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Abstract 

Background and Objectives:  

Multiple sclerosis (MS) is a chronic autoimmune disease with limited treatment 

options. Thus, drug discovery and repurposing are essential to enhance treatment 

efficacy and safety. 

Methods: 

We obtained summary statistics for protein quantitative trait loci (pQTL) of 2,004 

plasma proteins and 1,443 brain proteins, a genome-wide association study (GWAS) 

of MS susceptibility with 14,802 cases and 26,703 controls, and expression 

quantitative trait loci (eQTL) for 8,000 genes in peripheral blood and 16,704 genes in 

brain tissue. Our integrative analysis included a proteome-wide association study to 

identify MS-associated proteins, followed by summary-data-based Mendelian 

randomization (SMR) to determine causal associations. We used the HEIDI test and 

Bayesian colocalization analysis to distinguish pleiotropy from linkage. Proteins 

passing SMR, HEIDI, and colocalization analyses were considered potential drug 

targets. We further conducted pathway annotations, protein-protein interaction (PPI) 

network analysis, and examined mRNA levels of these targets. 

Results: 

We identified hundreds of MS-associated proteins in plasma and brain, confirming the 

causal roles of 18 proteins (nine in plasma and nine in brain). Among these, we found 

78 annotated pathways and 16 existing non-MS drugs targeting six proteins. We also 

discovered intricate PPIs among seven potential drug targets and 19 existing MS drug 
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targets, as well as PPIs of four targets across plasma and brain. Combining expression 

data, we identified two targets adhering to the central dogma of molecular biology. 

Discussion: 

We prioritized 18 potential drug targets in plasma and brain, elucidating the 

underlying pathology and providing evidence for drug discovery and repurposing in 

MS. 
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Introduction 

Multiple sclerosis (MS) is an autoimmune inflammatory disease characterized by 

demyelination and degeneration in the central nervous system, and has caused non-

traumatic disabilities in millions of individuals globally. Disease-modifying therapy 

(DMT) plays an important role in MS management by reducing the occurrence and 

severity of relapses and postponing disability accumulation.1 Nonetheless, current 

therapeutic options remain limited and lack targeted specificity, particularly for 

progressive MS.2 Moreover, side effects such as an increased risk of infection present 

serious concerns and can lead to non-adherence with long-term DMT treatment.3 

Therefore, continuous exploration of drug discovery, development, and repurposing 

has become increasingly crucial for improving both the efficacy and the safety of MS 

treatment. 

Proteins serve as the main molecular agents of cellular and biological processes and 

are therefore considered highly effective drug targets. Compared to genes and 

transcripts, proteins as end products play a more direct and influential role in 

determining phenotypes. Studies have demonstrated that although the human genome 

contains approximately 20,000 protein-coding genes,4 the number of proteoforms 

(distinct protein isoforms) could exceed a million.5 Furthermore, the difference 

between mRNA and protein levels can reach up to 20-30 fold.6 On the other hand, 

even in the absence of evidence at the genomic or transcriptomic levels, proteins can 

still contribute to diseases, such as through post-translational modifications.7 

Therefore, direct measurement of proteins not only helps elucidate disease pathology, 

but also provides potential targets for drug discovery and repurposing.8 Proteomic 
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techniques have been used in MS research since the 2000s, and have detected a 

substantial number of MS-associated proteins.8, 9 However, a challenge that is 

common to these studies is the limited sample size – the involvement of often less 

than 100 individuals for a panel of thousands of proteins usually yields a huge 

statistical burden and inconsistent results. 

Integrating proteomic data with genetic information forms an effective strategy to 

unveil the association between protein expression levels and MS development. This 

approach has been proven promising, as investigational drugs with supportive 

evidence from genetics are almost twice as likely to succeed in phase II trials (73% vs. 

43%)10 and to achieve market approval.11 Transcriptomic data provides an additional 

layer of insights by revealing the effect of mRNA expressions on MS. Through 

investigating transcriptome profiles, studies have identified candidate drugs across a 

wide range of diseases.12, 13 Integrating multi-omics data including genomics, 

transcriptomics, and proteomics with phenotypic information, potential drug targets 

can be prioritized with uncovered underlying biological mechanisms. 

Complex diseases often manifest in specific tissues, despite genetic risk variants being 

present in all cells. By targeting relevant and functional tissues, trait-associated 

molecular agents can be more accurately prioritized with the revealed underlying 

pathological mechanisms. For MS, while plasma proteins reflect circulatory function 

and are easily accessed in clinical practice, brain proteins directly mirror MS 

pathophysiology. Therefore, incorporating both plasma and brain proteomes would 

aid in detecting disease-relevant signals. 

