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ABSTRACT 

Background: A better mechanistic understanding of schizophrenia spectrum disorders is crucial 

to develop efficient treatment approaches. Therefore, this study investigated longitudinal 

interrelations between clinical outcomes, brain structure, and somatic health in post-acute 

individuals from the schizophrenia spectrum. 

Methods: A sample of 63 post-acute patients from two independent physical exercise studies 

were included in the final analyses. Demographic, clinical, cognitive, and somatic data were 

acquired at baseline and post-intervention, as were structural magnetic resonance imaging scans. 

Multivariate cross-lagged panel modelling including mediators was used to study the mutual 

interrelations over time between the clinical, neural, and somatic level. 

Results: A higher baseline global grey matter volume and larger regional grey matter volumes of 

the hippocampal formation, precuneus, and posterior cingulate drove improvements in multiple 

clinical outcomes, such as daily-life functioning, negative symptoms, and cognition. Increases in 

white matter volume from baseline to post-intervention resulted in significantly reduced positive 

symptoms and higher daily-life functioning following the intervention. 

Conclusion: Our findings suggest that stimulating neuroplasticity, especially in the hippocampal 

formation, precuneus, and posterior cingulate gyrus, may represent a promising treatment target 

in post-acute schizophrenia spectrum disorders. Physical exercise therapies and other lifestyle 

interventions, and brain stimulation approaches reflect promising treatment candidates. Given the 

exploratory character of the statistical analysis performed, these findings need to be replicated in 

independent longitudinal imaging cohorts of patients with schizophrenia spectrum disorders. 
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Introduction  

Schizophrenia Spectrum Disorders (SSD) are debilitating psychiatric conditions characterized by 

positive, negative, and cognitive symptoms, as well as by long-term impairments in daily life 

functioning in a significant proportion of patients (1). Apart from those behavioral domains, 

patients with SSD are often affected by substantial somatic comorbidities, resulting in significant 

reductions in general body and organ health (2). Current treatment options encompass 

antipsychotic medication, psychotherapy, cognitive remediation, non-invasive brain stimulation, 

or physical exercise interventions, each differing with regard to their therapeutic windows and the 

underlying treatment goals (3–7). Despite the efficiency of these interventions, the current long-

term disease outcomes in people with SSD offer substantial room for improvement: For instance, 

current estimates on remission rates averaged across different patient populations hover between 

26 and 58 % (8,9), whereas recovery rates only range between 13.5 and 36 % (8–11). This places 

SSD among the top 20 diseases with the highest Years-Lived-With-Disability index (12), 

emphasizing the urgent need to improve current treatment options. 

To enhance the long-term therapeutic success in SSD, a better mechanistic understanding of 

clinical symptoms, cognitive deficits, and daily-life functioning is warranted. Such mechanisms in 

SSD may be observable on the cerebral level assessed via structural magnetic resonance 

imaging (MRI). Large-scale cross-sectional evidence demonstrates that structural deteriorations 

in key brain regions such as the insula, anterior and posterior cingulate cortex, superior and 

middle frontal cortices, precuneus, hippocampal formation, putamen, pallidum, caudate, 

thalamus, and amygdala, or the cerebellum are linked to different domains of psychiatric 

symptoms and cognitive functioning in SSD (13–22). Moreover, widespread alterations in white 

matter integrity have been associated with cognitive deficits (23). However, these brain-behavior 

associations obtained from cross-sectional data yield only limited pathophysiological relevance, 

as they do not allow to make inferences on how the neural level affects the clinical level over time 

and vice versa. 
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To address this issue longitudinal neuroimaging studies are warranted. Respective evidence 

reveals an accelerated grey matter volume loss over time across multiple brain regions in SSD 

linked to the type of antipsychotic treatment and therefore potentially also to the long-term course 

of symptom severity (24–26). In line with these findings, grey matter volumes can serve as a 

predictor of long-term clinical outcomes in SSD (27), although many machine learning studies in 

this field have noticeable shortcomings such as a limited generalizability due to small sample 

sizes (28,29). In addition to methodological concerns, the exact mechanisms of action between 

brain structures and specific symptom domains in SSD remain largely unknown. For instance, in 

the context of physical exercise studies in SSD, there is preliminary evidence that exercise elicits 

diverse adaptations of brain structure throughout the brain, but the clinical implications remain 

unclear, as does the impact of clinical characteristics of patients on structural brain adaptability 

(30–34). 

