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Abstract 29 

Background. The gut bacterial ecosystem plays a key role in the host's energy metabolism, and 30 

potentially in the host’s exercise capacity, recognized as a powerful predictor of health status and risk 31 

of mortality.  32 

Objective. To deepen our understanding of the gut bacterial ecosystem relationship with host’s 33 

exercise capacity and energy metabolism, we characterized the gut microbiota in a cohort of healthy 34 

humans with heterogeneous exercise capacities, and next determined the impact of fecal microbiota 35 

transplantation (FMT) from donors of this cohort on energy metabolism and exercise capacity of 36 

recipient mice. 37 

Design. 50 male normo-weight participants (from inactive to elite endurance athletes) performed food 38 

frequency questionnaire (FFQ) and exercise tests to determine exercise capacity parameters (VO2max, 39 

fat oxidation, exercise energy expenditure). Metagenomic shotgun and metabolomic analyses were 40 

performed to characterize gut microbiota ecosystem and short-chain fatty acids (SCFAs) on human and 41 

mice fecal samples. Mice performed running exercise capacity tests and metabolic parameters were 42 

determined in skeletal muscle and plasma samples.  43 

Results. While our data support that the bacterial ecosystem appears to be modestly altered between 44 

individuals with low to high exercise capacities, we report that gut bacterial α-diversity, density, and 45 

functional richness are significantly reduced in athletes with very high exercise capacity. By using FMT, 46 

we report that the engraftment of these atypical gut microbiota improves insulin sensitivity and muscle 47 

glycogen stores into transfected mice. 48 

Conclusion. Our data highlight promising therapeuhc perspechves in fecal transplantahon from human 49 

donors selected based on exercise capacity parameters. 50 

KEYWORDS: enterotype, propionate, training, nutrients, Prevotella  51 
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What is already known on this topic:  52 

- Gut microbiota ecosystem directly affects exercise capacity and muscle energy metabolism. 53 

- Athletes with high exercise capacity exhibit greater gut microbiota diversity and an over-54 

representation of some bacterial species compared to inactive individuals, but current available 55 

data present major bias including the lack of consideration of dietary habits and body composition. 56 

What this study adds:  57 

- Exercise capacity is associated with atypical gut microbiota communities, independently of food 58 

habits and body composition. 59 

- Atypical gut microbial ecosystem from athletes with very high exercise capacity are related to high 60 

fecal propionate content, but negatively associated with gut microbiota 𝛼-diversity, bacterial 61 

density and gut microbiota functional abundance. 62 

- Depending on the donor’s exercise capacity, gut bacterial ecosystems affect insulin sensitivity, but 63 

not exercise capacity, of transfected mice. 64 

How this study might affect research, practice or policy: 65 

- These data open promising research perspectives: 1) to improve the management of the gut 66 

microbiota ecosystem of elite athletes and patients performing adapted physical activity for 67 

therapeutic purposes, and 2) to personalize FMT in patients treated for non-communicable 68 

diseases by including exercise capacity parameters in the clinical criteria for donor selection. 69 

  70 
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INTRODUCTION  71 

Exercise capacity is now considered as a powerful predictor of health status and risk of mortality [1,2]. 72 

It refers to the maximum amount of physical exertion that an individual can sustain over a prolonged 73 

period of time [3]. Exercise capacity can be assessed during exercise testing by measuring maximal 74 

oxygen consumption (𝑉̇𝑂2max) and fat oxidation (FO) through indirect calorimetry. 𝑉̇𝑂2max characterizes 75 

the maximum energy that an organism is able to produce during incremental exercise, while the 76 

percentage of FO during fasted submaximal exercise provides insight into the whole-body metabolic 77 

profile [4,5]. Specifically, during light to moderate submaximal exercise, a healthy organism 78 

preferentially degrades fatty acids for its energy supply, derived from both adipose tissue and 79 

intramuscular triglyceride breakdown [6]. When the intensity is high to maximal, the organism 80 

switches to preferentially use carbohydrates (CHO) provided by muscle glycogen and blood glucose 81 

derived from both liver glycogenolysis and gluconeogenesis [6]. However, unlike the almost unlimited 82 

fatty acid stores, muscle glycogen stores are limited, and their depletion leads to a reduction in exercise 83 

intensity or duration [7]. Increasing the proportion of energy substrates other than CHO during 84 

exercise, particularly fatty acids, is thus an essential strategy to spare muscle glycogen improving 85 