Previous studies have identified several promising findings through integrating 

strategies. In plasma, a study identified the proteins FCRL3, TYMP, and AHSG as 

potential drug targets for MS treatment.14 These results were complemented by other 
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studies that identified additional proteins, including CD40, TNFRSF1A, CD58,15 

PLEK, CR1, and CD59.16, 17  To date, only one study has focused on brain tissue, the 

primary affected tissue in MS, identifying 34 associated proteins.18 This study only 

determined the association utilized proteome-wide association study (PWAS). 

However, the causal relationships, and the potential for pseudo-links due to SNPs 

linkage disequilibrium (LD) remain to be examined in brain tissue. In our study, we 

conducted an integrative analysis using the hitherto largest summary statistics of 

expression quantitative trait loci (eQTL), protein quantitative trait loci (pQTL), and 

genome-wide association study (GWAS) of MS susceptibility. We utilized cutting-

edge statistical approaches to detect potential causal proteins from complex 

associations and to distinguish pleiotropy from linkage. By integrating tissue-specific 

pQTL and MS GWAS data, we prioritized 18 potential drug targets (nine in plasma 

and nine in brain). Combining eQTL data, we identified two of these 18 targets 

adhering to the central dogma of molecular biology (genetic locus → mRNA 

transcription → protein translation → MS). We further found 78 annotated pathways 

and 17 existing non-MS drugs targeting six of the 18 identified potential targets. We 

also detected comprehensive protein-protein interactions (PPIs) between 7 of the 18 

identified potential drug targets and 19 existing MS drug targets. Moreover, we 

identified PPIs among four potential drug targets across plasma and brain (Figure 1). 

 

Materials and methods 

Plasma pQTL summary data 

Summary statistics of plasma pQTL were obtained from a large-scale community-

based cohort study involving 7,213 participants of European ancestry.19 Relative 
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plasma protein concentrations were measured using modified aptamers (SOMAmer). 

Following quality control for protein-gene mapping, 4,657 SOMAmers with tagged 

proteins encoded by 4,435 genes were identified. Genotyping was conducted using 

the Affymetrix 6.0 DNA microarray and subsequently imputed with the TOPMed 

reference panel. After quality control for imputation quality, Hardy-Weinberg 

equilibrium, and minor allele frequencies (MAF), 6,181,856 SNPs were identified. 

To identify pQTL, a linear regression model was performed, adjusting for age, sex, 

study site, and ten genetic principal components (PCs). Cis-regions were defined as 

±500 KB of the transcription start site. In total, 2,004 significant proteins with cis-

pQTLs were identified. 

 

Brain pQTL summary data 

Summary statistics of brain pQTL were obtained from two clinical-pathologic cohort 

studies using dorsolateral prefrontal cortex of postmortem brain samples donated by 

400 participants of European ancestry.20 The brain proteome was profiled using liquid 

chromatography coupled to mass spectrometry analysis. Following quality control for 

outliers, missing values, and protein loadings, 8,356 brain proteins with corresponding 

quantitation were detected. Genotyping was conducted either by whole-genome 

sequencing or by genome-wide genotyping using Illumina OmniQuad Express or 

Affymetrix GeneChip platforms. Imputation was performed using the 1000 Genomes 

(1KG) reference panel. After quality control on variants missing rate, Hardy-

Weinberg equilibrium, imputation quality, MAF, and degree of kinship, 1,190,321 

SNPs on autosomes matching the HapMap LD reference panel were identified. 
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To determine pQTL, a linear regression model was performed. Cis-regions were 

defined as a genomic window of 1MB (±500 KB) around genes. In total, 1,443 

significant proteins with cis-pQTL were identified. 

 

GWAS of MS susceptibility 

Summary statistics of MS susceptibility were obtained from a recent GWAS including 

14,802 MS cases and 26,703 non-MS controls of individuals of European ancestry.21 

Each of the 15 participating datasets underwent quality checks, followed by 

imputation using BEAGLE or 1KG reference panel. Subsequently, the association 

between genetic variants and MS risk was estimated for each dataset through logistic 

regression, adjusting for the first five PCs. Finally, a fixed-effect meta-analysis was 

conducted to pool the results. 