Besides the neural level, the significance of deteriorations in somatic health in SSD and other 

psychiatric conditions has been increasingly noticed in recent years (2). For instance, obesity in 

SSD is linked to both overall symptom severity (35) and impaired brain structure (36). However, 

the longitudinal interrelations between somatic health, clinical domains, and brain structure need 

to be further investigated in people with SSD.  

Hence, we follow an exploratory research approach based on longitudinal data from two exercise 

intervention studies in SSD to first investigate the mutual interrelations between symptom 

severity, cognition, daily-life functioning, brain volumes, and somatic health at baseline and post-

intervention. Second, we examine if changes in brain volumes and somatic health during the 

intervention mediate the temporal reciprocal interrelations between symptom severity, cognitive 

performance, and daily life functioning from pre- to post-intervention. 
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Methods 

This work utilizes data from two somatic exercise studies conducted in people with SSD. One is 

the Enhancing Schizophrenia Prevention and Recovery through Innovative Treatments (ESPRIT) 

C3 study (NCT03466112) performed at different sites across Germany (37,38). In the project at 

hand, only data acquired at the Department of Psychiatry and Psychotherapy of the Ludwig-

Maximilians-University Hospital in Munich was utilized. The second exercise trial (NCT01776112) 

was executed at the Department of Psychiatry and Psychotherapy of the University Medical 

Center Goettingen (30,39). 

Both studies were in line with the Declaration of Helsinki and ethical approval was provided by 

the local ethics committees of the Ludwig-Maximilians-University Hospital and the University 

Medical Center Goettingen, respectively. 

 

Sample and Study Design 

The ESPRIT C3 study investigated the effects of two different types of exercise on several health 

outcomes in people with SSD. Patients were either randomized to an aerobic exercise 

intervention on bicycle ergometers or to a flexibility, strengthening, and balance training. Both 

groups exercised three times per week between 40 and 50 minutes over a period of six months. 

For this work, we considered behavioral and MRI data from pre- and post-intervention. Details on 

the study design and the main results are described elsewhere (37,38)  

The second study entailed a three-month aerobic exercise intervention on bicycle ergometers 

with additional cognitive remediation starting in the sixth week of the intervention. Patients 

exercised three times per week for 30 minutes per session. The control group played table soccer 

for the same amount of time and also received cognitive remediation after six weeks of the 

intervention. The project at hand considers behavioral and MRI data from baseline and post-

intervention only of the patients diagnosed with SSD. 
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Inclusion and exclusion criteria are listed in the original publications (30,37–39). In the ESPRIT 

C3 study only a subgroup of patients underwent the MRI assessments. After quality control of 

behavioral and MRI data (for details see supplemental information), 63 people with SSD were 

included in the final analysis. 

 

MRI Data Acquisition 

Participants of the ESPRIT C3 study were scanned in a 3T Siemens Magnetom Skyra MRI 

scanner (SIEMENS Healthineers AG, Erlangen, Germany) at the Department of Radiology of the 

Ludwig-Maximilians-University Hospital Munich. A 3D T1-weighted magnetization-prepared rapid 

gradient echo (MPRAGE) sequence with an isotropic spatial resolution of 0.8 x 0.8 x 0.8 mm3 was 

acquired. In the second exercise study, a 3T Magnetom TIM Trio MRI scanner (SIEMENS 

Healthineers AG, Erlangen, Germany) was used to acquire a 3D T1-weighted MPRAGE 

sequence at 1.0 x 1.0 x 1.0 mm3 isotropic resolution. Supplementary Table S1 summarizes the 

scanning parameters. 