exercise capacity [8]. 86 

The gut bacterial ecosystem plays a key role in the host's energy metabolism [9–11], and potentially in 87 

the host’s exercise capacity. In germ-free or antibiotics-treated (ATB) mice, the absence of gut 88 

microbiota directly reduces exercise capacity [12–14], notably due to concomitant reduction in 89 

intestinal absorption of glucose and muscle glycogen stores [13,15].  Moreover, the absence or 90 

reduction of short-chain fatty acids (SCFAs) production in an organism lacking gut microbiota or 91 

exhibiting dysbiotic gut microbiota displays the crucial role of SCFAs in these alterations [16,17]. In 92 

humans, cross-sectional studies reveal greater diversity and an over-representation of some bacterial 93 

populations in the gut microbiota of elite athletes compared to less active individuals [18–21]. 94 

However, all these clinical studies show some limitations including the lack of consideration of dietary 95 

habits and body mass index which are known to modulate the gut microbiota composition and function 96 

[22]. 97 

Herein, we report our characterization of the relationship between exercise capacity and the gut 98 

bacterial ecosystem in humans, ranging from inactive to elite endurance athletes, independently from 99 

diet habits or body composition (EXOMIC cohort). Our data highlight that exercise capacity impacts 100 

gut bacterial ecosystem and fecal SCFA levels, independently from dietary habits. Surprisingly, we 101 

observe that humans with very high exercise capacity exhibit reduced gut microbiota diversity, density 102 

and functional pathways abundance. Using fecal microbiota transplantation (FMT) from humans of our 103 
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cohort to ATB-pretreated mice, we demonstrate that the gut microbiota associated to exercise 104 

capacity of donors affects insulin sensitivity and muscle glycogen store in transfected mice, highlighting 105 

the essential role of the gut microbiota associated to donor’s exercise capacity in the changes of 106 

metabolic profile of the FMT recipients. 107 

MATERIELS AND METHODS 108 

Human clinical study 109 

The EXOMIC pilot clinical study took place at the laboratory “Movement, Sport and health Sciences” 110 

(M2S, Rennes, France). The study was approved by the nahonal Comité de protechon des personnes 111 

Ouest IV Nantes (ID-RCB: 2021-A02496-35) and registered on ClinicalTrials.gov under NCT05220657.  112 

Mouse experiments  113 

C57BL/6J male mice (8-week-old; Janvier Labs, France) were randomly divided into the following two 114 

experimental groups: control group (CTL, n = 12) versus mice transfected (n = 24) by heterogeneous 115 

human donors (n=8). Except for running tests, mice were housed in individual standard cages without 116 

wheels, and thus were not subjected to daily exercise. 117 

Medical inclusion visits, fecal samples collecOon and exercise tesOng 118 

Each parhcipant completed the food frequency queshonnaire to eshmate daily food and nutrient 119 

intakes (FFQ) [23]. Daily energy expenditure was also calculated on a weekly basis (MET-minutes per 120 

week) using the Global Physical Achvity Queshonnaire (GPAQ) [24].  Percentage body fat (%FM) was 121 

measured by skinfold measurement using Harpenden® forceps based on the 4-skinfolds method. One 122 

fecal sample was collected for each parhcipant during the 15 days following the medical inclusion and 123 

before the last visit to the laboratory. The parhcipants performed two exercise tests on ergocycle to 124 

respechvely determine (1) maximal oxygen consumphon (𝑉̇𝑂2max) and (2) carbohydrate (CHO) and fat 125 

oxidahon (FO) using an indirect calorimetry system (Ulhma CardiO2, Medgraphics, United Kingdom). 126 

Fecal Material TransfecOon (FMT) from humans to mice 127 

Auer 10 days of treatment with an oral cocktail of broad-spectrum anhbiohcs [13], mice selected for 128 

transfechon (n=24) received 100 µg of fecal material by oral gavage every morning during 3 days, then 129 

once per week for the next two weeks. Fecal samples from FMT and CTL mice were individually 130 

collected before and auer the anhbiohc treatment, and 5 weeks post-FMT. Gastrocnemius muscles and 131 

abdominal fat mass were dissected, weighed and then either frozen in liquid nitrogen. 132 

Running exercise capacity in mice 133 

All mice performed a submaximal running test on a treadmill (Ugo Basile, Gemonio, Italy) before and 134 

auer anhbiohc treatment, and then each week during the next 2 weeks. Running exercise capacity was 135 

determined by the hme unhl exhaushon from a test adapted from Okamoto et al. [14].  136 