 

Blood eQTL summary data 

Summary statistics of peripheral blood eQTL were obtained from the Consortium for 

the Architecture of Gene Expression, using whole blood of 2,765 individuals of 

European ancestry.22 Gene expression quantification was conducted using Illumina 

Whole-Genome Expression BeadChips. After quality control on standardizing the 

expression levels across samples and adjusting for covariates, the mRNA levels for 

36,778 transcript expression traits (probes) were investigated. Genotyping was 

conducted using various platforms and subsequently imputed using the 1KG reference 

panel. After standard quality control on variants missing rate, Hardy-Weinberg 

equilibrium, imputation quality, and MAF, 7,763,174 autosomal SNPs were detected. 
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To identify SNP-probe associations, a linear mixed regression model was performed, 

adjusting for population structure. Subsequently, Conditional & joint association 

analysis was conducted to refine the extensive set of identified SNP-probe association 

results. In total, 11,204 cis-eQTLs for 8,080 genes were identified. 

 

Brain eQTL summary data 

Summary statistics of brain eQTL were accessed from seven cohorts using brain 

cortex samples donated by 2,443 individuals of European ancestry.23 Gene-level 

transcriptional abundances were quantified using RNA-SeQC. After quality control, 

retaining individuals with over 10 million reads and an RNA integrity number > 5.5, 

RNA-seq data from 2,865 brain cortex samples were retained. Genotyping was 

conducted using various platforms and imputed using the 1KG reference panel and 

then filtered with standard quality control. In total, 11,631,763 SNPs were detected. 

To identify brain eQTL, a linear regression model was performed, adjusting for five 

genetic PCs. A meta-analysis was then conducted to pool the results across cohorts. In 

total, 1,962,048 cis-eQTLs for 16,704 genes were identified. 

 

Statistical analysis  

PWAS identifying proteins associated with MS, by integrating pQTL 

and MS GWAS 

We first conducted a PWAS to identify candidate proteins associated with MS. 

FUSION was performed using pre-computed elastic net model-based weights for both 

plasma and brain protein expressions.19, 20 Briefly, the 1KG reference panel was used 
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to reduce the impact of LD on MS GWAS. Subsequently, SNP effect sizes (z-scores) 

of MS GWAS were imputed using the ImpG-Summary algorithm.24 Finally, the 

association between protein weights and MS GWAS was estimated through a linear 

regression model. To identify the largest possible number of candidates, a nominal P-

value < 0.05 was utilized as a significance threshold. Moreover, FDR-adjusted P < 

0.05  was also applied. 

 

Summary-data-based Mendelian randomization (SMR) identifying 

proteins causally associated with MS 

To confirm whether PWAS-identified protein candidates causally influence MS, SMR 

analysis was performed.25 This method tests the pleiotropic association between 

genetically predicted protein levels and MS onset. A key assumption of this approach 

is that an identical underlying causal variant determines both protein expression and 

disease phenotype. However, due to LD, it is possible that the SMR effect could be 

non-zero even when this assumption is violated. To distinguish pleiotropy from 

linkage, Heterogeneity in dependent instruments (HEIDI) test was performed, under 

the assumption that if protein expression and disease phenotype are affected by a 

shared causal variant, βSMR would be the same for any variant in LD with that causal 

variant. Thus, greater heterogeneity among βSMR statistics calculated for all cis-pQTLs 

implies a greater likelihood of linkage, rather than pleiotropy. 

SMR and HEIDI analyses were performed using SMR software (version 1.3.1). The 

1KG reference panel was used for LD estimation. Common variants with MAF > 0.01 

were involved in the analysis. Briefly, for the SMR test, only pQTLs that met the 

significance threshold of P-value < 5×10−8 were involved. For HEIDI test, the 
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significance threshold was set to a P-value < 1.57×10−3; pQTLs were required to 

correlate with the top-associated cis-pQTL with an R2 of 0.05-0.90; and the number of 

involved SNPs was restricted to 3-20. The statistical significance threshold for 

putative causal proteins was defined using FDR-adjusted PSMR < 0.05 and PHEIDI > 

0.05. 

 

Bayesian co-localization analysis examining shared causal variant 

influence on both protein expression and MS 

To further address the potential effects of LD on the pleiotropic associations, Bayesian 

co-localization analysis was performed to assess the posterior probability of shared 

genetic variants being responsible for both protein expression and MS development 

using the coloc R package (version 5.2.3). In this approach, the posterior probability 

is generated for the following hypotheses: H0: neither protein expression level nor 

MS development has a genetic association in the region; H1: only protein expression 

level has a genetic association in the region; H2: only MS development has a genetic 

association in the region; H3: both protein expression level and MS development have 

genetic association but with different causal variants; H4: both protein expression 

level and MS development have genetic association in the region and share a single 

causal variant. The posterior probability of H4 (PPH4) > 0.75 was considered 

colocalized. 