 

Quality Control and MRI Data Processing 

All available structural images were inspected visually to evaluate the data quality. The automated 

quality control software MRIQC was used compute relevant image quality metrics (40). Further 

details on the quality control procedure are provided in the supplemental information. 

Structural images were processed using the Neuromodulation and Multimodal Neuroimaging 

Software (NAMNIs) version 0.3 (41). NAMNIs is mainly based on tools from FSL (42) and includes 

the following processing steps for structural MRI data: image reorientation to standard space, 

brain extraction, creation of a binary masks, linear and non-linear registration, inversion of the 

transformation and deformation field, brain segmentation, computation of global grey matter 

volume, white matter volume and cerebrospinal fluid, mapping of brain atlas of choice into the 

native space, and calculation of regional grey and white matter volumes. 
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We used the third version of the Automated Anatomical Labeling (AAL3) atlas (43) to compute 

the regional grey matter volumes of the bilateral insula, anterior and posterior cingulate cortices, 

superior and middle frontal cortices, precuneus, hippocampus, putamen, pallidum, caudate, 

thalamus, and amygdala. The aformentioned regions were selected based on previous literature 

suggesting their clinical relevance in SSD (see introduction). The regions of interest are visualized 

in Figure 1. 
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Figure 1: Regions of Interest 

 
The regions of interest are visualized for which grey matter volumes were computed. Note that for the 
thalamus, cerebellum, and anterior cingulate gyrus only one subregion is illustrated in this figure. For the 
analyses, the volumes of these subregions were summed up to one volume score. 

 

Clinical and Cognitive Assessments 

To assess positive and negative symptoms the Positive and Negative Syndrome Scale (PANSS) 

(44) was utilized in both exercise studies, as was the Global Assessment of Functioning (GAF) 

scale to assess daily life functioning (45). The first trial and the interference trial of the Verbal 

Learning and Memory Test (VLMT) (46) were averaged to a short-term memory score, whereas 
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the sixth and seventh trial were averaged to a long-term memory score. The backward version of 

the Digit Span Test (DST) (47) was used to assess working memory. The Trail Making Tests 

(TMT) A and B (48) were averaged to provide a more global measure of cognition covering 

multiple domains such as processing speed, working memory updating, and response inhibition. 

A detailed description of the cognitive test batteries is provided in the supplemental information. 

Clinical assessments and cognitive tests were administered pre- and post-intervention in both 

exercise studies. 

 

Somatic Health Assessments 

To quantify general somatic health, we computed a principal component analysis across subjects 

and sessions including body-mass-index (BMI), and levels of cholesterol, HbA1c, and 

triglycerides as variables. We used the score on the first principal component of each subject in 

each session as an indicator of general health. A lower score on the first principal component was 

associated with a higher BMI and higher levels of cholesterol, HbA1c, and triglycerides, thus 

indicating a worse somatic health (supplemental information). 

 

Statistical Data Analysis 

To achieve the first aim of the study, namely studying the reciprocal temporal relations between 

symptom severity, cognition, daily life functioning, brain volumes, and somatic health measured 

at baseline (first measurement occasion) and after the intervention (second measurement 

occasion), multivariate cross-lagged panel modelling (CLPM) (49) was applied using the lavaan 

package (50) in R version 4.2.2. We fitted a total of 28 separate models for global grey and white 

matter volume, as well as for 13 brain regions of interest for both hemispheres. In all our models, 

(residual) correlations between variables at the same levels (i.e. pre- and post-intervention) were 

allowed. Further, the models comprised exclusively manifest variables as indicators, represented 

in positive and negative symptom severity scores, short-term, long-term, and working memory 
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performance scores, daily life functioning scores, somatic health scores, and the respective brain 

volume scores, each at baseline and post-intervention. In all CLPM, the autoregressive paths 

represented the stability of individual differences from the first to the second measurement 

occasion. These are the effects of all our measured variables on themselves. The cross-lagged 

paths are the effects of each variable on each other variable measured at a later timepoint, while 

controlling for the prior level of the corresponding variable being predicted (51). Thus, the CLPM 

allowed us to explore the directional interrelations between all variables of investigation over the 

course of time. Given the exploratory approach of this study, no correction for multiple 

comparisons was performed, but significant results of single brain regions were only further 

interpreted if they were consistent across hemispheres. Figure 2A visualizes the general structure 

of the cross-lagged panel models. 