Metabolic parameters 137 
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Glycemia was measured using Automated Beckman Coulter (Beckman Coulter, Brea, CA). Serum insulin 138 

concentrahons were measured by enzyme-linked immunosorbent assay (ELISA) according to 139 

manufacturer’s instruchons (Millipore, St Louis, MO, USA). The acid-hydrolysis method used for muscle 140 

glycogen quanhficahon was adapted from the protocols described by Adamo and Graham [25]. 141 

Metagenomics data 142 

Fecal metagenomic shotgun sequences from both human and mice experiments underwent a pre-143 

processing pipeline, where sequences were quality filtered using KneadData2 with default parameters 144 

[26]. MetaPhlAn3 was used for quanhtahve profiling the taxonomic composihon of the microbial 145 

communihes of all metagenomic samples [26]. HUMANn3 was used to profile pathway and gene family 146 

abundances [26]. 147 

Metabolomic data 148 

Measurement of short-chain faxy acids (SCFAs), amino acids and bile acids (BAs) concentrahons were 149 

determined in fecal samples by liquid chromatography-tandem mass spectrometry (LC-MS/MS) by the 150 

CORSAIRE playorm (Biogenouest, Nantes, France). 151 

StaOsOcal analysis 152 

Data are presented as means ± SD. Stahshcal analysis between groups was analyzed according to the 153 

data distribuhon and data type. The threshold for stahshcal significance was assumed to be p<0.05. 154 

Addihonal experimental methods and informahon are provided in online supplemental materials files. 155 

RESULTS 156 

Exercise capacity is associated with atypical gut microbiota communities, independently of food and 157 

nutrient intakes.  158 

We first examined whether exercise capacity can affect gut microbiota compositions in healthy 159 

humans. To this purpose, we recruited 50 young males to create a physiological and biological 160 

database ranging from very low to very high exercise capacity populations, including non-athletes 161 

(NoA, n=21), elite soccer players (ESP, n=15) and elite cyclists (EC, n=14). To best limit the differences 162 

in food habits between experimental groups, we recruited the NoA participants by matching their food 163 

intakes collected by Short Form Food Frequency Questionnaire to correspond qualitatively to the EC’s 164 

food intakes (Figure 1A, Supplemental Material). All participants recruited were normo-weight (Table 165 

S1), completed a long form of FFQ, and performed two sessions of exercise testing (Figure 1A). 166 

Participants included in this cohort presented 𝑉̇𝑂2max levels ranging from 35 to 85 ml/min/kg (Figure 167 

1B), with a proportion of energy expenditure from fat oxidation during submaximal exercise, ranging 168 

from 0 to 85% (Figure 1C), characterizing a highly heterogeneous cohort in terms of energy expenditure 169 

and energy substrates used during exercise.  170 
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All participants provided their fecal samples to characterize the gut bacterial ecosystem using 171 

metagenomics sequencing [26]. We first observe that the two coordinates of the Principal Coordinates 172 

Analysis (PCoA) of the pairwise dissimilarity matrix of samples (i.e. Bray Curtis dissimilarity metric) 173 

account for 40% of the variability in gut microbiota composition within EXOMIC cohort (Figure 1D). 174 

Specifically, individuals with negative coordinates on PCo1 are predominantly elite cyclists and exhibit 175 

a gut microbiota composition characterized by a high relative abundance of species belonging to the 176 

Prevotella genus, mainly represented by the high expression of Prevotella copri (Figure 1D). 177 

Participants with positive coordinates on PCo 1 are mostly non-athletes and present a gut microbiota 178 

composition characterized by a high relative abundance of species belonging to the Bacteroides genus, 179 

associated with high expression of Bacteroides uniformis, Bacteroides vulgatus and Feacalibacterium 180 

prausnitzii (Figure 1D). These observations are consistent with previous findings [21,27,28], and 181 

support the concept that humans with high exercise capacity have an atypical gut microbiota 182 

composition compared to their counterparts with low exercise capacity.  183 

On the Figures 1E and 1F, each line symbolizes variables characterizing a participant included in the 184 

EXOMIC cohort. The Hierarchical Ascendant Clustering (HAC) of gut microbiota compositions reveals 185 

two distinct clusters related to exercise capacity parameters (Figure 1E), close to the Bacteroides and 186 