 

Definition of potential causal proteins 
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Potential causal proteins were defined as those that successfully passed all three 

analyses: the SMR analysis (FDR-adjusted PSMR < 0.05), the HEIDI test (PHEIDI > 

0.05), and the colocalization analysis (PPH4 > 0.75). These potential causal proteins 

were recognized as potential drug targets and underwent further comprehensive 

functional investigations. 

 

KEGG pathway annotation, protein-targeted drugs identification, 

and PPI network analysis 

To interpret functional implications, KEGG pathway annotation was performed for all 

detected potential causal proteins (https://www.genome.jp/kegg/pathway.html). 

Existing drugs targeting each of the identified potential causal proteins as well as 

existing MS drug targets were determined by reviewing the Drugbank database 

(https://go.drugbank.com/). To investigate the interactions between potential drug 

targets and the known MS drug targets, and to explore the interactions of potential 

drug targets within and across plasma and brain, PPI network analysis was conducted 

using the Search Tool for the Retrieval of Interacting Genes database (https://string-

db.org/). Only interaction scores greater than 0.4 were shown. 

 

SMR identifying mRNA level of detected proteins 

To increase the biological interpretability of the identified potential causal proteins, 

we further examined their mRNA expression levels, investigating compliance with the 

central dogma of molecular biology. Firstly, for identified potential causal proteins, 

the corresponding mRNA levels were tested in relation to MS through SMR analysis 
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(integrating eQTL and MS GWAS). Subsequently, for significant MS-associated 

mRNA expressions, the links between mRNA expressions and protein expressions 

were investigated through SMR analysis (integrating eQTL and pQTL). The 

significance threshold was set to PSMR < 0.05, and probes with PHEIDI < 0.05 were 

excluded. 

Standard Protocol Approvals, Registrations, and Patient 

Consents 

This study was a secondary analysis of existing, publicly available summary-level 

GWAS and QTL data. The statement of ethics for each research can be found 

elsewhere, approved by the relevant institutional review board or an equivalent 

committee19-23. Consent to participate: not applicable. 

 

Results 

Identifying candidate proteins associated with MS through 

PWAS 

To identify candidate proteins linked to MS, we employed PWAS to establish 

associations between protein abundances in plasma as well as in brain and MS 

susceptibility. In plasma, we identified 100 proteins whose expression levels were 

associated with MS susceptibility (P-values < 0.05). After FDR correction, 36 out of 

these 100 proteins remained significant (Figure 2A, Supplementary Table S1). 

Correspondingly, in brain, we identified 212 proteins (P-values < 0.05). After FDR 

correction, 32 out of these 212 proteins remained significant (Figure 2B, 
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Supplementary Table S2). The 100 plasma proteins and 212 brain proteins under 

nominal significance were considered as candidates for subsequent causal inference 

analysis. 

 

Identifying proteins causally associated with MS through 

SMR and colocalization 

We used SMR to infer the causal roles of candidate proteins identified by PWAS. In 

plasma, we identified 57 proteins whose expression levels were causally associated 

with MS susceptibility (FDR-adjusted P-values < 0.05). Among these proteins, 34 

exhibited PHEIDI > 0.05, indicating that the associations were likely to be pleiotropic 

rather than impacted by distinct variants in LD (Figure 3A, Supplementary Table 

S3). Using colocalization analysis, we observed 11 proteins with strong posterior 

probabilities (PPH4 > 0.75), suggesting a shared causal variant responsible for both 

plasma protein expression and MS susceptibility, as opposed to distinct causal 

variants in proximity (Figure 3A, Supplementary Table S4). Collectively, we 

identified nine potential causal proteins in plasma. Among these, highly expressed 

CR1 and WARS were associated with an increased risk of MS, while highly expressed 

TNFRSF1A, FCRL3, TYMP, PGLYRP1, CD59, IDUA, and ARHGAP1 were associated 

with a decreased risk of MS (Figure 3A). 