Following the second aim of the study, examining the potential mediating role of brain volume and 

somatic health changes during the intervention, we included additional manifest mediator 

variables in our CLPM. More precisely, we specified the CLPM as described above and 

additionally included the change of brain volumes and somatic health scores (i.e., post-

intervention - pre-intervention) as mediators. We defined a total of 29 separate models for the 

change in somatic health score, global grey and white matter volume, as well as for changes in 

13 brain regions of interest. Beside the two mediator variables, the models contained positive and 

negative symptom severity scores, short-term, long-term, and working memory performance 

scores, and daily life functioning scores at baseline and post-intervention. Specifying CLPM with 

additional mediator variables allowed us to investigate the role of changes in brain volume somatic 

health in the relation between baseline and post-intervention levels of the investigated variables 

while simultaneously controlling for any additional effects of the corresponding variables in the 

models. No correction for multiple comparisons was performed. Significant results in the case of 

single brain regions were only considered if they were consistent across hemispheres. Figure 2B 

illustrates the general structure of the mediation models. 
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In all our models, age, sex (female = 0, male = 1), chlorpromazine equivalents (Defined Daily 

Doses method (52)), years of education, exercise group (first dummy coding: aerobic exercise = 

0, flexibility, strengthening, and balance training = 1; second dummy coding: aerobic exercise = 

0, table soccer = 1), and study (Goettingen = 0, Munich = 1) were included as covariates to control 

for confounding influences of these variables on the interrelations between the main variables of 

investigation. Furthermore, if not otherwise described the relations between all variables and 

covariates were allowed to vary freely in all models. Thus, all our models were saturated with df 

= 0, meaning that the models had as many freely estimated parameters as observations in the 

data set (i.e., variances, covariances, means). The maximum likelihood estimator was used and 

confidence intervals were calculated. The analysis dataset was free of missing data.  
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Figure 2: Cross-lagged Panel Models 

 
The manifest path models computed in the current study are illustrated. A) Cross-lagged panel models 
including baseline and post-intervention scores. The global and regional brain volumes were inserted 
separately. Note that covariances between baseline and between post-intervention variables and 
covariates are not displayed for the sake of visibility. B) Cross-lagged panel models with mediators including 
clinical and cognitive variables at baseline and post-intervention, as well as brain volumes and somatic 
health as change scores (post-intervention – baseline). Autoregressive and cross-lagged paths are 
illustrated in dashed grey lines. Note that covariances between baseline and between post-intervention 
scores are not shown for the sake of visibility.  
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Results 

Patients Characteristics 

Table 1 summarizes the sample characteristics. The majority of subjects received an aerobic 

exercise therapy. More males than females were included. Overall, the sample was at a rather 

post-acute phase of the disease, as indicated by relatively low positive symptom severity and 

average functioning scores. 

 

Table 1. Sample Characteristics 

 Patients with SSD 
N = 63 

(n/mean ± SD) 

Study 
Goettingen 
Munich 

 
42 
21 

Study arm 
Aerobic exercise 
Flexibility, strengthening, and balance training 
Table soccer 

 
27 
15 
21 

Sex 
Female 
Male 

 
19 
44 

PANSS at baseline 
Positive symptoms 
Negative symptoms 

 
12.50 ± 5.60 
16.30 ± 8.20 

GAF at baseline 61.9 ± 11.0 

Chlorpromazine equivalents 526 ± 524 

Education (years) 15.4 ± 3.92 

Total number of trainings 33.7 ± 9.20 

The sample size refers to the number of participants that were considered in the final statistical data 
analysis. N, total sample size; n, sample size per category; PANSS, Positive and Negative Syndrome Scale; 
GAF, Global Assessment of Functioning Scale; SD, standard deviation. 