Prevotella enterotypes concept [29]. The Figure 1F represents the environmental variables associated 187 

to each gut microbiota composition, ordered by the HAC. We first estimated the 95% of the confidence 188 

intervals for the r correlation coefficients between environmental variables (i.e. macronutrients, 189 

physiological variables, body composition, SCFAs and diversity indexes) and coordinates that 190 

summarize the variation of gut microbiota compositions within the EXOMIC cohort. Our results reveal 191 

that relative macronutrient intakes, including carbohydrates (CHO), fibers, proteins, and lipids, exhibit 192 

weak and non-significant association with the coordinates of the gut microbiota composition’s PCoA 193 

(Figures 1G and S1B). Employing non-parametric redundancy analysis (Canonical Analysis of Principal 194 

Coordinates, CAP, Supplemental Material), we measured how strongly environmental variables (i.e. 195 

diet, exercise capacity parameters, SCFAs) are linked to the structure and composition of the bacterial 196 

ecosystem, computing the explained variance and its associated p value. CAP confirms no discernible 197 

association between food or nutrient intakes and gut microbiota compositions (p>0.05, Figures S1C-198 

F). Conversely, exercise capacity variables are significantly linked with 12% of the gut microbiota 199 

compositions (p=0.01, Figure S1G). Notably, 𝑉̇𝑂2max, EEE and FO display positive and significant 200 

associations with the first Coordinate of the gut microbiota composition’s PCoA (p<0.05, Figure 1G). 201 

Together, these findings support that exercise capacity directly affects gut microbiota composition, 202 

independently of food or nutrient intakes. 203 
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Atypical gut microbial ecosystem from athletes with very high exercise capacity are also related to 204 

high fecal propionate content.  205 

We report in our cohort a significant association of 15% between fecal SFCAs content and gut 206 

microbiota compositions (p=0.01, Figure S1H). Notably, fecal valerate and propionate content exhibit 207 

the strongest associations (p<0.05, Figure 1G) with the first Coordinate of the gut microbiota 208 

composition’s PCoA, mainly driven by the Prevotella copri expression (Figure 1D). Species belonging to 209 

the Prevotella genus are generally related to a non-western diet [30,31], where starch fermentation 210 

leads to an increase in fecal SCFA content [32].  Here, we observe that the proportion of starch intakes 211 

are not associated with fecal valerate and propionate content within the EXOMIC cohort (Figure S2A), 212 

suggesting that the host’s exercise capacity could impact fecal SCFA production independently of fiber 213 

intakes. Interestingly, Phascolarctobacterium succinatutens, well-identified to transform succinate 214 

into propionate [33], is the second main bacteria associated with the first Coordinate of the gut 215 

microbiota composition’s PCoA (Figure 1D). While Prevotella copri appears to be a succinate producer 216 

rather than propionate producer [34], it seems consistent that fecal propionate content and those 217 

species are associated with the first Coordinate of the gut microbiota composition’s PCoA. These 218 

associations between 1) high exercise capacity parameters, 2) gut microbiota composition dominated 219 

by Prevotella copri and Phascolarctobacterium succinatutens and 3) high fecal propionate content are 220 

finally consistent with previous studies supporting that propionate supplementation improves exercise 221 

capacity in mice [19], as well as resting fat oxidation and energy expenditure in fasted humans [35]. 222 

High exercise capacity is negatively associated with gut microbiota 𝛼-diversity, bacterial density and 223 

gut microbiota functional abundance.  224 

Over the last decade, clinical studies conducted in humans with low to moderate exercise capacity 225 

have shown that 𝑉̇𝑂2max or training volume was positively correlated with gut microbiota 𝛼-diversity 226 

[28,36,37]. Here, our data support that gut microbiota 𝛼-diversity would ultimately follow an inverted-227 

U shape relationship with 𝑉̇𝑂2max (Figure 2A). For hosts with 𝑉̇𝑂2max  between 35 and 60 ml/min/kg, the 228 

association is positive and consistent with previous studies [36]. However, for hosts with 𝑉̇𝑂2max greater 229 

than 60 ml/min/kg, the association becomes negative (Figure 2A). Fecal bacterial density is also 230 

significantly reduced in hosts with a high capacity to consume energy during maximal exercise (Figure 231 

2B). Interestingly, we also report a negative relationship between fat oxidation and gut microbiota 𝛼-232 

diversity (p<0.05, Figure 2D), hosts with the lowest fecal bacterial density exhibiting the significant 233 

highest fat oxidation during submaximal exercise (p<0.05, Figure 2E).  234 
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To refine our analysis, we explored gut microbiota functionality at different levels according to the 235 