In brain, we firstly excluded 127 of 212 PWAS-identified candidate proteins from 

SMR analysis due to their pQTLs having P-values > 5×10−8, failing to meet the SMR 

instrument variable criterion (pQTLs with P-values < 5×10−8). Consequently, from the 

remaining 85 of 212 PWAS-identified candidate proteins, we identified 48 proteins 

whose expression levels were causally associated with MS susceptibility (FDR-
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adjusted P-values < 0.05). Among these proteins, 39 successfully passed HEIDI test 

with PHEIDI > 0.05 (Figure 3B, Supplementary Table S5), and 11 showed posterior 

probabilities of PPH4 > 0.75 via colocalization analysis (Figure 3B, Supplementary 

Table S6). Collectively, we identified nine potential causal proteins in brain. Among 

these, highly expressed HLA-B, ZC2HC1A, HMGCL, TSFM, FAM120B, TRAF3, and 

MTHFR were associated with an increased risk of MS, while highly expressed ICA1L 

and AUH were associated with a decreased risk of MS (Figure 3B). 

To answer whether associations with MS at protein expression levels also exhibited 

similar evidence at gene expression levels, we further explored the causal role of 

mRNA levels of the 18 identified potential causal proteins. For the nine proteins 

identified in plasma, mRNA levels were profiled in seven. Among these, SMR 

identified mRNA levels of five genes causally associated with MS susceptibility (PSMR 

< 0.05, PHEIDI > 0.05, and exhibiting consistent direction of effects as observed at 

protein levels, Supplementary Table S7). Unfortunately, despite these five genes 

showing evidence at transcriptional and translational levels for MS separately, SMR 

linking these two molecular traits failed to identify a relationship such that a genetic 

locus causally affects MS susceptibility through first modifying mRNA expression 

and then protein translation (Supplementary Table S8). 

For the nine potential causal proteins identified in brain, mRNA levels were profiled 

in eight. Among these, SMR identified mRNA levels of three genes (TRAF3, AUH, 

and HMGCL) to be causally associated with MS susceptibility (PSMR < 0.05, PHEIDI > 

0.05, and exhibiting consistent direction of effects as observed at protein levels, 

Supplementary Table S9). Among these three genes with evidence at transcriptional 

and translational levels for MS respectively, SMR connecting these two molecular 

traits suggested that rs2076343 in HMGCL and rs7145882 in TRAF3 were causally 
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associated with MS through modifying mRNA expression and protein translation 

(Supplementary Table S10). 

 

Pathway annotation, protein-targeted drugs identification, 

and PPI  

The 18 detected potential causal proteins were defined as potential drug targets, none 

of which are currently known drug targets for MS treatment. To verify our findings, 

we further performed comprehensive analyses on pathway annotation, protein-

targeted drug identification, and PPI to investigate the underlying biological 

mechanisms, drugability, and interaction network. 

For the nine plasma drug targets, 56 pathways were annotated (Supplementary Table 

S11). An intricate interaction network was observed for five of these targets (CD59, 

FCRL3, CR1, TNFRSF1A, and TYMP) with the 19 known targets of 11 existing MS 

drugs including ublituximab, ofatumumab, ocrelizumab, glatiramer, alemtuzumab, 

daclizumab, natalizumab, cladribine, interferon beta, dimethyl fumarate, and 

teriflunomide (Figure 4, Supplementary Table S12). Moreover, four of these targets 

(IDUA, TNFRSF1A, WARS, and TYMP) were also targeted by 13 existing non-MS 

drugs, suggesting potential opportunities for drug repurposing (Figure 4, 

Supplementary Table S11). 

For the nine brain drug targets, 36 pathways were annotated (Supplementary Table 

S13). An intricate interaction network was observed for two of these targets (HLA-B 

and TRAF3) with six known drug targets of five existing MS drugs, including 

glatiramer, daclizumab, alemtuzumab, interferon beta, and dimethyl fumarate (Figure 

4, Supplementary Table S14). Moreover, two of these targets (HMGCL and MTHFR) 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 27, 2024. ; https://doi.org/10.1101/2024.09.26.24314450doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.26.24314450
http://creativecommons.org/licenses/by-nd/4.0/


17 

 

were also targeted by three existing non-MS drugs, providing a source of drug 

repurposing (Figure 4, Supplementary Table S13). 

 

PPI analysis among identified potential drug targets in 

plasma and brain  

A PPI network analysis was conducted encompassing all 18 detected potential drug 

targets (Figure 5, Supplementary Table S15). Among these, six in plasma and five 

in brain met a minimum interaction score of 0.4. Comprehensive interactions were 

observed within plasma and brain. Particularly noteworthy were the interactions 

observed across plasma and brain (TNFRSF1A-TRAF3 and WARS-TSFM). 

