

Muscle contraction

PTGES3L-AA
RSD1

PTGES3L-AARSD1 readthrough ^heart_skeletal muscle
(#14)

Muscle contraction

VAT1 Vesicle amine transport 1 ^smooth muscle (#41) ECM organisation

PPP1R12A Protein phosphatase 1 regulatory subunit 12A ^smooth muscle (#41) ECM organisation

BRCA1 BRCA1 DNA repair associated ^lymphoid tissue &
bone marrow (#67)

Cell proliferation

DHX8 DEAH-box helicase 8 ^bone marrow (#77) Cell proliferation

CTLA4 Cytotoxic T-lymphocyte associated protein 4 ^lymphoid (#36) Cytokine signalling

CD28 CD28 molecule ^lymphoid (#36) Cytokine signalling

CLDN23 Claudin 23 ^intestine (#45) Digestion

MFHAS1 Multifunctional ROCO family signalling
regulator 1

^small intestine (#25) Absorption

IFI35 Interferon induced protein 35 ^spleen (#47) Immune response

SLC18A1 Solute carrier family 18 member A1 ^adrenal gland (#26) Steroid metabolism

ETV4 ETS variant transcription factor 4 ^parathyroid gland (#24) Vesicular transport

XKR6 XK related 6 testis (#46) Spermatogenesis

AARSD1 Alanyl-tRNA synthetase domain containing 1 ^testis (#78) Transcription

NBR1 NBR1 autophagy cargo receptor ^testis (#78) Transcription

PILRB Paired immunoglobin like type 2 receptor beta ^testis (#78) Transcription

RPL27 Ribosomal protein L27 ^non-specific (#18) Ribosome

RUNDC1 RUN domain containing 1 ^non-specific (#66) Transcription

ERI1 Exoribonuclease 1 ^non-specific (#40) Transcription

TRIP11 Thyroid hormone receptor interactor 11 ^non-specific (#68) Protein processing

TNKS Tankyrase ^retina & testis (#39) Cilium

LAMA4 Laminin subunit alpha 4 ^connective tissue (#62) ECM organisation

CTSB Cathepsin B ^adipose (#7) Mixed function

Table 1: Tissue specificity of WMH associated genes (18/39) across the brain-body using
human protein atlas (HPA). The 39 genes were found to be statistically significantly
associated with WMHs in MAGMA gene analysis. The bolded gene was significantly
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associated with WMHs across all three studies, while the underlined genes were found to be
significantly associated with WMHs in two studies. Clusters marked with ^ were found to be
enriched for AD associated genes from MAGMA analysis. Abbreviations: ECM,
Extracellular matrix; HPA, Human protein atlas.

Figure 3: Plot showcasing the gene count for statistically significant genes associated with
WMHs (found using MAGMA) expressed in different tissue types. Size of (x) represents the
gene count.

We observed overlap between genes associated with WMHs (after MAGMA analysis) and

genes associated with AD (from Alzgene), specifically ARL5B and MTHFD1L. However we

did not see any overlap between statistically significant MAGMA genes associated with

WMHs and AD.

3.3.2 Characterization of MAGMA-prioritised genes

Additional STRING network analyses of WMHs and AD associated genes (after MAGMA

analyses) identified 15/39 WMH genes interacting with 60 AD associated genes (Table 2,

Figure 4). Further k-means clustering analyses (k=5) of this interaction revealed pathways

associated with immune response (cluster 1), DNA repair (cluster 2), spliceosome and
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ribosome biogenesis (cluster 3), autophagosome-lysosome fusion (cluster 4), and heart

development (cluster 5) (Figure 4).