MetaCyc database. We observe that the ability of hosts to consume energy during maximal and 236 

submaximal exercises are inversely proportional to the richness of gut microbiota functionality 237 

(p<0.05, Figure 2C and S3C, respectively). Specifically, several classes of metabolic pathways, including 238 

fermentation and carbohydrates degradation, show a negative association with the hosts’ exercise 239 

capacity parameters, especially 𝑉̇𝑂2max (Figure 2G). We then calculated the ratio between gut 240 

microbiota capacity to produce energy from available nutrients (i.e. abundance of pathways involved 241 

in the generation of precursor metabolites and energy), and its capacity to degrade substrates to serve 242 

as sources of nutrients to their own growth (i.e. Degradation/Utilization/Assimilation pathways 243 

abundance). Interestingly, this ratio is positively associated with the host’s ability to consume energy 244 

during maximal exercise (i.e. 𝑉̇𝑂2max, r = 0.36, p=0.01, Figure 2H). Notably, the ratio of glycolysis and 245 

fermentation pathways (i.e. pyruvate producers and fermenters) on carbohydrate degradation 246 

pathways (i.e. degradation, storage and utilization of CHO essential for the bacterial growth) is also 247 

positively associated with maximal energy consumption during exercise (r = 0.34, p=0.02, Figure 2H). 248 

Together, these findings support that hosts with high exercise capacities exhibit a reduction in gut 249 

functionality richness, but this reduction seems to be associated with a remodeling of the gut bacterial 250 

ecosystem and its metabolic pathways, favoring bacterial energy production from available nutrients 251 

over the production of energy from complex molecules (e.g. starch and fibers).  252 

Fecal microbiota transplantation (FMT) from high to very high exercise capacity human donors elicits 253 

distinct gut microbiota composition in transfected mice 254 

To evaluate whether the atypical gut bacterial ecosystem observed in humans with very high exercise 255 

capacity could directly affect host’s energy metabolism and exercise capacity, we transfected gut 256 

microbiota from high to very high exercise capacity humans into ATB-pretreated mice (Figure 3A). We 257 

selected 8 physically active and non-sedentary donors exhibiting distinct exercise capacities (i.e. from 258 

high to very high 𝑉̇𝑂2max, from low to very high FO) (Table S2). The fecal bacterial density, species 259 

engraftment rate, Bray-Curtis similarity between human donors and transfected mice post-FMT, as 260 

well as the donors gut microbiota relative abundance fractions reported post-FMT, are in accordance 261 

with current references to consider successful FMT engraftment in humans [38–40], thus supporting 262 

the effectiveness of FMT from human donors to transfected mice in our experiments (Figures S5A-E). 263 

The dissimilarity between mice reseeded with their own litter and transfected mice confirms such 264 

conclusions (Figures S5G-F). We next investigated the link between the parameters of donor exercise 265 

capacity with the gut microbiota compositions expressed in the transfected mice by using Canonical 266 

Analysis of PCo (CAP, Supplemental Material). We show that 𝑉̇𝑂2max, FO and EEE are associated with 267 
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17% of the variability of the gut microbiota compositions of transfected mice (p<0.01). The second axis 268 

of the canonical analysis (CAP2) refers to the mice gut microbiota compositions explained by fat 269 

oxidation (FO) and exercise energy expenditure (EEE) of the human donors (Figure 3B). Here, we 270 

specifically identified Akkermensia municiphila, Parabacteroides merdae and Bacteroides vulgatus 271 

among the bacteria of transfected mice well-associated with exercise capacity parameters (Figure 3B). 272 

Together, these findings highlight that distinct gut microbiota compositions are transferred from 273 

humans to transfected mice depending on the exercise capacity parameters of the donors. 274 

The gut bacterial ecosystem from human donors affects insulin sensitivity and muscle glycogen 275 

stores in transfected mice, depending on the donor’s exercise capacity. 276 

Five weeks post-FMT, we assessed the running exercise capacity, HOMA-IR score and skeletal muscle 277 

glycogen content to characterize the exercise capacity and insulin sensitivity of each transfected mice 278 

(Table S3). We first observe that HOMA-IR score is positively correlated with relative abdominal fat 279 

mass, and negatively with skeletal muscle glycogen content (Figure 3C and 3D), indicating a 280 

heterogeneous continuum of metabolic profiles in the transfected mice.  281 

On the Figures 3E and 3F, each line symbolizes variables characterizing a transfected mouse. The mice’s 282 

gut microbiota compositions are ordered depending on their positions in the second axis of the CAP 283 

