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Abstract 

Tobacco smoking is a major modifiable risk factor for cardiovascular and lung diseases. A better 

understanding of its neurobiological underpinnings will benefit the prevention of smoking-related 

illnesses and mortality. Recent neuroimaging studies have identified a correlation between 

smoking and iron concentration in the brain's striatum, a subcortical region involved in habit 

formation and compulsive behaviour, and a central node of dopamine activity. Moreover, iron 

accumulation in the striatum is associated with lower cognitive performance in adults. Here, we 

investigated phenotypic and genetic correlations, and causal relationships between smoking 

initiation (ever smoked regularly) and susceptibility-weighted magnetic resonance imaging 

(MRI)-derived markers of iron content–T2* and quantitative susceptibility mapping (QSM)–in the 

bilateral putamen, caudate, and accumbens nuclei. We computed correlations between smoking 

and striatal iron in the UK Biobank, adjusting for a vast set of imaging and non-imaging 

confounders. Using genome-wide association studies (GWAS) summary statistics, we 

performed global genetic correlation, cross-GWAS coherence tests at the gene level, and 

causality analysis using Mendelian randomisation and PascalX. Smoking was positively 

correlated with iron content in the bilateral putamen, caudate, and in the left accumbens, with 

the strongest effect found when contrasting current and never smokers. Striatal iron had a 

positive association with pack-years and a negative relationship with years since stopping 

smoking, indicating a possible reversal of iron accumulation after smoking cessation. Genetic 

correlation paralleled phenotypic correlation. Cross-GWAS signal was coherent in genes 

involved in the dopaminergic and glutamatergic systems, and synaptic function. There was 
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evidence of a causal relationship from smoking to striatal iron through genes involved in 

synaptogenesis and plasticity, and to a lesser extent, from striatal iron to smoking through 

inflammatory and immune system related genes. Moreover, the heterogeneity of genes with 

correlated and anti-correlated signals suggests that the neurobiological mechanisms linking iron 

to smoking behaviour are highly complex. Overall our results show an association between 

cigarette smoking and iron concentration in the striatum with complex multi-directional causal 

mechanisms involving synaptic transmission and inflammatory circuits. 
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Introduction 

Smoking is a known risk factor for many diseases, including lung cancer, cardiovascular 

disease, and respiratory disorders. The enormous healthcare costs associated with the adverse 

effects of tobacco smoking make it a major public health concern. While the effects of smoking 

on the lungs, cardiovascular system, and cancer risk have been extensively studied (1–3) its 

impact on the brain has received less attention. 

Existing literature primarily focuses on white matter ageing (4–6) and grey matter volumetry 

(4,5,7–13). Other studies have examined the relationship between smoking, cerebrospinal fluid 

biomarkers, and cognitive impairment (14,15). A few studies have reported increased iron 

concentration in the striatum of smokers (16–18). 

 

The striatum is central to motivation, reward, habit formation, addiction, and compulsive 

behaviour, with dopamine and glutamate being the predominant neurotransmitters involved 

(19). Iron accumulation in the striatum is associated with lower cognitive performance in older 

age and increased vulnerability to brain injury from stroke (20). Additionally, iron accumulation is 

a common feature of most neurodegenerative diseases (20–22). Processes such as ferroptosis, 

an iron-dependent form of cell death driven by lipid peroxidation (22,23), and iron-induced 

neuroinflammation are believed to play roles in Alzheimer's disease and vascular dementia (24). 

More generally, iron is considered an indirect marker of oxidative stress (21,25,26). 

Given the potential negative clinical consequences of brain iron overload, an important question 

arises: is there a causal relationship between smoking and iron accumulation in the brain? 

Existing Mendelian randomisation (MR) studies on alcohol and iron (27), smoking and white 

matter (6), or subcortical volumes and smoking and alcohol (10) tend to find that behaviour 

causes changes in brain structure rather than the other way around. Understanding the 

biological mechanisms at play could provide crucial insights for clinicians treating nicotine 

addiction. 

In this study, we explored the relationship between smoking and striatal iron accumulation at the 

phenotypic and genetic levels, investigating both the potential causality and underlying 

biological mechanisms. Given the role of iron in dopamine synthesis and signalling 

(22,26,28,29) and the neuroimaging-based evidence for dopamine increase in the striatum 

following cigarette smoking (30), we hypothesised that dopamine-related genes would be jointly 

involved in smoking and striatal iron. We found a positive association between smoking and iron 
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content in the dorsal striatum, with evidence suggesting that smoking may primarily drive iron 

accumulation rather than the reverse. Additionally, we identified complex, bidirectional genetic 

relationships involving dopamine-related genes, along with genes linked to synaptic function, 

GABAergic and glutamatergic transmission, inflammatory response, and the immune system. 

 

Materials and Methods 

Participants 

We conducted our study on data from the UK Biobank (UKB), a large-scale biomedical 

database that comprises extensive health and genetic information from over 500k participants 

aged between 40 and 69 years at the time of recruitment (2006-2010) (31). We included 

participants with available brain imaging data and excluded those for whom smoking status was 

missing. 

Brain imaging 

The UKB brain imaging sub-sample included approximately 40k participants aged from 44 to 85 

years at the time of image acquisition (16). Our study made use of imaging-derived phenotypes 

(IDP) from susceptibility-weighted magnetic resonance imaging (swMRI) generated by an 

image-processing pipeline developed and run on behalf of UKB (32). More specifically, we 

examined median T2* and median quantitative susceptibility mapping (QSM) in bilateral 

putamen, caudate, and accumbens nuclei, corresponding to UKB data-fields (DF) 24469-24472, 

24479, 24480, 25028-25031, 25038, and 25039. T2* and QSM are swMRI techniques used to 

assess tissue iron content, with T2* providing a measure of signal decay influenced by iron 

deposits and QSM offering a quantitative map of tissue magnetic susceptibility to precisely 

quantify iron levels. Higher iron content results in lower T2* and higher QSM values. Both 

techniques are also influenced in different ways by other tissue properties, such as myelin, 

calcium, and water, making them complementary (33). For example, while myelin and iron have 

the same effect on T2*, they have opposite effects on QSM (18).  

Smoking 

Smoking data was self-reported at the imaging visit. Smoking status (DF 20116) was 

categorised as current, former, or never having smoked. Pack-years of smoking (DF 20161) 

was defined as the number of cigarettes smoked per day divided by twenty and multiplied by the 
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number of years of smoking. The latter was derived by subtracting the age of starting smoking 

from either the current age or the age at which smoking was stopped. ‘Years since stopping 

smoking’ (YSSS) was calculated as the participant’s age (DF 21003) minus the age at which 

they stopped smoking (DF 2897). 

Covariates 

General covariates included age (DF 21003), age2, sex (DF 31), age ✕ sex, age2 ✕ sex, 

Townsend deprivation index (DF 22189), household income before tax (DF 738), educational 

attainment (highest among qualifications reported in DF 6138), alcohol intake frequency (DF 

1558), diastolic and systolic blood pressures (mean of the two measurements in DFs 4079 and 

4080), and body mass index (BMI, DF 21001). Imaging covariates (Alfaro-Almagro 2021) 

included assessment centre (DF 54), date (DF 53) and date2, protocol phase (DF 25780), 

protocol change affecting swMRI (DF 24418), head size (DF 25000), scanner and table position 

(DFs 25756-25759), head motion (DFs 24419, 24441, 24447, 24453), variations in acquisition 

protocols (DFs 25921, 25922, 25923, 25924, 26500) and intensity scalings (DFs 25925-25930). 