WMH associated
genes

# of interactions with
AD associated genes

AD associated genes
interacting with WMH genes

ARL5B 2 KLC3, PLEKHM1

BRCA1 14
CSTF1, ERCC1, MARK4, ERCC2, FUS, STAG3, PPP4C,
POLR2D, POLR2E, SUPT4H1, MCM7, CCNB2,
LOC102723407, CCNE2

CD28 7 NECTIN2, PVR, CD46, HLA-DRA, HLA-DRB1, LILRB1,
FCER1G,

CTLA4 10 PVR, NECTIN2, LOC102723407, HLA-DRB1, HLA-DQA1,
INPP5D, HLA-DQB1, HLA-DRA, LILRB1, PVRIG

CTSB 9 HLA-DRB1, HLA-DRA, FUS, HLA-DQB1, MME, HLA-DRB5,
HLA-DQA1, TREM2, FCER1G,

DHX8 1 SNRPD2
ETV4 1 FUS
FAM167A 1 PLCG2
GATA4 2 TBX6, WNT3
IFI35 4 RPS27L, WDR12, MRPL16, SYMPK
LAMA4 1 MYBPC3
MTHFD1L 1 SLC24A4
NBR1 2 PTK2B, PLEKHM1
NSUN6 1 WDR12
RPL27 4 RPS27L, WDR12, SNRPD2, SYMPK
Table 2: Interactions between statistically significant WMH and AD associated genes after
MAGMA analyses using STRING.
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Figure 4: k-means cluster analyses (k=5) of interactions between statistically significant
WMH and AD associated genes after MAGMA analyses (Confidence interval = 0.4). Dark
shaded nodes represent WMH associated genes and light shaded nodes represent AD
associated genes. Edges represent gene-gene associations and edge thickness (dotted to solid)
represents the confidence of this association. Cluster 1 (red): immune response; Cluster 2
(yellow): DNA repair; Cluster 3 (green): spliceosome and ribosome biogenesis; Cluster 4
(blue): Autophagosome-lysosome fusion; Cluster 5 (purple): somitogenesis and heart
development.
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3.4 Gene-set enrichment Analysis Results

Our MAGMA gene set analysis for WMHs did not reveal any statistically significant genetic

pathways while the analysis for AD highlighted multiple significant pathways

(Supplementary Table S3).

4. DISCUSSION

Our study offers new insight into tissue- and cell-specific genetic enrichment patterns across

the brain-body axis specific to WMHs, and common between WMHs and AD. Our

tissue-specific analysis revealed that WMH-associated SNPs were significantly enriched in

tissues beyond the CNS, namely liver, cardiovascular, and kidney – with liver being a

common tissue enriched for both WMHs and AD. Our cell-specific analysis showed

enrichment of vascular endothelial cells across the tissuel types enriched for WMHs,

highlighting their central role in the development of WMHs. Additionally, our gene-level

analysis highlighted overlapping patterns of tissue enrichment for both WMHs and AD, and

showed interactions between WMH and AD associated genes.

4.1 Genetic Enrichment of WMH-associated SNPs in Peripheral Tissues

Since we found that WMH-associated SNPs were significantly enriched in liver,
cardiovascular system, and kidney, their link with vascular brain injury has been discussed in
Sections 4.1.1 to 4.1.3, respectively.

4.1.1 Link between liver health and vascular brain injury

Using cross-sectional data from middle-aged to older adults (N=1,260), Jang et al. 28 reported

that fatty liver disease (non-alcoholic variant) was significantly associated with moderate to

severe cerebral WMH volumes, though not lacunes and microbleeds. This finding was

reinforced by a longitudinal study (N=1,706) which showed that midlife non-alcoholic fatty

liver disease predicted greater late-life WMH volume and a faster rate of WMH progression

over six years 46. Additionally, midlife non-alcoholic fatty liver disease was linked to

Alzheimer's disease biomarkers, including lower plasma Aβ42:40 ratios and

temporal-parietal cortical thinning 46. Systemic inflammation and vascular injury, including

carotid atherosclerosis 28,47–49, are believed to underlie the liver-brain connection by

weakening the blood-brain barrier and causing endothelial dysfunction, ultimately

contributing to the development of WMHs 50,51. The proposed inflammation-based
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mechanism has since been supported by large-scale whole body imaging data from the UK