(i.e. linked to the FO and the EEE of the donors). The Figure 3F represents the functional and metabolic 284 

variables (i.e. running exercise capacity, insulin sensitivity and body composition) associated to each 285 

gut microbiota composition. We next determined the 95%-CI of the r correlation between the second 286 

coordinate of the gut microbiota composition’s CAP and the physiological variables of the transfected 287 

mice. Here, we show that muscle glycogen content is inversely correlated with the second coordinate 288 

of the mice gut microbiota composition’s CAP (r = -0.49, p<0.05, Figure 3G), indicating that mice with 289 

gut microbiota compositions with negative coordinates in CAP2 exhibit a higher muscle glycogen level 290 

compared to those with positive coordinates. Since muscle glycogen content is directly associated with 291 

host insulin sensitivity [41], we logically observe that the HOMA-IR score is positively correlated with 292 

CAP2 (r = 0.41, p<0.05, Figure 3G), meaning that mice with gut microbiota compositions with negative 293 

coordinates in CAP2 exhibit better whole-body insulin sensitivity compared to those with positive 294 

coordinates. As previously described, Akkermensia municiphila, Parabacteroides merdae and 295 

Bacteroides vulgatus are the main bacteria characterizing the negative coordinate of the second axis 296 

of the CAP (Figure 3B). Our data are in line with previous studies where these bacteria were identified 297 

to exert metabolic benefits, especially reducing insulin resistance and fat mass gain in obese 298 

populations [42–44] and preventing atherosclerotic lesions in rodents [44,45]. In parallel to the results, 299 

we report positive correlations between HOMA-IR score and gut microbiota α-diversity in transfected 300 
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mice (r = 0.41, p=0.046, Figure 3H), whereas muscle glycogen content is negatively correlated with gut 301 

microbiota α-diversity (r = -0.36, p=0.08, Figure 3I). These results suggest that the metabolic benefits 302 

of gut microbiota transplantation from human donors with very high exercise capacity do not 303 

necessarily depend on the gut microbiota α-diversity. 304 

We finally explored the gut metabolic functionality of transfected mice and the relationship between 305 

functional pathways, exercise capacity, insulin sensitivity and muscle glycogen content. We report a 306 

positive correlation between pyruvate fermentation into acetate and lactate with running exercise 307 

capacity, while these pathways are negatively associated with HOMA-IR score (p<0.05, Figure 3J). 308 

Similarly, we observe a positive correlation between pathways of pyruvate synthesis (Glycolysis IV, 309 

Glycolysis from glucose) and muscle glycogen content (p<0.05, Figure 3J). Our results are consistent 310 

with previous studies reporting that high levels of the functional pathways involved in glycolysis (i.e. 311 

pyruvate synthesis) in the gut increase the availability of pyruvate [46], a key substrate for functional 312 

pathways of fermentation synthetizing SCFAs from pyruvate degradation [47,48]. In agreement with 313 

previous studies [49], all these findings highlight that transfection of gut microbiota associated with 314 

specific donor characteristics, here exercise capacity parameters, can significantly remodel gut 315 

microbiota composition and exert metabolic effects in transfected recipients. 316 

DISCUSSION 317 

During the last decade, substantial observational and interventional studies have been conducted to 318 

characterize the impact of physical activity on the gut microbiota ecosystem in humans, providing 319 

contradictory results concerning the effects on gut microbiota composition’s α-diversity in men and 320 

women [36,50–52]. The lack of consideration for the impact of diet when evaluating the effects of 321 

exercise capacities on gut microbiota composition is probably the main factor that can explain such 322 

discrepancies [28,36,51]. In our prospective clinical study, we rigorously recruited participants with 323 

low exercise capacity by matching their food intakes to match qualitatively those of participants with 324 

very high exercise capacity. Our data highlight that, for populations that do not present extreme 325 

exercise capacities (very low or very high), the effects of host’s exercise capacity on the gut bacterial 326 

ecosystem appear to be very modest compared to those of food habits. 327 

On the contrary, our results support that the gut bacterial ecosystem is remodeled in individuals with 328 

a very high ability to consume energy and preferentially use fat during submaximal exercise. In these 329 

athletes, we report a clear reduction of gut bacterial diversity (i.e. α-diversity, bacterial density and 330 

richness of functionality) with a gut bacterial ecosystem dominated by Prevotella copri. This bacterial 331 