All covariates were collected at the imaging visit except sex and Townsend deprivation index, 

which were collected at the first visit. We considered ‘Do not know’ and ‘Prefer not to answer’ as 

missing values. We imputed missing covariate values by replacing them with the group mean 

for continuous variables or mode for categorical ones. 

Phenotypic association between smoking and striatal iron 

First, we conducted some data preprocessing steps. We log-transformed pack-years of smoking 

and Townsend deprivation index due to skewness in the data. We excluded outlier IDP values 

beyond five absolute median deviations from the group median. At that stage, we examined 

brain IDP data distributions, compared male and female means with a two-sample t-test with 

Cohen’s d for effect sizes, male and female variances with an F-test, and computed Pearson’s 

correlations between age and IDPs. We also plotted IDP values stratified by smoking status and 

sex for visualisation purposes but without statistical testing, since this was investigated later 

using linear regression models, as described in the next paragraph. Next, on the brain IDPs and 

smoking variables, we applied a de-confounding procedure that consisted of regressing out the 

above-listed imaging and non-imaging covariates, to use the residuals as our new variables. We 

then performed a rank-based inverse normal transformation and z-scoring on continuously 

distributed variables (i.e. de-confounded IDPs, pack-years, and YSSS). 
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Next, we performed ordinary least squares linear regression models to analyse the relationship 

between the 12 IDPs–T2* and QSM in left and right putamen, caudate, and accumbens–and six 

smoking variables–ever smoked (current and former smokers against never smokers), currently 

smoking (current against former and never), current vs never (excluding former smokers), 

current vs former (excluding never-smokers), former vs never (excluding current smokers), and 

pack-years. In all models, the IDP was the response variable, and smoking was the predictor. 

We also investigated the interaction effects of smoking with sex and age. For former smokers, 

we ran linear regression models with YSSS, pack-years, and their interaction term as predictors. 

For all phenotypic association analyses, we applied false discovery rate (FDR) correction for 

multiple (6 smoking ✕ 12 brain phenotypes) testing (34). We set the alpha threshold at 0.05 on 

FDR-corrected p-values. As a post-hoc analysis of the left-right asymmetry found in the 

accumbens QSM associations with the six smoking variables, we compared the respective beta 

coefficients from the left and right hemispheres using a z-test. 

Genetic correlation and causal relationship 

We performed the genetic analyses using publicly available genome-wide association study 

(GWAS) summary statistics computed for UKB brain IDPs from ~33k unrelated individuals with 

recent UK ancestry (18,35,36). For smoking, we utilised summary statistics from the larger 

GWAS and Sequencing Consortium of Alcohol and Nicotine use (GSCAN) study, which 

included the UKB and 29 other cohorts of European-ancestry individuals, for a total of ~500k 

participants, excluding 23andMe for which GWAS summary statistics publication is not allowed 

(37). We chose ‘smoking initiation’ as our variable of interest, which was the equivalent of ‘ever 

smoked’ from the phenotypic analysis part of our study. 

We computed the global genetic correlation between each of the 12 brain IDPs and smoking 

initiation using linkage disequilibrium score regression (LDSR) (38) across approximately 1.2M 

single nucleotide polymorphisms (SNPs). As for the phenotypic analysis, we applied FDR 

correction (34) to the 12 obtained p-values. We then used PascalX cross-GWAS coherence 

tests (39,40) to compute the gene-wise correlation between smoking and the IDPs. PascalX 

assesses coherent effects across the SNPs associated with two traits within a 50kb gene 

window, accounting for linkage disequilibrium (LD). We first investigated five dopamine-related 

candidate genes expressed in the striatum and previously associated with smoking initiation 

(DRD1, DRD2, DRD3, DRD4, and PPP1R1B) (29,37,41–44), and then an exhaustive list of 

18 344 protein-coding genes. The LD structure required by PascalX to compute cross-GWAS 
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coherence scores was provided with the UK10K (hg19) reference panel (45). Gene annotations 

were obtained from Ensembl, GRCh37 version (Ensembl release 75) (46). For positive 

correlations, we tested QSM coherence and T2* anti-coherence with smoking, while for 

negative correlations, we tested QSM anti-coherence and T2* coherence. Given the brain 

GWAS sample size, we included in the analysis all SNPs with a minor allele frequency of at 

least 0.01, which ensured we got a minimum of ~33 individuals with at least one minor allele. 

We mapped SNPs to genes according to the GRCh37 genome assembly (47). SNP p-values 

were rank-normalised prior to the cross-GWAS coherence scoring, making the test more 

conservative but less prone to type-1 errors. We also corrected for sample overlap using the 

LDSR intercept since the brain GWAS was nested in the smoking GWAS in terms of 

participants (40). We corrected for multiple testing with the Bonferroni method, i.e. by setting the 

alpha threshold to 0.05 divided by the number of genes (18 344 for the exhaustive list of genes 

and 5 for the candidate genes). When two or more genes located on the same chromosome, 

arm, and position displayed significant results, we report them here as gene clusters. In such 

cases, it was not possible to know what gene(s) was (were) driving the signal, given that the 

gene window we used (50kb) could be too large for smaller genes. 

We investigated potential causal relationships between smoking and striatal iron content with 

two distinct techniques – Mendelian randomisation (MR) and our recently proposed PascalX 

cross-GWAS coherence ratio test.  

MR is a powerful method commonly used to infer causal relationships between an exposure and 
an outcome using genetic variants as instrumental variables (IVs) (48). Here we performed 

bidirectional two-sample MR analyses using the TwoSampleMR R package (49). We selected 

independent SNPs significantly associated with the exposure (p < 5×10-8) as genetic 

instruments, pruning SNPs with r2 > 0.001 to a lead SNP according to LD estimates from the 

UK10K reference panel (45,50). When fewer than five IVs were available, we used a less 

stringent p-value threshold (p < 10-5). Causal estimates were computed using the inverse-

variance weighted (IVW) method, and we applied FDR for multiple testing correction (34,51). 

The PascalX ratio test (39) also employs the GWAS summary statistics from two traits. Its test 

statistic is computed for each gene by summing over the products of the respective effect sizes 

from all SNPs within a 50kb window around the gene’s transcribed region. Importantly, this sum 

is then normalised by the sum of squared effects from the outcome trait. Similar to MR, this test 

statistic can only deviate substantially from zero if the exposure and outcome effects are 
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correlated with each other (either positively or negatively). The normalisation also ensures that 

the effects of the exposure that contribute to this correlation have to be large (resembling the 

MR requirement that the instrument variables need to be strongly associated with the 

exposure), while this is not the case for the output. Significant genes can then inform us upon 

the biological mechanisms underlying causal links, but results must be interpreted carefully 

when confounding effects from other variables cannot be excluded (for more details on the ratio 

test, see (39)). The PascalX parameters were the same as for the cross-GWAS coherence test, 

including the Bonferroni correction for the number of tested genes. 