 

Reciprocal Longitudinal Interrelations between Clinical, Neural, and Somatic Outcomes  

Across all 28 cross-lagged panel models, multiple significant paths were detected: All 

autoregressive paths were significant (Table S3). With regard to the cross-lagged paths, a higher 
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global grey matter volume predicted higher working memory performance post-intervention (β = 

0.36, CI = [0.09, 0.63], p = 0.010), whereas global white matter volume had no effect. With regard 

to the single brain regions, a higher bilateral hippocampal grey matter volume at baseline drove 

higher post-intervention daily life functioning (left: β = 0.21, CI = [0.04, 0.39], p = 0.018; right: β = 

0.19, CI = [0.01, 0.38], p = 0.042). Larger grey matter volume in the bilateral precuneus resulted 

in lower negative symptom severity (left: β = -0.26, CI = [-0.09, -0.42], p = 0.002; right: β = -0.19, 

CI = [-0.02, -0.36], p = 0.027), higher working memory performance (left: β = 0.28, CI = [0.04, 

0.51], p = 0.019; right: β = 0.35, CI = [0.13, 0.58], p = 0.002), and higher somatic health (left: β = 

0.22, CI = [0.04, 0.40], p = 0.017; right: β = 0.23, CI = [0.05, 0.41], p = 0.011) after the intervention. 

Larger grey matter volume in the posterior cingulate gyrus predicted higher post-intervention long-

term memory performance (left: β = 0.18, CI = [0.03, 0.33], p = 0.021; right: β = 0.20, CI = [0.06, 

0.34], p = 0.004) and higher post-intervention levels of daily-life functioning (left: β = 0.30, CI = 

[0.11, 0.48], p = 0.001; right: β = 0.20, CI = [0.02, 0.37], p = 0.031). A higher baseline grey matter 

volume in the bilateral insula resulted in more severe positive symptoms at post-intervention (left: 

β = 0.22, CI = [0.04, 0.40], p = 0.017; right: β = 0.20, CI = [0.04, 0.37], p = 0.017). A higher somatic 

health at baseline drove larger grey matter volume in the bilateral cerebellum (left: β = 0.09, CI = 

[0.01, 0.18], p = 0.038; right: β = 0.15, CI = [0.03, 0.26], p = 0.013), while a higher working memory 

performance (left: β = 0.10, CI = [0.02, 0.17], p = 0.015; right: β = 0.09, CI = [0.01, 0.17], p = 

0.024) and daily-life functioning (left: β = 0.14, CI = [0.02, 0.26], p = 0.021; right: β = 0.14, CI = 

[0.02, 0.26], p = 0.028) at baseline resulted in larger bilateral grey matter volume in the caudate 

nucleus. Similarly, a higher working memory performance at baseline predicted larger grey matter 

volume in the bilateral putamen (left: β = 0.13, CI = [0.01, 0.24], p = 0.029; right: β = 0.14, CI = 

[0.00, 0.27], p = 0.045). No other brain regions revealed similar effects across both hemispheres. 

A higher positive symptom severity at baseline resulted in worse post-intervention somatic health 

across all 28 models (for model with global grey matter volume as neural entity: β = -0.25, CI = [-

0.06, -0.43], p = 0.010). In some models a higher somatic health at baseline was linked to a higher 
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working memory performance after the intervention (supplemental table S2), but given the 

inconsistency of this finding we did not further interpret it. Supplemental table S2 and S3 

summarize all statistics including overall model fits and effects sizes, confidence intervals and p-

values for all significant and non-significant paths. 