ecosystem is associated to high fecal propionate levels, in accordance with the role of this SCFA on 332 
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exercise capacity and fat oxidation [19,35]. We also report that the ratio between functional pathways 333 

characterizing the ability to produce energy from available nutrients, and its capacity to degrade 334 

substrates to serve as sources of nutrients is higher in humans with a very high ability to consume 335 

energy. Collectively, these findings suggest that the relationship between host energy metabolism and 336 

the gut bacterial ecosystem may be influenced by the availability of energy resources, which decreases 337 

when the host’s physical activity levels and exercise capacity are high. In this context, the gut bacterial 338 

ecosystem seems to specialize to cope with this situation, with some collateral implications, including 339 

a reduction in bacterial diversity and density. 340 

The FMT have been recognized as a therapeutic tool to treat non-communicable diseases including 341 

obesity, diabetes, neuropsychiatric disorders or inflammatory bowel diseases [53]. One of the current 342 

issues is to determine which clinical or metabolic characteristics the donor must possess to observe 343 

clinical and/or metabolic effects in the recipient. Numerous studies have already assessed the impact 344 

of FMT from donors with distinct metabolic profiles (i.e. mice, brown bears or humans), reporting 345 

benefits on transfected mice concerning glucose tolerance, insulin sensitivity or lipid metabolism 346 

[49,54,55]. While exercise capacity is a clinical hallmark of health status [1,2], it is not yet considered 347 

a donor’s clinical parameter that could induce metabolic benefits in recipients. However, few recent 348 

studies have highlighted that FMT from exercise-trained donor mice improves the metabolic profile of 349 

the transfected mice compared to those from sedentary donor mice [56,57]. In the present study, we 350 

intend for the first time to evaluate the consequences of FMT from human donors with high to very 351 

high exercise capacity on both metabolic parameters and exercise capacity in recipient mice. When we 352 

transfected ATB-pretreated mice with fecal samples from our human cohort, we observe in the 353 

transfected mice that donors with very high exercise capacity promote an overexpression of 354 

Akkermensia muciniphila,  Parabacteroides merdae  and Bacteroides vulgatus, recognized to induce 355 

metabolic benefits for the host [42,43,45]. Interestingly, these bacterial ecosystems are associated 356 

with improvements in whole-body insulin sensitivity and in muscle glycogen stores, supporting 357 

metabolic benefits associated to the transfer of gut bacterial ecosystem from donors with very high 358 

exercise capacity. Finally, mice exhibiting greater insulin sensitivity and higher muscle glycogen stores 359 

display a reduction of 𝛼-diversity and a higher expression of SCFA producing-pathways, further 360 

supporting the hypothesis of a specialization of the gut bacterial ecosystem in favor of metabolite 361 

generation, but detrimental for bacterial growth and diversity.   362 

In a therapeuhc perspechve, we selected human donors with high to very high 𝑉̇𝑂2max and normo-363 

weight, conshtuhng typical lean, healthy, very physically achve donors. Despite gut microbiota 364 

remodeling and metabolic adaptahons, the running exercise capacity of transfected mice remained 365 
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unaffected. Importantly, these mice did not perform regular physical exercise during the 5 weeks of the 366 

FMT protocol, and the gut bacterial ecosystem they received from human donors was consequently 367 

not subjected to the high energy demands related to physical exercise. These results suggest that gut 368 

microbiota remodeling from donors with high exercise capacity alone is not sufficient to improve the 369 

exercise capacity of recipients. Overall, all these findings open promising research perspechves: 1) to 370 

improve the management of the gut microbiota ecosystem of elite athletes and pahents performing 371 

adapted physical achvity for therapeuhc purposes, and 2) to personalize FMT in pahents treated for 372 

non-communicable diseases by including exercise capacity in the clinical criteria for donor selechon. 373 

DATA AND CODE AVAILIBILITY 374 

Raw metagenomics sequencing data have been deposited into the NCBI under the accession number 375 

PRJNA1115089. In addihon, the scripts and others data (metabolomics, food intakes and physiological 376 

data) used for the computahonal analyses described in this study are available at GitHub 377 

hxps://github.com/DJrMarhn/Gut-Microbiota-and-Physical-Achvity.git. Any addihonal informahon 378 

required to reanalyze the data reported in this paper is available from the lead contact upon request. 379 
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FIGURE TITLES AND LEGENDS 395 