 

Results 

Participant characteristics and striatal iron distribution by sex, age, and smoking status 

The phenotypic analysis included 41 844 UKB participants, of whom 22 156 (52.9%) were 
female. The average age was 64.2 years (±7.7). Smoking status was distributed as follows: 

3.3% were current smokers, 33.9% were former smokers, and 62.8% had never smoked 

(further covariate descriptive statistics can be found in Supp. Table 1). 

Prior to data de-confounding and normalisation, we investigated T2* and QSM data distributions 

as a function of sex, age, and smoking status. Females had generally lower iron than males, as 

reflected by lower QSM and higher T2* values (except in the right accumbens), although the 

effect sizes were small (|Cohen’s d| ∈ [0.04, 0.24], see Supp. Fig. 1). The variance of IDPs did 

not differ between males and females (F values in Supp. Fig. 1). Iron concentration was higher 

in older participants in the putamen and caudate (|r| ∈ [0.11, 0.33]) but did not differ much in the 

accumbens (|r| ∈ [0.02, 0.08], Supp. Fig. 2). In both males and females, iron was generally 

higher in former smokers than in never smokers, and in current smokers than in former smokers 

(Supp. Fig. 3), although significance was not tested at that stage, given that the correlation 

between smoking and the IDPs was thoroughly investigated after variable de-confounding. 

Phenotypic association between smoking and striatal iron 

Smoking was consistently associated with higher iron content in the bilateral putamen and 

caudate, as indicated by positive correlations with QSM and negative correlations with T2* (Fig. 

1a and Supp. Table 2). The strongest effects (|β| ∈ [0.23, 0.4]) were observed when contrasting 

current against never smokers. In the accumbens, the association with smoking was only 
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present when using QSM as a marker of iron and when contrasting current smokers against 

other groups, but not former against never smokers nor when measuring smoking in pack-

years. Interestingly, the association signals in the accumbens were stronger in the left than in 

the right hemisphere, although the asymmetry was only significant for ‘ever smoked’ (z = 1.74, 

p = 0.04; see Supp. Table 3). Sex and age interactions with smoking variables were not 

significant, indicating that the strength of association between smoking and striatal iron IDPs 

was similar across ages and sexes (Supp. Fig. 4 and Supp. Table 2). Among former smokers, 

YSSS, pack-years, and their interaction were significant in the putamen and caudate but not in 

the accumbens (Fig. 1b and Supp. Table 4). This interaction effect is shown in Supplementary 

Figure 4, where the QSM intercept was higher in individuals with higher pack-years, the slope 

associated with YSSS was generally negative, and steeper for higher pack-years values. In 

other words, the more years passed since smoking cessation, the lower the dorsal striatal iron 

levels, and the smaller the difference in iron levels between heavy and light smokers. The same 

was observed with opposite signs in T2*. 
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Figure 1. Standardised effect sizes of linear regression models linking striatal iron and smoking 
in (a) the full sample (n≈42k) and (b) former smokers (n≈14k). Lower T2* and higher QSM 

reflect higher iron content. Prior to performing the regression, IDPs and smoking variables were 

de-confounded for age, age2, sex, age ✕ sex, age2 ✕ sex, Townsend deprivation index, income, 

education, alcohol consumption, blood pressure, BMI, and 25 potential imaging confounders 

(see Methods). *: FDR-corrected p < 0.05, **: FDR-corrected p < 0.001. QSM: quantitative 

susceptibility mapping, YSSS: years since stopping smoking. 

 

In the rest of the study, we focused on ‘ever smoked’ since it was the variable for which we 
found the largest GWAS study with available summary statistics. 
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SNP-level genetic correlation 

We observed a positive genetic correlation between smoking and QSM in the bilateral putamen 

and the left accumbens (r ∈ [0.07, 0.14]), and a negative correlation between smoking and T2* 

in the bilateral putamen (r ∈ [-0.08, -0.07], see the circles in Fig.2). These results were 

consistent with the corresponding phenotypic correlations (Fig. 2 diamonds, equivalent to Fig. 

1a first column but expressed as correlation coefficients rather than effect sizes), with the 

exception of the caudate where the genetic correlations were no longer significant after 

correcting for multiple testing. Standard errors were much larger for genetic correlation 

estimates than for phenotypic correlation estimates (see confidence intervals in Fig. 2 and 

Supp. Table 5 for details). 

 

 
Figure 2. Correlation coefficients between smoking (‘ever smoked’) and striatal iron. Circles 

represent genetic correlation estimated with LDSR from separate GWAS summary statistics for 

smoking (n≈500k) and striatal iron IDPs (n≈33k). Lower T2* and higher QSM reflect higher iron 

content. Triangles represent phenotypic correlation between the same variables in the UKB 

(n≈42k) and are shown for comparison (equivalent to Fig. 1 first column but expressed as 

correlation coefficients rather than betas). Error bars represent 95% confidence intervals. 
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*: FDR-corrected p < 0.05, **: FDR-corrected p < 0.001. QSM: quantitative susceptibility 

mapping. 

 

Gene-level analysis 

The PascalX cross-GWAS analysis revealed positive correlations between smoking and striatal 
iron for the dopamine-related genes DRD2 (in the putamen and caudate) and PPP1R1B (all 

regions, see Fig. 3a). In the exhaustive gene set analysis, NCAM1 was the only gene found for 

more than one brain region and contrast (bilateral caudate). Other genes included DLX5 in the 

putamen, CIPC and GGACT in the caudate, and NAT16, NOL4L, PLEKHM1 and a gene cluster 

on chromosome region (chr) 8p23.1 in the accumbens (see Fig. 3b and Supp. Table 6 for 

detailed results). Those genes are involved in synaptic function and GABAergic and 

glutamatergic metabolism (52–54). 

A negative correlation between smoking and striatal iron content was found for DRD4 in the 
putamen and caudate, a gene cluster on chr 11p11.2 (putamen, caudate, and left accumbens), 

SKIDA1, clusters on chr 10q24.2, chr 6p21.33 and chr 17q21.31 in the putamen, and REST, 

SIX3, and SPRY2 in the caudate (Fig. 3c and d and Supp. Table 6). Among other functions, 

those genes play a role in the immune system, signal transduction, and stress response (54–

56). 
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Figure 3. Gene-level correlation between smoking and striatal iron performed using the PascalX 

cross-GWAS coherence test. We tested (a, b) positive and (c, d) negative correlations for (a, c) 
five dopamine-related candidate genes and (b, d) an exhaustive set of 18 344 genes. –Log10(p) 

values are annotated for Bonferroni-significant pairs, i.e. with p-values below (a, c) 0.01 (0.05/5 

candidate genes) and (b, d) 2.73x10-6 (0.05/18 344 tested genes). Significance thresholds are 

indicated by dashed lines on the colorbars. L: left, R: right, QSM: quantitative susceptibility 

mapping. ‘cl.’ indicates gene clusters with their cytogenetic location; cl. 6p21.33: C6orf25, 

CLIC1, DDAH2, LY6G6C, LY6G6D, LY6G6E, LY6G6F, MSH5; cl. 8p23.1: C8orf74, PINX1, 
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RP1L1, SOX7; cl. 10q24.2: AS3MT, C10orf32, CNNM2; cl. 11p11.2: C11orf94, GYLTL1B, 

PEX16; cl. 17q21.31: ARL17B, LRRC37A, PLEKHM1. 