 

 

Mediating Role of Changes in Brain Volumes and Somatic Health 

Across all 29 cross-lagged panel models with mediators, only a few significant paths were 

obtained: All autoregressive paths were significant (Table S5 and S7). An increase in global white 

matter volume from pre- to post-intervention drove lower positive symptom severity (β = -0.64, CI 

= [-0.05, -1.23], p = 0.033) and higher daily-life functioning (β = 0.77, CI = [0.02, 1.51], p = 0.044) 

after the intervention, while a worsening in somatic health was linked to higher daily life functioning 

(β = -0.34, CI = [-0.10, -0.57], p = 0.005) following the intervention. A higher working memory 

performance at baseline resulted in a more pronounced increase of grey matter volume in the 

bilateral caudate nucleus (left: β = 0.09, CI = [0.01, 0.17], p = 0.022; right: β = 0.09, CI = [0.00, 

0.17], p = 0.043). No further brain regions showed consistent mediating effects across both 

hemispheres. Supplemental tables S4 – S7 contain all statistics including overall model fits and 

effects sizes, confidence intervals and p-values for all significant and non-significant paths. 
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Discussion 

Inspired by the long-term aim to identify potential treatment targets in SSD, the current study first 

explored the reciprocal interrelations between symptom severity, cognition, daily-life functioning, 

brain volumes, and somatic health before and after the intervention. Further we investigated if 

changes in brain volumes and somatic health mediate the mutual interrelations of clinical 

symptoms, cognitive performance, and daily-life functioning from pre- to post-intervention. 

We found that a higher global grey matter volume at baseline resulted in higher working memory 

performance following the intervention. This is in line with current findings in the general 

population, demonstrating that higher initial grey matter volume mitigates age-related cognitive 

decline over time, while long-term grey matter volume reductions throughout the lifespan are 

directly associated with continuous cognitive decline (53). In people with SSD, global grey matter 

volume is reduced compared to controls (54) and an accelerated loss of grey matter over time 

has also been demonstrated (24–26). Considering the concept of cognitive reserve (55), these 

findings point toward a decreased brain reserve in SSD potentially characterized by reduced 

numbers of neurons or synapses throughout the brain, increasing the proneness to cognitive 

impairment. Our findings fit well to this framework, as we could show that those patients with 

higher global grey matter volume will show higher working memory performance after the 

intervention. Interestingly, we did not observe similar effects for other cognitive domains which 

may reflect an issue of statistical power, because when using a global cognition score as clinical 

outcome, we obtained the effect again (supplemental table S9). In sum, our results highlight the 

importance of preventing global grey matter volume decline in SSD, because patients with 

pronounced grey matter loss are less likely to show cognitive benefits in the context of an 

intervention. Therefore, future treatments in SSD should target general brain health, while also 

considering somatic health, given the influence of the latter on brain structure in SSD (36). 

Combined lifestyle interventions targeting physical activity, diet, sleep, and substance use may 
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be promising candidates to tackle brain and somatic health in SSD, as indicated by respective 

evidence published in recent years (56–61). 

Our results further suggest that a larger hippocampal grey matter volume at baseline predicts 

higher daily-life functioning following the intervention. Structural impairments of the hippocampal 

formation in SSD has been repeatedly demonstrated (14,22,54,62–67). With regard to the clinical 

implications of hippocampal volume decline in SSD, converging evidence reveals associations to 

impaired cognitive functioning (18,68), to symptomatic worsening over time (69), and to long-term 

deteriorations in daily-life functioning (70). The current results build on these findings, indicating 

that patients with higher baseline grey matter volume in the hippocampal formation show higher 

daily-life functioning after the intervention. This effect may be driven by the following mechanisms: 

Decreased hippocampal volume in SSD observed in neuroimaging studies is sought to result from 

atrophy processes involving a reduction of the number, volume and size of neurons (71) and 

oligodendrocytes (72,73). This atrophy may origin from elevated glutamate levels within the 

hippocampal formation in SSD that cause a spreading pattern of hypermetabolism and 

pronounced excitation-inhibition imbalance (74). Imbalanced excitatory and inhibitory signaling 

throughout the brain represents a core dysregulation, contributing to the general pathology in SSD 

(75). Hence, excitation-inhibition imbalance in the hippocampal formation may underly long-term 

reductions of grey matter volume and thus explain the effect on daily-life functioning observed in 

our data. To conclude, our findings emphasize the importance of hippocampal health in SSD 

impacting the capability of patients to show improvements in daily-life functioning. Consequently, 

future treatments should aim for stimulating hippocampal neuroplasticity to ameliorate the global 

functional outcome of patients. Aerobic exercise interventions (56) or – possibly at some future 

stage – subcortical brain stimulation methods such as focused ultrasound (76) may reflect a 

promising candidate for such treatment approach. 