 

Identifying additional druggable proteins through relaxed 

criteria 

As both HEIDI and colocalization analysis aimed to determine a shared causal variant 

responsible for multiple traits, to identify an enlarged number of potentially druggable 

proteins for MS, we relaxed the criteria, requiring passing SMR together with either 

HEIDI or colocalization test, rather than both HEIDI and colocalization test. A total of 

78 proteins (37 in plasma and 41 in brain) successfully passed the relaxed criteria 

(Supplementary Table S16-17). Among these, two proteins (CBR3, WARS) were 

identified in both plasma and brain. Half (39 of 78)  identified proteins were 

confirmed by previous epidemiology or laboratory studies, proving the reliability of 

these findings. Moreover, 13 of 78 (one in plasma and 12 in brain) proteins adhere to 

central dogma (Supplementary Table S18-S21). 
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For the 37 proteins identified in plasma, 22 were annotated in 127 biological 

pathways. In total, 17 proteins were targeted on 62 existing non-MS drugs, and 18 

proteins showed interaction with 23 known targets of existing MS drugs. Importantly, 

one of the identified proteins IL2RA was a known MS drug target (Supplementary 

Table S16 and S22). For the 41 proteins identified in brain, 20 were annotated in 69 

biological pathways. In total, 10 proteins were targeted on 45 existing non-MS drugs, 

and 11 proteins showed interaction with 15 known targets of existing MS drugs 

(Supplementary Table S17 and S23). Intricate PPIs among the 78 proteins were 

identified (Supplementary Table S24). 

For the 13 potential drug targets adhering to the central dogma, six were annotated in 

30 biological pathways. In total, two proteins were targeted on four existing non-MS 

drugs, and three proteins interacted with three known targets of existing MS drugs 

(Supplementary Table S16-S17, and Supplementary Figure S1). 

 

Discussions 

In our study, we tested hundreds of MS-associated proteins in plasma and brain and 

confirmed the potential causal role of 18 proteins through comprehensive analytical 

strategies. None of these are currently known MS drug targets, we therefore defined 

these as potential novel drug targets.  We revealed intricate interactions between seven 

of these 18 proteins and 19 known MS drug targets, as well as interactions among 11 

of these 18 proteins within and across plasma and brain. Furthermore, we identified 

16 existing non-MS drugs targeting six of these 18 potential targets. These findings 

present significant potential for both the discovery of new drugs and the repurposing 

of existing ones. The reliability of our findings was further supported by 78 annotated 
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pathways and transcriptional evidence on two targets. In the contemporary 

pharmaceutical industry, the development of new drugs is time-consuming, costly, 

and highly vulnerable to termination. On average, it takes about 13 years, with costs 

from hundreds of thousands to over a billion US dollars and a failure rate exceeding 

90% before reaching the market.26 Our study integrating large-scale omics data using 

cutting-edge statistical approaches helps prioritize drug targets by elucidating 

pathological mechanisms, thus may improve the effectiveness of new drug 

development.11  

Proteins, as the most common and highly effective drug targets, have been 

investigated in MS field in two previous integrative studies. Our study largely 

replicated these findings, successfully confirming six out of nine plasma proteins 

identified by the previous studies under the relaxed criteria ( CD40 was no 

corresponding pQTL in our panel). Moreover, FCRL3, TYMP, CR1, CD59, and 

TNFRSF1A were replicated even under the stringent criteria. By incorporating the 

hitherto largest number of proteins (2,004 in plasma and 1,443 in brain) and utilizing 

PWAS in combination with SMR to reduce statistical burden, our study extends 

previous work by identifying the largest numbers of MS drug targets to date (18 

proteins passed stringent criteria and 78 proteins passed relaxed criteria). This 

significantly advances our understanding of MS pathology and enhances the potential 

for future drug development. Considering the pathogenesis of MS in the central 

nervous system, our study also identified proteins in brain tissue. These potential 

causal brain proteins advance the associative findings of the previous study,18 thereby 

expanding the treatment perspective directly to the most relevant tissue. Another 

advantage of our research is the involvement of transcriptional evidence for the 

identified potential drug targets, enhancing understating of the MS molecular 
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mechanisms. Notably, two potential protein drug targets (HMGCL and TRAF3) 

adhered to the central dogma, greatly strengthening their credibility for further 

preclinical and clinical development. 