 

Causal relationship 

Our MR analysis did not yield significant results. However, there was a trend (p<0.05 that were 

no longer significant after FDR correction in the bilateral accumbens) suggesting a directional 

influence from smoking to iron levels rather than from iron levels to smoking (Fig. 4e and 5e, 

and Supp. Table 7). 

The PascalX ratio test indicated positive bidirectional causality through genes expressed in 

brain tissues (detailed results in Supp. Tables 8 and 9). Specifically, for the pathway from 

smoking to striatal iron, the implicated genes were PPP1R1B, BAI3, NCAM1, PDE4B, PSMD11, 

SEMA6D, and TENM2 (Fig. 4a and b), which are associated with dopaminergic and 

glutamatergic activity, synaptic plasticity, and neuroinflammation (54,57–59). Conversely, for the 

pathway from striatal iron levels to smoking, the involved genes were DRD2, DRD3, CACNB2, 

ING5, NLRP7, and TMPRSS6 (Fig. 5a and b), linked to dopamine signalling, iron homeostasis, 

and inflammation (54,60,61). 

Additionally, the PascalX ratio test identified negative causality (i.e. between smoking and lower 

iron). For the pathway from smoking to iron content in the putamen and caudate, the genes 

CADM2, PTPRF, SKIDA1, and a gene cluster on chr 3p24.2 (Fig. 4c and d) were involved, 

primarily associated with immune system functions and synapse organisation (54,62,63). For 

the reverse pathway, from striatal iron to smoking, the genes DRD4, MAF, TFPI, and a gene 

cluster on chr 12q13.12 were implicated (Fig. 5c and d), with functions related to dopamine 

signalling, inflammatory response, and the immune system (54,64,65). 
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Figure 4. Causality pathway from smoking to striatal iron. For a-d we used the PascalX cross-

GWAS ratio test for (a, b) positive and (c, d) negative causal associations in (a, c) five 

dopamine-related candidate genes and (b, d) an exhaustive set of 18 344 genes. –Log10(p) 

values are annotated for Bonferroni-significant pairs, i.e. with p-values below (a, c) 0.01 (0.05/5 

candidate genes) and (b, d) 2.73x10-6 (0.05/18 344 tested genes). Significance thresholds are 

indicated by dashed lines on the colorbars. (e) Mendelian randomisation IVW estimates 

between smoking and striatal iron are indicated with their 95% CI. None of the IVW estimates 

was significant after FDR correction. CI: confidence interval, IVW: inverse-variance weighted, L: 

left, R: right, QSM: quantitative susceptibility mapping. ‘cl.’ indicates gene clusters with their 

cytogenetic location; cl. 3p24.2: RARB, TOP2B. 
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Figure 5. Causality pathway from striatal iron to smoking. For a-d we used the PascalX cross-

GWAS ratio test for (a, b) positive and (c, d) negative causal associations in (a, c) five 

dopamine-related candidate genes and (b, d) an exhaustive set of 18 344 genes. –Log10(p) 

values are annotated for Bonferroni-significant pairs, i.e. with p-values below (a, c) 0.01 (0.05/5 

candidate genes) and (b, d) 2.73x10-6 (0.05/18 344 tested genes). Significance thresholds are 

indicated by dashed lines on the colorbars. (e) Mendelian randomisation IVW estimates 

between striatal iron and smoking are indicated with and their 95% CI. None of the IVW 

estimates was significant. CI: confidence interval, IVW: inverse-variance weighted, L: left, R: 

right, QSM: quantitative susceptibility mapping. ‘cl.’ indicates gene clusters with their 

cytogenetic location; cl. 12q13.12: METTL7A, TFCP2. 
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Discussion 

In this study, we identified a positive association between tobacco smoking and increased iron 

content in the striatum, particularly in the dorsal striatum (putamen and caudate). Notably, iron 

accumulation in the dorsal striatum was positively correlated with pack-years of smoking and 

negatively correlated with the number of years since smoking cessation, with stronger effects 

observed in individuals with greater lifetime tobacco exposure. These findings could not be 

attributed to linear effects of alcohol consumption, blood pressure, BMI, demographic, socio-

economic, or imaging variables, as we corrected for these confounders prior to the analysis. 

Additionally, we observed a global positive genetic correlation between smoking and iron levels 

in the putamen and left accumbens. Gene-specific analyses revealed a complex pattern of 

coherent and anti-coherent associations between smoking and iron, reflecting diverse genetic 

pathways. Evidence of bi-directional causal relationships was found, involving genes related to 

synaptic function (BAI3, CACNB2, CADM2, NAT16, NCAM1, PLEKHM1, PTPRF, SEMA6D, 

TENM2), dopaminergic (DRD2, DRD3, DRD4, NCAM1, PPP1R1B), GABAergic (DLX5), and 

glutamatergic (GGACT, PPP1R1B) transmission, as well as immune function, inflammation, and 

stress response (NLRP7, MAF, METTL7A, REST, SIX3, SKIDA1, SPRY2, TFCP2, TOP2B, and 

a gene cluster on chr 6p21.33). 

The association of iron levels with smoking in the dorsal striatum appears to be cumulative, as it 
is proportional to pack-years, and potentially reversible, given that individuals with a longer 

history of smoking cessation showed lower iron levels. Although this is speculative given the 

correlational nature of our results and would require confirmation in a longitudinal design, if true, 

it suggests that smoking cessation could have a positive impact on brain health, similar to the 

gradual recovery of lung function observed after quitting smoking (66). In contrast, iron levels in 

the ventral striatum (accumbens) were elevated only in current smokers and showed no 

correlation with pack-years. This might be due to the differential dopamine signalling responses 

to nicotine between the ventral and dorsal striatum, limiting long-term effects primarily to the 

dorsal striatum (67). Research indicates that the ventral striatum initially drives voluntary drug 

use, while the dorsal striatum increasingly takes over as habitual patterns emerge, facilitating 

the progression to compulsive behaviour during habit formation (68). The leftward asymmetry 

that we observed in the accumbens could be interpreted in light of disrupted accumbens volume 

asymmetry reported in a recent multi-cohort study, where nicotine-dependent individuals had 

larger left accumbens volumes than non-dependent controls (69). The fact that we observed a 
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link between smoking and left accumbens iron when using QSM, but not T2*, as an iron marker 

could indicate concurrent effects on myelin content. 

Iron accumulation in the brain may be linked to ferroptosis, an iron-dependent type of cell death 

that is accompanied by iron deposition and glutamate toxicity (20,70). Ferroptosis has also been 

linked to inflammatory pathways (71). Our identification of genes involved in oxidative stress, 

inflammation, and immune response aligns with the hypothesis of heightened ferroptosis and 

inflammation related to smoking. This finding is particularly important given that smoking is a 

known risk factor for Alzheimer’s disease and other neurodegenerative diseases, where 

oxidative stress and neuroinflammation have been specifically identified as key mechanisms 

(14,22,23). 