Biobank (N > 30K), which demonstrated that liver inflammation and fibrosis were

significantly associated with larger WMH volumes and perturbed white matter microstructure
52. Reinforcing the vascular-based mechanism, the adiponutrin gene (PNPLA3 [patatin-like

phospholipase 3]; rs738409 [C > G]), a well-established non-alcoholic fatty liver disease risk

variant, has been not only (a) associated with increased WMH volume and microbleeds 53, but

also (b) linked to carotid atherosclerosis in select studies 54. Additionally, animal studies

indicate that hyperammonemia associated with chronic liver disease, reduces cortical

oxygenation, suggesting that impaired cerebral blood flow and oxygen supply may contribute

to WMH development 55.

4.1.2 Link between cardiovascular health and vascular brain injury

A review of studies (1973-2018) found that heart hypoperfusion, stemming from pathologies

like cardiac small vessel disease, can contribute to WMHs by reducing cerebral blood flow 56.

Supporting this, Mazini et al. 57 showed that in individuals with cardiac small vessel disease,

higher resting left-ventricle myocardial blood flow correlated with increased deep grey matter

WMHs. In hypertensive individuals, higher aortic pulse wave velocity, a marker of aortic

stiffness, was significantly associated with greater whole-brain WMH volumes 58. Similarly,

higher pulse pressure in hypertensive individuals was associated with WMHs. 59. A large

body of literature indicates that the link between cardiac dysfunction and white matter

hyperintensities is due to mechanisms such endothelial dysfunction, vascular ageing and

fibrosis 56.

4.1.3 Link between kidney health and vascular brain injury

Supporting our findings, emerging literature links kidney health to vascular brain injury. In

particular, a significant association between decreased kidney function and a higher

prevalence of WMHs was reported by Makin et al. 27. The authors suggested that factors such

as hypertension may cause injury to both the kidney and the cerebrovasculature 60,61. Further

supporting the kidney-WMH connection, two systematic reviews examined the relationship

between chronic kidney disease and cerebral WMHs and found that (a) individuals with

chronic kidney disease had significantly higher WMHs compared to controls 62, and (b)

quantitatively determined WMH volume increased significantly in chronic kidney disease

patients with lowered glomerular filtration rate, increased creatinine clearance, and higher

urine albumin-to-creatinine ratio 63. The kidney and vascular brain injury connection is
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further reinforced by the increased cerebral WMH volume and impaired cerebrovascular

reactivity in hemodialysis patients, often in advanced stages of chronic kidney disease 64.

Moreover, longitudinal data (6-month) in individuals with cerebral small vessel disease

demonstrated that those with renal impairment had significantly higher WMH volume than

those without, with the association persisting after adjusting for hypertension but not after

adjusting for age 65.

4.2 Cell-specific Enrichment of WMH-associated SNPs

Given that our cell-specific analysis showed WMH-associated SNPs enriched in a) vascular

endothelial cells across tissue types enriched for WMHs, and b) brain cell types we will

discuss them next. However, it should be noted that literature on the remaining cell types in

the brain (limbic, Skor2_npsr1 positive) and other organs and their association with WMHs

were sparse, and recommend additional future investigations.

4.2.1 Systemic endothelial cell-type enrichment for WMH-associated SNPs

We demonstrated that SNPs associated with WMHs were enriched in vECs not only in the

central nervous system, but also in cardiovascular (heart, lungs), liver, and kidney tissues.

Our findings are supported by literature linking WMHs with systemic endothelial cells.

Specifically, in older adults with cardiovascular disease, endothelial-dependent vasodilation

has been reported to be inversely associated with WMH volumes 66. Similarly, in acute

ischemic stroke patients elevated endothelial dysfunction markers (homocysteine and

haemoglobin A1c 67) were independently associated with increased WMH volumes 68. In

addition to the cardiovascular system, WMHs have also been associated with endothelial

cells in the liver. Specifically, the liver plays a crucial role in regulating fibrinogen

(coagulation marker), which has been linked to endothelial dysfunction and WMHs 69,70.