We prioritize seven potential drug targets with identified biological relevance 

connected to known MS drug targets. As FCRL3, TNFRSF1A, CR1, CD59, and TYMP 

have already been discovered and confirmed by the two previous integrative studies,14, 

15 we therefore emphasize two novel findings. HLA-B is a major histocompatibility 

complex (MHC) class I molecule presenting antigens to T cells. In alignment with our 

findings, protective effects of HLA-B against MS susceptibility have been observed in 

HLA-B*44:02, HLA-B*38:01, and HLA-B*55:01.27 HLA-B has been annotated to 

many pathways, such as natural killer cell mediated cytotoxicity,28 human 

cytomegalovirus infection,29 and Epstein-Barr virus infection,30 all of which have 

been implicated in MS development. Our study identified strong interactions between 

HLA-B and HLA-DRB1, a known target of Glatiramer, suggesting that both proteins 

are involved in the same biological processes relevant to MS and reinforcing HLA-B 

as a potential target. TRAF3 regulates NF-kappa-B pathway31 which mediates 

inflammation in MS.32 Its other annotated pathways, such as NOD-like receptor 

signaling, RIG-I-like receptor signaling, IL-17 signaling, and TNF signaling, 

significantly impact autoimmune disease and MS development.33-35 Previous studies 

have presented that TRAF3 degradation promotes microglia-mediated CNS 

inflammation,36 and TRAF3 haploinsufficiency syndrome exhibits B cell hyperactivity 

leading to hypergammaglobulinemia and autoimmunity.37 

The 11 potential drug targets that do not interact with known MS drug targets reveal 

novel biology, presenting opportunities for the development of new drugs. Here, we 

highlight two potential drug targets with strong supporting evidence. IDUA is 
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responsible for the glycosaminoglycans heparan sulfate and dermatan sulfate 

degradation. Its annotated pathways of glycosaminoglycan degradation,38 metabolic 

pathways,39 and lysosome function40 have been proven to play a pivotal role in MS 

development, underscoring a promising potential target. PGLYRP1 is an innate 

immunity protein with functions in antimicrobial and antitumor defense systems. 

Although no pathway is currently annotated to PGLYRP1, its potential in 

immunotherapy has been proven by a study demonstrating PGLYRP1 as a 

proinflammatory molecule in myeloid cells during autoimmune conditions.41 

Additionally, elevated levels of PGLYRP1 protein have been observed in the white 

and gray matter of cerebellum and spinal cord in patients with MS.42 

Drug repurposing accelerates the translation of scientific discoveries into clinically 

beneficial treatments. Among the 16 identified non-MS drugs, we first would like to 

highlight eight existing non-MS drugs including Tasonermin, Tipiracil, Capecitabine, 

Floxuridine, Fluorouracil, Tezacitabine, Trifluridine, and Cidofovir, the targets of 

which interact with known MS drug targets, suggesting the possibility for these non-

MS drugs to benefit or assist the treatment of MS. Among these non-MS drugs, the 

first six possess cancer-therapeutic properties and the last two are antiviral agents. 

However, these non-MS drugs need prescriptions, and are usually with higher toxicity 

or stronger side effects compared to over-the-counter drugs, making repurposing 

difficult. We next would like to highlight vitamin B12 and tetrahydrofolic acid (a folic 

acid derivative), both are easily obtainable and cost-effective drugs, targeting the 

protein MTHFR (a potential MS drug target). Studies have demonstrated that both 

vitamin B12 and folate improve myelin regeneration and have neuroprotective and 

immunomodulatory properties.43, 44 Moreover, supplementing vitamin B12 and folate 

may help reduce homocysteine levels,45, 46 a neuro- and vascular-toxic sulfur-
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containing intermediary product that has been proven to be elevated in MS patients.47 

Although some studies have provided inconsistency findings,48, 49 a clinical study has 

demonstrated that supplementation with folic acid and vitamin B12 improves the 

quality of life in MS patients.45 Considering the outcome of our study on MS 

susceptibility, supplementation with vitamin B12 and folic acid may serve as 

prophylactic agents against the onset of MS. Additionally, combining vitamin B12 

and folic acid with DMTs may offer an effective approach for MS management. These 

potential repurposed drugs could accelerate the clinical process by reducing drug 

developmental time and costs as well as by leveraging known safety and side effect 

profiles. 

The interactions of potential drug targets across plasma and brain suggest the 

possibility of substance transport or signaling molecules across blood and brain, 

which could indicate that targets identified in plasma may influence MS pathology in 

the brain. This has been validated by results based on relaxed criteria, through which 

we identified two potential proteins (CBR3 and WARS) present in both plasma and 

brain tissue, suggesting the possibility of a link between systemic circulation and 

neurological processes. Furthermore, the limited overlap between targets identified in 

plasma and brain could be attributed to their distinct protein compositions, cellular 

functions, and the restrictive nature of the blood-brain barrier. 