Mendelian randomisation (MR), a well established tool to investigate causality, did not produce 

significant results, although there was a trend indicating that smoking influences iron levels 

rather than vice versa. This trend aligns with previous research linking substance dependence 

to brain MRI measures (6,10,27). We hypothesise that the lack of significant results from MR 

may stem from the complexity of smoking and brain iron as polygenic traits, which are 

influenced by numerous factors. This complexity can make it challenging to identify causal 

relationships using a limited number of SNPs as genetic instruments. Indeed, significant findings 

emerged when aggregating SNP-wise signals at the gene-level using our recently introduced 

PascalX methodology. Consistent with the observed trend in MR, we identified more genes with 

smoking as exposure and iron as outcome than vice versa. Moreover, the ability of PascalX to 

distinguish between coherent and anti-coherent gene signals, may explain its power to detect 

causal relationships despite the lack of significant MR results, as such signals would largely 

cancel each other in the latter. As we discuss in the following, the vast majority of genes 

detected with PascalX appear functionally plausible. This indicates that PascalX can be a 

powerful extension of standard MR, in particular when results are inconclusive or only 

marginally significant. 

We hypothesised that the relationship between smoking and striatal iron would involve the 

dopaminergic system. Two dopamine receptor genes, DRD2 and DRD4, were identified with 

opposing effects in the dorsal striatum. DRD2 (along with DRD3 in the causal analysis) was 

genetically associated with smoking and higher iron levels in the dorsal striatum, whereas DRD4 

was linked to lower iron. Both genes were implicated in the causal pathway from striatal iron to 

smoking, suggesting that an imbalance in striatal dopamine receptors may increase the 
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likelihood of initiating smoking. PPP1R1B, a gene that regulates dopaminergic and 

glutamatergic signalling and plasticity in the striatum, showed coherent signals for smoking and 

iron content, with a causal direction from smoking to iron accumulation. A similar pattern was 

observed for NCAM1 in the dorsal striatum. NCAM1 has previously been identified as a binding 

partner of DRD2 and a modulator of dopaminergic activity, forming a complex with DRD2 upon 

dopamine stimulation, particularly through its NCAM180 isoform (72). The NCAM1 gene is part 

of a cluster (NCAM1-TTC12-ANKK1-DRD2) implicated in various dopamine-related disorders, 

including attention-deficit/hyperactivity disorder and substance dependence (73–75). Our 

findings expand this understanding by suggesting a causal relationship in which smoking 

behaviour leads to iron accumulation in the striatum via stimulation of the dopaminergic system. 

Beyond genes involved in dopamine transmission, we identified several genes linked more 
broadly to synaptic function, predominantly in the causal pathway from smoking to dorsal striatal 

iron. This suggests that synaptic plasticity in smokers may contribute to increased iron content 

in the dorsal striatum. Alternatively, specific synaptic organisation during development could 

predispose individuals to smoking, with iron accumulation occurring as a downstream effect. 

Several genes previously associated with substance abuse beyond cigarette smoking (BAI3, 

CADM2, ING5, PSMD11) (76–78) and, more generally, with impulsive behaviour and risk-taking 

(BAI3, CADM2, PTPRF) (79) point to potential mechanisms, such as synaptogenesis and 

signalling (BAI3, CADM2) (78,80), increased acetylation of histones H3 and H4 within the 

reward circuitry (ING5) (81), and protein-protein interactions at synapses (PTPRF) (62). 

Our study has several limitations. The phenotypic analysis was conducted primarily in samples 

of White European ancestry, and the genetic analysis was limited exclusively to European 

ancestry, which restricts the generalisability of our findings. Although a recent multi-ancestry 

smoking GWAS has been published (82), there is currently no large-scale GWAS of brain iron 

markers in diverse populations, which is needed to replicate our findings across different 

ancestries. Ideally, the genetic analysis would be validated in an independent cohort, but this 

was not feasible since the UKB is the only study of sufficient size that includes brain swMRI 

data. Additionally, while we controlled for potential confounders in the phenotypic analysis, the 

same adjustments were not possible in analyses relying on GWAS summary statistics from 

previous studies. Therefore, confounding effects—particularly from alcohol consumption, which 

is linked to elevated striatal iron (27,83,84)—cannot be fully ruled out in the genetic findings. 
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In summary, our study reveals a complex relationship between smoking and striatal iron levels, 

with overall positive genetic and phenotypic correlations. Gene-level analyses suggest a trend 

where smoking primarily influences iron levels, although both positive and negative associations 

were observed, indicating intricate bidirectional mechanisms and possible feedback loops. Our 

findings suggest that smoking may lead to increased striatal iron accumulation through multiple 

pathways, which may impact brain health and neurodegenerative risk. Additionally, inflammation 

and dopamine imbalance in the striatum may further reinforce smoking behaviour. Further 

research, particularly involving more diverse populations and longitudinal data, is essential to 

fully elucidate these dynamics. 

 

Data and code availability 

UKB data are available upon successful application (https://www.ukbiobank.ac.uk/enable-your-

research/apply-for-access). GWAS summary statistics used in this study are publicly available 

at https://www.fmrib.ox.ac.uk/ukbiobank/gwas_resources/ and 

https://open.win.ox.ac.uk/ukbiobank/big40/ for brain IDPs and 

https://conservancy.umn.edu/bitstream/handle/11299/201564/SmokingInitiation.txt.gz for 

smoking initiation. The code used to generate the presented results will be made available on 

GitHub upon publication (https://github.com/ot710/smoking_striatum_iron). 

 

Acknowledgements 

This research has been conducted using the UK Biobank Resource under Application Number 

90947. The authors thank Sofía Ortín Vela, Dennis Bontempi, Michael Beyeler, and David 

Presby for their valuable feedback and insightful suggestions on the manuscript. 

 

Funding 

This work was supported by the Swiss National Science Foundation grant no. CRSII5 209510 

for the “VascX” Sinergia project. The authors declare no conflicts of interest. 

 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 27, 2024. ; https://doi.org/10.1101/2024.09.26.24314454doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.26.24314454
http://creativecommons.org/licenses/by-nc/4.0/


 

References 

1. Filion KB, Luepker RV. Cigarette Smoking and Cardiovascular Disease: Lessons from 

Framingham. Glob Heart. 2013 Mar 1;8(1):35.  

2. O’Keeffe LM, Taylor G, Huxley RR, Mitchell P, Woodward M, Peters SAE. Smoking as a risk 

factor for lung cancer in women and men: a systematic review and meta-analysis. BMJ 

Open. 2018 Oct;8(10):e021611.  

3. Aune D, Schlesinger S, Norat T, Riboli E. Tobacco smoking and the risk of heart failure: A 

systematic review and meta-analysis of prospective studies. Eur J Prev Cardiol. 2019 

Feb;26(3):279–88.  

4. McCorkindale AN, Sheedy D, Kril JJ, Sutherland GT. The effects of chronic smoking on the 

pathology of alcohol-related brain damage. Alcohol. 2016 Jun;53:35–44.  

5. Johansson L, Guo X, Sacuiu S, Fässberg MM, Kern S, Zettergren A, et al. Longstanding 

smoking associated with frontal brain lobe atrophy: a 32-year follow-up study in women. 

BMJ Open. 2023 Oct;13(10):e072803.  

6. Mo C, Wang J, Ye Z, Ke H, Liu S, Hatch K, et al. Evaluating the causal effect of tobacco 

smoking on white matter brain aging: a two-sample Mendelian randomization analysis in UK 

Biobank. Addiction. 2023 Apr;118(4):739–49.  

7. Pan P, Shi H, Zhong J, Xiao P, Shen Y, Wu L, et al. Chronic smoking and brain gray matter 

changes: evidence from meta-analysis of voxel-based morphometry studies. Neurol Sci. 