Our findings further indicate that a larger grey matter volume in the precuneus at baseline explains 

lower negative symptoms, higher working memory performance, and higher somatic health after 
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the intervention, while a higher grey matter volume in the posterior cingulate gyrus leads to higher 

long-term memory performance and daily-life functioning. Both the precuneus and the posterior 

cingulate gyrus, but also the previously discussed hippocampal formation, are part of the default-

mode network reflecting a self-referential introspective neural state linked to theory of mind and 

social cognition (77,78). In SSD, both structural and functional abnormalities in the default-mode 

network align with more severe negative symptom severity (79,80), impairment in theory of mind 

(81) and decline in working memory (82). Furthermore, grey matter volume of the posterior 

cingulate gyrus has been shown to predict functional outcome in SSD (83), while functional 

segregation and integration within the default-mode network has been suggested to influence 

treatment response (84). Our findings align with these results, emphasizing the crucial role of the 

default-mode network in the pathophysiology of SSD. Future studies should evaluate possibilities 

to influence structure and function of the default-mode network to improve the overall psychiatric 

health status of post-acute patients with SSD. Different types of neurostimulation methods may 

be promising candidates (76,85). 

Our findings suggest that increases in global white matter volume from pre- to post-intervention 

drive lower positive symptom severity and higher daily-life functioning after the intervention. White 

matter pathology in SSD has been mostly associated with cognitive deficits, both on the empirical 

(23) and the theoretical level (86). Our data rather point towards its relevance for positive symptom 

severity and global functioning, but especially the latter strongly depends on cognitive functioning 

(87). Hence, increasing global white matter volume and improving myelination of the brain in SSD 

can be regarded as a promising treatment approach to achieve further global improvements in 

symptomatology, cognition, and daily-life functioning, Indeed, a recent theory suggests a deficient 

maturation of oligodendrocyte precursor cells to cause cognitive deficits in SSD and proposes a 

combined therapy of aerobic exercise and clemastine to improve myelin plasticity and global 

structural connectivity (86). Further results of this study are discussed in the supplemental 

information. 
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Our study includes several limitations that have important implications for future research. First, 

we did not correct for multiple comparisons, as we aimed to conduct a global exploratory analysis 

to generate hypotheses on regarding the mutual interrelations between clinical outcomes, brain 

volumes, and somatic health. Hence, our findings require a replication in an independent sample 

to evaluate if the identified mechanisms of action are stable across samples. Future longitudinal 

imaging studies in SSD should use hypothesis-driven approaches, focusing for instance on the 

relevant regions identified in the current work. Second, the directional effects found in this study 

need to be interpreted with caution. Even though we used cross-lagged panel modeling to study 

reciprocal effects, there may have been confounding variables unavailable in the current datasets, 

such as medication change, that may explain the effects obtained. Future studies need to repeat 

the current analyses using a randomized-controlled design while drawing on a larger sample to 

enable robust causal inferences. Lastly, our findings have limited generalizability, as the 

underlying sample mainly consist of stable and post-acute patients with SSD who participated in 

different exercise intervention studies. Consequently, the observed mechanisms may only be 

present in post-acute SSD and may be specific in the context of exercise treatments. Hence, 

replication is required in other patient populations that were assessed in different longitudinal 

study designs to evaluate if the current findings reflect general pathophysiological trajectories. 

To conclude, our results suggest that increasing the global grey and white matter volume and the 

regional grey matter volumes in the hippocampal formation, precuneus, and posterior cingulate 

gyrus reflect potential treatment targets to achieve further clinical improvements in post-acute 

SSD. Multiple treatment approaches reflect promising candidates to address these targets, 

although a replication of the present findings in independent cohorts is warranted before 

administering respective interventions in patient populations.  
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