Endothelium dysfunction in brain and kidneys have been shown (a) in low-grade chronic

inflammation, which results in increased WMH volumes 71 and urine albumin excretion 72,73,

and (b) with the association between albumin to creatinine ratio and WMH volumes 73,74.

4.2.2 Brain cell-type enrichment for WMH-associated SNPs

We observed enrichment of WMH-associated SNPs in astrocytes within the cerebrum, which

is consistent with literature implicating astrocytes in the development and progression of

these lesions. Astrocytes play a crucial role in maintaining white matter integrity by (a)

regulating ion-water homeostasis, preventing intra-myelin edema, and (b) supporting
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blood-brain barrier integrity. Astrocytic dysfunction can lead to impaired neurovascular

coupling, increased susceptibility to ischemic damage, and a decline in blood-brain barrier

structure, all of which are key factors in the development of WMHs 75–78. We also

demonstrated different cerebellar cell types being enriched for WMHs (Purkinje cells).

Substantial evidence also suggests that in AD neocerebellum, the activation of microglia and

development of neurovascular inflammation are not associated with Purkinje cells count as

measured through immunoreactivity to tau and ubiquitin proteins 79.

4.3 Gene level findings

Our gene-level analysis revealed certain overlapping patterns of tissue enrichment, and

interactions between WMH- and AD-associated genes with newly identified WMH genes

showing overlap with previously reported genes, including KLHL32, TNKS, and XKR6 22. We

found several interactions between WMH and AD associated genes, in five clusters described

below.

Immune activation (cluster 1) pathways are significant for both WMHs and AD, since white

matter lesions and amyloid-beta plaques show elevated microglial activity, suggesting shared

immune responses triggered by blood-brain barrier disruption. 80–82. Dysregulated DNA repair

mechanisms (cluster 2) are implicated in oxidative DNA damage associated with white

matter lesions, as studies show increased oxidative stress and impaired DNA repair in both

WMHs and surrounding normal appearing white matter 83,84. Similarly, in AD, neurons

exhibit heightened damage and reduced DNA repair capacity, contributing to progressive

neurodegeneration 85,86. Dysregulated spliceosomal and ribosomal components (cluster 3)

contribute to white matter damage, a hallmark of small vessel disease including the formation

of WMHs. In CADASIL, a genetic form of cerebrovascular pathology, this pathway drives

WMH development 87. Similarly, in AD, mislocalization of spliceosomal proteins to tau

tangles disrupts normal cellular processes, contributing to neurodegeneration 88.

5. CONCLUSION

Overall, this study uncovers tissue- and cell-specific genetic enrichment patterns specific to

WMHs and shared with AD. We unveiled that WMH-associated SNPs were enriched in

tissues beyond the CNS, with liver being a common enriched tissue-type between WMHs and
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AD. Our analysis emphasised the central role of vascular endothelial cells in WMH

development and also revealed interactions between genes associated with WMHs and AD.

Our MAGMA gene-analysis findings and subsequent analysis using the human protein atlas

for WMHs and AD substantiated our s-LDSC findings, where WMH and AD-associated

SNPs were enriched not just in the CNS but also in other tissue types (WMHs: liver, kidney,

cardiovascular) (AD: liver, immune, gastrointestinal). Although our gene set analysis for

WMHs did not reveal any statistically significant pathways due to the small sample size, a

similar analysis highlighted well-known pathways implicated in AD.

Moreover, our findings provide new insights to the proposition that presence of MRI-detected

WMHs is indicative of an underlying multi-system endothelial disorder affecting several

vascular beds 74,89. We recommend further follow-up studies to enhance our understanding of

the causative pathways associated with these multisystemic genetic findings.
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