2013 Jun;34(6):813–7.  

8. Karama S, Ducharme S, Corley J, Chouinard-Decorte F, Starr JM, Wardlaw JM, et al. 

Cigarette smoking and thinning of the brain’s cortex. Mol Psychiatry. 2015 Jun;20(6):778–

85.  

9. Elbejjani M, Auer R, Jacobs DR, Haight T, Davatzikos C, Goff DC, et al. Cigarette smoking 

and gray matter brain volumes in middle age adults: the CARDIA Brain MRI sub-study. 

Transl Psychiatry. 2019 Feb 11;9(1):78.  

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 27, 2024. ; https://doi.org/10.1101/2024.09.26.24314454doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.26.24314454
http://creativecommons.org/licenses/by-nc/4.0/


 

10. Logtenberg E, Overbeek MF, Pasman JA, Abdellaoui A, Luijten M, Van Holst RJ, et al. 

Investigating the causal nature of the relationship of subcortical brain volume with smoking 

and alcohol use. Br J Psychiatry. 2022 Jul;221(1):377–85.  

11. Brown AA, Cofresí R, Froeliger B. Associations Between the Wisconsin Inventory of 

Smoking Dependence Motives and Regional Brain Volumes in Adult Smokers. Nicotine Tob 

Res. 2023 Nov 22;25(12):1882–90.  

12. Linli Z, Rolls ET, Zhao W, Kang J, Feng J, Guo S. Smoking is associated with lower brain 

volume and cognitive differences: A large population analysis based on the UK Biobank. 

Prog Neuropsychopharmacol Biol Psychiatry. 2023 Apr;123:110698.  

13. Chang Y, Thornton V, Chaloemtoem A, Anokhin AP, Bijsterbosch J, Bogdan R, et al. 

Investigating the Relationship Between Smoking Behavior and Global Brain Volume. Biol 

Psychiatry Glob Open Sci. 2024 Jan;4(1):74–82.  

14. Liu Y, Li H, Wang J, Xue Q, Yang X, Kang Y, et al. Association of Cigarette Smoking With 

Cerebrospinal Fluid Biomarkers of Neurodegeneration, Neuroinflammation, and Oxidation. 

JAMA Netw Open. 2020 Oct 2;3(10):e2018777.  

15. Li H, Mu Q, Kang Y, Yang X, Shan L, Wang M, et al. Association of Cigarette Smoking With 

Male Cognitive Impairment and Metal Ions in Cerebrospinal Fluid. Front Psychiatry. 2021 

Nov 19;12:738358.  

16. Miller KL, Alfaro-Almagro F, Bangerter NK, Thomas DL, Yacoub E, Xu J, et al. Multimodal 

population brain imaging in the UK Biobank prospective epidemiological study. Nat 

Neurosci. 2016;  

17. Trofimova O, Loued-Khenissi L, DiDomenicantonio G, Lutti A, Kliegel M, Stringhini S, et al. 

Brain tissue properties link cardio-vascular risk factors, mood and cognitive performance in 

the CoLaus|PsyCoLaus epidemiological cohort. Neurobiol Aging. 2021 Jun;102:50–63.  

18. Wang C, Martins-Bach AB, Alfaro-Almagro F, Douaud G, Klein JC, Llera A, et al. 

Phenotypic and genetic associations of quantitative magnetic susceptibility in UK Biobank 

brain imaging. Nat Neurosci. 2022 Jun;25(6):818–31.  

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 27, 2024. ; https://doi.org/10.1101/2024.09.26.24314454doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.26.24314454
http://creativecommons.org/licenses/by-nc/4.0/


 

19. Yager LM, Garcia AF, Wunsch AM, Ferguson SM. The ins and outs of the striatum: Role in 

drug addiction. Neuroscience. 2015 Aug;301:529–41.  

20. Ou M, Jiang Y, Ji Y, Zhou Q, Du Z, Zhu H, et al. Role and mechanism of ferroptosis in 

neurological diseases. Mol Metab. 2022 Jul;61:101502.  

21. D’Mello SR, Kindy MC. Overdosing on iron: Elevated iron and degenerative brain disorders. 

Exp Biol Med. 2020 Oct;245(16):1444–73.  

22. Levi S, Ripamonti M, Moro AS, Cozzi A. Iron imbalance in neurodegeneration. Mol 

Psychiatry. 2024 Apr;29(4):1139–52.  

23. Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, et al. 

Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and 

Disease. Cell. 2017 Oct;171(2):273–85.  

24. Adeniyi PA, Gong X, MacGregor E, Degener-O’Brien K, McClendon E, Garcia M, et al. 

Ferroptosis of Microglia in Aging Human White Matter Injury. Ann Neurol. 2023 

Dec;94(6):1048–66.  

25. Daugherty AM, Raz N. Appraising the Role of Iron in Brain Aging and Cognition: Promises 

and Limitations of MRI Methods. Neuropsychol Rev. 2015;  

26. Dichtl S, Haschka D, Nairz M, Seifert M, Volani C, Lutz O, et al. Dopamine promotes cellular 

iron accumulation and oxidative stress responses in macrophages. Biochem Pharmacol. 

2018 Feb;148:193–201.  

27. Topiwala A, Wang C, Ebmeier KP, Burgess S, Bell S, Levey DF, et al. Associations 

between moderate alcohol consumption, brain iron, and cognition in UK Biobank 

participants: Observational and mendelian randomization analyses. Sachdev PS, editor. 

PLOS Med. 2022 Jul 14;19(7):e1004039.  

28. Hare D, Ayton S, Bush A, Lei P. A delicate balance: Iron metabolism and diseases of the 

brain. Front Aging Neurosci [Internet]. 2013 [cited 2024 Aug 23];5. Available from: 

http://journal.frontiersin.org/article/10.3389/fnagi.2013.00034/abstract 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 27, 2024. ; https://doi.org/10.1101/2024.09.26.24314454doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.26.24314454
http://creativecommons.org/licenses/by-nc/4.0/


 

29. Ashok AH, Mizuno Y, Howes OD. Tobacco smoking and dopaminergic function in humans: 

a meta-analysis of molecular imaging studies. Psychopharmacology (Berl). 2019 

Apr;236(4):1119–29.  

30. Le Foll B, Guranda M, Wilson AA, Houle S, Rusjan PM, Wing VC, et al. Elevation of 

Dopamine Induced by Cigarette Smoking: Novel Insights from a [11C]-(+)-PHNO PET Study 

in Humans. Neuropsychopharmacology. 2014 Jan;39(2):415–24.  

31. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK Biobank: An Open 

Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of 

Middle and Old Age. PLOS Med. 2015;  

32. Alfaro-Almagro F, Jenkinson M, Bangerter NK, Andersson JLR, Griffanti L, Douaud G, et al. 

Image processing and Quality Control for the first 10,000 brain imaging datasets from UK 

Biobank. NeuroImage. 2018;  

33. Ghassaban K, Liu S, Jiang C, Haacke EM. Quantifying iron content in magnetic resonance 

imaging. NeuroImage. 2019 Feb;187:77–92.  

34. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful 

Approach to Multiple Testing. J R Stat Soc Ser B Stat Methodol. 1995 Jan 1;57(1):289–300.  