Figure 1. Exercise capacity is associated with gut microbiota communities, independently of food 396 

and nutrient intakes. (A) Experimental design (*non-athlete participants were selected to have their 397 

dietary food intake match that of elite athletes). (B) E.E.E (kcal/min) with respect to 𝑉̇𝑂2max 398 

(ml/min/kg). (C) Fat mass with respect to Fat Oxidation (% of the total energy substrate oxidation). (D) 399 

Principal Coordinates Analysis (PCoA) from Bray Curtis dissimilarity of humans’ gut microbiota 400 

compositions. Subjects are colored by their ratio of Bacteroides/Prevotella within their metagenome. 401 

The bar plots represent the strongest Spearman’s r correlations (in absolute value) between species 402 

and PCoA coordinates. (E) Hierarchical Ascendant Clustering computed from the Bray Curtis pairwise 403 

dissimilarity matrix (left panel) with the gut microbiota composition of the participants (1 line = 1 404 

participant; right panel) (F) Heatmap of relative macronutrient intakes, exercise capacity parameters, 405 

body composition, fecal SCFA content and gut microbiota composition’s diversities (1 line = 1 406 

participant). The points’ width depends on the intensity of the variable (i.e. normalization by the intra-407 

variable maximum is applied). (G) 95% confidence interval of the r correlation between each variable 408 
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with PCo1 (in dark colors) and PCo2 (in light colors) (see panel D). (H) r correlation between exercise 409 

energy parameters, gut microbiota diversity and bacterial density with fecal SCFA content. Statistical 410 

significance of the correlation: * p<0.05; ** p<0.01; *** p<0.001.  411 
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Figure 2. Metagenomic and metabolomic data support a selective pressure between gut microbiota 412 

and host energy metabolism. Local regression between 𝑉̇𝑂2max and gut microbiota 𝛼-diversity (A), 413 

bacterial density (B) and gut microbiota functionality abundance (C). Local regression between fat 414 

oxidation (FO %) and gut microbiota 𝛼-diversity (D), bacterial density (E) and gut microbiota 415 

functionality abundance (F). The local green, blue and red regressions correspond respectively to the 416 
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𝛼-diversity, bacterial density and functional abundance of the bacterial ecosystem within the EXOMIC 417 

cohort. The boxplots represent the repartition of VO2max (B) and FO (%) (E) within each quantile of 418 

bacterial density. Quantiles are materialized by dashed lines on the local regression plots. (G) 419 

Correlation between gut microbiota functional families and fecal SFCAs, and exercise capacity 420 

parameters. Local regression between the ratio of Precursors of Energy metabolites on 421 

Degradation/Utilization/Assimilation pathways (gut microbiota functional superfamily) and 𝑉̇𝑂2max (H) 422 

or FO (I). Local regression between the ratio Glycolysis and Fermentation on CHO degradation 423 

pathways (gut microbiota functional superfamily) and 𝑉̇𝑂2max (J) or FO (K). For local regressions, the 424 

dark line represents the center of the local regression with the 95%-CI in dashed line.   425 
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Figure 3. The gut bacterial ecosystem from human donors affects insulin sensitivity and muscle 426 

glycogen stores in transfected mice, depending on the donor’s exercise capacity. (A) Experimental 427 

design of FMT from human donors with heterogeneous exercise capacity into antibiotic-pretreated 428 

mice. (B) Canonical Analysis of Principal Coordinates (CAP) between the Principal Coordinates of the 429 

pairwise dissimilarity matrix (Bray Curtis) of mice’s gut microbiota compositions and the donors’ 430 

exercise capacity parameters (blue arrows). The points represent the most associated species of the 431 

second axis of the CAP. (C) Muscle glycogen content according to HOMA-IR. (D) Abdominal fat mass 432 

according to HOMA-IR. (E) Ranked mice from the CAP2 with the corresponding gut microbiota 433 

composition (1 line = 1 mice). (F) Heatmap of metabolic profile, body composition, food intake and gut 434 

microbiota composition’s diversities (1 line = 1 mice), the width of each point is normalized by the 435 

intra-variable maximum. (G) 95% confidence interval of the r correlation between each variable either 436 
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with CAP1 (in dark colors) or with CAP2 (in light colors) determined in panel B. Local regression 437 

between gut microbiota 𝛼-diversity and HOMA-IR score (H) or muscle glycogen content in mice. (J) 438 

Correlations between gut microbiota functional families and metabolic parameters, exercise capacity 439 

and body composition in mice. Statistical significance of the correlation: * p<0.05; ** p<0.01; *** 440 

p<0.001.  441 
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