35. Elliott LT, Sharp K, Alfaro-Almagro F, Shi S, Miller KL, Douaud G, et al. Genome-wide 

association studies of brain imaging phenotypes in UK Biobank. Nature. 2018 

Oct;562(7726):210–6.  

36. Smith SM, Douaud G, Chen W, Hanayik T, Alfaro-Almagro F, Sharp K, et al. An expanded 

set of genome-wide association studies of brain imaging phenotypes in UK Biobank. Nat 

Neurosci. 2021 May;24(5):737–45.  

37. Liu M, Jiang Y, Wedow R, Li Y, Brazel DM, Chen F, et al. Association studies of up to 1.2 

million individuals yield new insights into the genetic etiology of tobacco and alcohol use. 

Nat Genet. 2019 Feb;51(2):237–44.  

38. Bulik-Sullivan BK, Loh PR, Finucane HK, Ripke S, Yang J, Patterson N, et al. LD Score 

regression distinguishes confounding from polygenicity in genome-wide association studies. 

Nat Genet. 2015 Mar;47(3):291–5.  

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 27, 2024. ; https://doi.org/10.1101/2024.09.26.24314454doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.26.24314454
http://creativecommons.org/licenses/by-nc/4.0/


 

39. Krefl D, Bergmann S. Cross-GWAS coherence test at the gene and pathway level. Barla A, 

editor. PLOS Comput Biol. 2022 Sep 26;18(9):e1010517.  

40. Krefl D, Brandulas Cammarata A, Bergmann S. PascalX: a Python library for GWAS gene 

and pathway enrichment tests. Kendziorski C, editor. Bioinformatics. 2023 May 

4;39(5):btad296.  

41. Vandenbergh DJ, O’Connor RJ, Grant MD, Jefferson AL, Vogler GP, Strasser AA, et al. 

GENETIC STUDY: Dopamine receptor genes ( DRD2 , DRD3 and DRD4 ) and gene–gene 

interactions associated with smoking-related behaviors. Addict Biol. 2007 Mar;12(1):106–16.  

42. Okita K, Mandelkern MA, London ED. Cigarette Use and Striatal Dopamine D2/3 Receptors: 

Possible Role in the Link between Smoking and Nicotine Dependence. Int J 

Neuropsychopharmacol. 2016 Nov;19(11):pyw074.  

43. Pérez-Rubio G, Ramírez-Venegas A, Noé Díaz V, García Gómez L, Elvira Fabián K, García 

Carmona S, et al. Polymorphisms in HTR2A and DRD4 Predispose to Smoking and 

Smoking Quantity. Zhang H, editor. PLOS ONE. 2017 Jan 19;12(1):e0170019.  

44. Ruzilawati AB, Islam MA, Muhamed SKS, Ahmad I. Smoking Genes: A Case–Control Study 

of Dopamine Transporter Gene (SLC6A3) and Dopamine Receptor Genes (DRD1, DRD2 

and DRD3) Polymorphisms and Smoking Behaviour in a Malay Male Cohort. Biomolecules. 

2020 Dec 3;10(12):1633.  

45. The UK10K Consortium, Writing group, Walter K, Min JL, Huang J, Crooks L, et al. The 

UK10K project identifies rare variants in health and disease. Nature. 2015 Oct 

1;526(7571):82–90.  

46. Yates A, Akanni W, Amode MR, Barrell D, Billis K, Carvalho-Silva D, et al. Ensembl 2016. 

Nucleic Acids Res. 2016 Jan 4;44(D1):D710–6.  

47. Church DM, Schneider VA, Graves T, Auger K, Cunningham F, Bouk N, et al. Modernizing 

Reference Genome Assemblies. PLoS Biol. 2011 Jul 5;9(7):e1001091.  

48. Davey Smith G, Ebrahim S. ‘Mendelian randomization’: can genetic epidemiology contribute 

to understanding environmental determinants of disease?*. Int J Epidemiol. 2003 

Feb;32(1):1–22.  

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 27, 2024. ; https://doi.org/10.1101/2024.09.26.24314454doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.26.24314454
http://creativecommons.org/licenses/by-nc/4.0/


 

49. Rasooly D, Patel CJ. Conducting a Reproducible Mendelian Randomization Analysis Using 

the R Analytic Statistical Environment. Curr Protoc Hum Genet. 2019 Apr;101(1):e82.  

50. Huang J, Howie B, McCarthy S, Memari Y, Walter K, Min JL, et al. Improved imputation of 

low-frequency and rare variants using the UK10K haplotype reference panel. Nat Commun. 

2015 Sep 14;6(1):8111.  

51. Burgess S, Butterworth A, Thompson SG. Mendelian Randomization Analysis With Multiple 

Genetic Variants Using Summarized Data. Genet Epidemiol. 2013 Nov;37(7):658–65.  

52. De Lombares C, Heude E, Alfama G, Fontaine A, Hassouna R, Vernochet C, et al. Dlx5 and 

Dlx6 expression in GABAergic neurons controls behavior, metabolism, healthy aging and 

lifespan. Aging. 2019 Sep 12;11(17):6638–56.  

53. Jeitner TM, Battaile K, Cooper AJL. γ-Glutamylamines and neurodegenerative diseases. 

Amino Acids. 2013 Jan;44(1):129–42.  

54. Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, et al. The 

GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Curr 

Protoc Bioinforma [Internet]. 2016 Jun [cited 2024 Sep 9];54(1). Available from: 

https://currentprotocols.onlinelibrary.wiley.com/doi/10.1002/cpbi.5 

55. Dow AL, Lin TV, Chartoff EH, Potter D, McPhie DL, Van’t Veer AV, et al. Sprouty2 in the 

Dorsal Hippocampus Regulates Neurogenesis and Stress Responsiveness in Rats. Schmidt 

U, editor. PLOS ONE. 2015 Mar 30;10(3):e0120693.  

56. Mampay M, Sheridan GK. REST: An epigenetic regulator of neuronal stress responses in 

the young and ageing brain. Front Neuroendocrinol. 2019 Apr;53:100744.  

57. Scuderi C, Saccuzzo L, Vinci M, Castiglia L, Galesi O, Salemi M, et al. Biallelic intragenic 

duplication in ADGRB3 (BAI3) gene associated with intellectual disability, cerebellar 

atrophy, and behavioral disorder. Eur J Hum Genet. 2019 Apr;27(4):594–602.  

58. McGirr A, Lipina TV, Mun HS, Georgiou J, Al-Amri AH, Ng E, et al. Specific Inhibition of 

Phosphodiesterase-4B Results in Anxiolysis and Facilitates Memory Acquisition. 

Neuropsychopharmacology. 2016 Mar;41(4):1080–92.  

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 27, 2024. ; https://doi.org/10.1101/2024.09.26.24314454doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.26.24314454
http://creativecommons.org/licenses/by-nc/4.0/


 

59. Nakanishi Y, Izumi M, Matsushita H, Koyama Y, Diez D, Takamatsu H, et al. Semaphorin 

6D tunes amygdalar circuits for emotional, metabolic, and inflammatory outputs. Neuron. 

2024 Sep;112(17):2955-2972.e9.  

60. Carriere J, Dorfleutner A, Stehlik C. NLRP7: From inflammasome regulation to human 

disease. Immunology. 2021 Aug;163(4):363–76.  

61. Ganz T, Nemeth E, Rivella S, Goldberg P, Dibble AR, McCaleb ML, et al. TMPRSS6 as a 

Therapeutic Target for Disorders of Erythropoiesis and Iron Homeostasis. Adv Ther. 2023 

Apr;40(4):1317–33.  

62. Cornejo F, Cortés BI, Findlay GM, Cancino GI. LAR Receptor Tyrosine Phosphatase Family 

in Healthy and Diseased Brain. Front Cell Dev Biol. 2021 Dec 13;9:659951.  

63. Broderick L, Yost S, Li D, McGeough MD, Booshehri LM, Guaderrama M, et al. Mutations in 

topoisomerase IIβ result in a B cell immunodeficiency. Nat Commun. 2019 Aug 

13;10(1):3644.  

64. Wang B, Jiang J, Luo D, Wang X. Pan-cancer analysis reveals potential immunological and 

prognostic roles of METTL7A in human cancers. Sci Rep. 2024 Feb 12;14(1):3476.  

65. Gabryšová L, Alvarez-Martinez M, Luisier R, Cox LS, Sodenkamp J, Hosking C, et al. c-Maf 

controls immune responses by regulating disease-specific gene networks and repressing IL-

2 in CD4+ T cells. Nat Immunol. 2018 May;19(5):497–507.  

66. Willemse BWM, Postma DS, Timens W, Ten Hacken NHT. The impact of smoking 

cessation on respiratory symptoms, lung function, airway hyperresponsiveness and 

inflammation. Eur Respir J. 2004 Mar;23(3):464–76.  

67. Zhang T, Zhang L, Liang Y, Siapas AG, Zhou FM, Dani JA. Dopamine Signaling Differences 

in the Nucleus Accumbens and Dorsal Striatum Exploited by Nicotine. J Neurosci. 2009 Apr 

1;29(13):4035–43.  

68. Everitt BJ, Robbins TW. From the ventral to the dorsal striatum: Devolving views of their 

roles in drug addiction. Neurosci Biobehav Rev. 2013 Nov;37(9):1946–54.  

69. Cao Z, Ottino-Gonzalez J, Cupertino RB, Schwab N, Hoke C, Catherine O, et al. Mapping 

cortical and subcortical asymmetries in substance dependence: Findings from the ENIGMA 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 27, 2024. ; https://doi.org/10.1101/2024.09.26.24314454doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.26.24314454
http://creativecommons.org/licenses/by-nc/4.0/


 

Addiction Working Group. Addict Biol [Internet]. 2021 Sep [cited 2023 May 3];26(5). 

Available from: https://onlinelibrary.wiley.com/doi/10.1111/adb.13010 

70. Li J, Cao F, Yin H liang, Huang Z jian, Lin Z tao, Mao N, et al. Ferroptosis: past, present and 

future. Cell Death Dis. 2020 Feb 3;11(2):88.  

71. Chen Y, Fang ZM, Yi X, Wei X, Jiang DS. The interaction between ferroptosis and 

inflammatory signaling pathways. Cell Death Dis. 2023 Mar 21;14(3):205.  

72. Xiao MF, Xu JC, Tereshchenko Y, Novak D, Schachner M, Kleene R. Neural Cell Adhesion 

Molecule Modulates Dopaminergic Signaling and Behavior by Regulating Dopamine D 2 

Receptor Internalization. J Neurosci. 2009 Nov 25;29(47):14752–63.  

73. Gelernter J, Yu Y, Weiss R, Brady K, Panhuysen C, Yang B zhu, et al. Haplotype spanning 

TTC12 and ANKK1, flanked by the DRD2 and NCAM1 loci, is strongly associated to nicotine 

dependence in two distinct American populations. Hum Mol Genet. 2006 Dec 

15;15(24):3498–507.  

74. Yang BZ, Kranzler HR, Zhao H, Gruen JR, Luo X, Gelernter J. Association of haplotypic 

variants in DRD2, ANKK1, TTC12 and NCAM1 to alcohol dependence in independent 

case–control and family samples. Hum Mol Genet. 2007 Dec 1;16(23):2844–53.  

75. Mota NR, Rovaris DL, Kappel DB, Picon FA, Vitola ES, Salgado CAI, et al. NCAM1-TTC12-
ANKK1-DRD2 gene cluster and the clinical and genetic heterogeneity of adults with ADHD. 

Am J Med Genet B Neuropsychiatr Genet. 2015 Sep;168(6):433–44.  

76. Hall FS, Drgonova J, Jain S, Uhl GR. Implications of genome wide association studies for 

addiction: Are our a priori assumptions all wrong? Pharmacol Ther. 2013 Dec;140(3):267–

79.  

77. Karlsson Linnér R, Mallard TT, Barr PB, Sanchez-Roige S, Madole JW, Driver MN, et al. 

Multivariate analysis of 1.5 million people identifies genetic associations with traits related to 

self-regulation and addiction. Nat Neurosci. 2021 Oct;24(10):1367–76.  

78. Pasman JA, Chen Z, Smit DJA, Vink JM, Van Den Oever MC, Pattij T, et al. The CADM2 

Gene and Behavior: A Phenome-Wide Scan in UK-Biobank. Behav Genet. 2022 Sep;52(4–

5):306–14.  

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 27, 2024. ; https://doi.org/10.1101/2024.09.26.24314454doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.26.24314454
http://creativecommons.org/licenses/by-nc/4.0/


 

79. Sanchez-Roige S, Jennings MV, Thorpe HHA, Mallari JE, Van Der Werf LC, Bianchi SB, et 

al. CADM2 is implicated in impulsive personality and numerous other traits by genome- and 

phenome-wide association studies in humans and mice. Transl Psychiatry. 2023 May 

12;13(1):167.  

80. Lanoue V, Usardi A, Sigoillot SM, Talleur M, Iyer K, Mariani J, et al. The adhesion-GPCR 

BAI3, a gene linked to psychiatric disorders, regulates dendrite morphogenesis in neurons. 

Mol Psychiatry. 2013 Aug;18(8):943–50.  

81. Walker DM, Nestler EJ. Neuroepigenetics and addiction. In: Handbook of Clinical Neurology 

[Internet]. Elsevier; 2018 [cited 2024 Sep 9]. p. 747–65. Available from: 

https://linkinghub.elsevier.com/retrieve/pii/B978044464076500048X 

82. Toikumo S, Jennings MV, Pham BK, Lee H, Mallard TT, Bianchi SB, et al. Multi-ancestry 

meta-analysis of tobacco use disorder identifies 461 potential risk genes and reveals 

associations with multiple health outcomes. Nat Hum Behav. 2024 Apr 17;8(6):1177–93.  

83. Tan H, Hubertus S, Thomas S, Lee AM, Gerhardt S, Gerchen MF, et al. Association 

between iron accumulation in the dorsal striatum and compulsive drinking in alcohol use 

disorder. Psychopharmacology (Berl). 2023 Feb;240(2):249–57.  

84. Wilcockson TDW, Roy S. Could Alcohol-Related Cognitive Decline Be the Result of Iron-

Induced Neuroinflammation? Brain Sci. 2024 May 21;14(6):520.  

 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 27, 2024. ; https://doi.org/10.1101/2024.09.26.24314454doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.26.24314454
http://creativecommons.org/licenses/by-nc/4.0/