The interpretation of our study should be approached with caution. First, not every 

protein has pQTLs. For example, in our referenced plasma pQTL study, less than half 

of the proteins (45%, 2,004 out of 4,435) possessed significant cis-pQTLs.19 

Consequently, using pQTLs in integrative analysis, rather than relying on quantitative 

proteomic analysis, results in the omission of proteins. Nevertheless, integrative 

analysis allows for making causal inferences, representing an improvement over 
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observational association design. Furthermore, our study has identified the hitherto 

largest number of potential MS drug targets owing to the large sample size of pQTL 

data, representing an advantage over the small sample sizes that usually characterize 

the current quantitative proteomic analysis. Second, among the 18 potential drug 

targets, only two showed evidence at both transcriptional and translational levels. The 

absence of transcriptional level evidence for most drug targets could be due to post-

transcriptional regulation or protein function through post-translational modification, 

which, from another aspect, highlights the importance and superiority of a direct 

investigation on the proteome. Nevertheless, evaluating the expression of individual 

proteins does not fully reflect the complexity of cellular processes, thus our potential 

drug targets identified in silico are not conclusive. Further evidence in vitro and in 

vivo is necessary to validate these findings. 
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Figure legends 

Figure 1. Flowchart of the overall study design 

To identify proteins as potential drug targets for multiple sclerosis (MS) treatment, we first conducted a 
proteome-wide association study (PWAS) to detect proteins associated with MS susceptibility. For 
candidate proteins identified by PWAS, we conducted a summary-data-based Mendelian randomization 
(SMR) to test for pleiotropic associations between protein levels and MS. We also performed the 
HEIDI test and Bayesian colocalization analysis to distinguish pleiotropy from genetic linkage. 
Proteins that passed all three analyses (SMR analysis + HEIDI test + colocalization analysis) were 
identified as potential causal proteins. For all detected potential causal proteins, we conducted protein 
pathway annotation, identified drugs targeting these proteins, and analyzed protein-protein interactions 
among themselves, as well as interactions with protein targets of existing MS drugs. To gain additional 
layers of insights, we further investigated mRNA levels of these proteins to assess adherence to the 
central dogma of molecular biology (genetic locus→mRNA transcription→protein translation→MS). 
For the identified potential causal proteins, we first analyzed the corresponding mRNA expression 
levels in relation to MS through SMR analysis (integrating eQTL and MS GWAS). Subsequently, we 
examined the link between mRNA expression and protein expression through SMR analysis, 
investigating if a single variant influenced both levels of expression (integrating eQTL and pQTL). By 
combining the findings from these two analyses, we pinpointed the potential causal proteins following 
the central dogma. 
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pQTL: protein quantitative trait loci; MS: multiple sclerosis; HEIDI: heterogeneity in dependent 
instruments test; eQTL: expression quantitative trait loci. 

 

Figure 2. Identifying candidate proteins associated with multiple sclerosis by integrating pQTL 

and GWAS through PWAS 

A: Identifying candidate proteins in plasma associated with multiple sclerosis by integrating pQTL and 
GWAS through PWAS. B: Identifying candidate proteins in brain associated with multiple sclerosis by 
integrating pQTL and GWAS through PWAS. The X-axis represents chromosomes. The Y-axis 
represents the negative logarithm of P-values. Each dot on the Manhattan plot represents a gene, whose 
cis-regulated protein expression level was tested in association with the multiple sclerosis risk. The red 
dashed line indicates a nominal P-value threshold of 0.05, and the blue dashed line indicates the 
Bonferroni-corrected P-value threshold of 6.63×10-5 in plasma and 2.86×10-5 in brain. Proteins 
exhibiting nominal significance in association with multiple sclerosis risk were identified as candidate 
proteins, and their corresponding encoding genes are highlighted with red dots. 

pQTL: protein quantitative trait loci; GWAS: genome-wide association study; PWAS: proteome-wide 
association study; Chr: chromosome. 

 

Figure 3. Identifying potential causal proteins for multiple sclerosis through SMR and 

colocalization analysis, based on candidate proteins determined by PWAS 

A: Identifying potential causal proteins in plasma for multiple sclerosis through SMR and 
colocalization analysis, based on candidate proteins determined by PWAS. B: Identifying potential 
causal proteins in brain for multiple sclerosis through SMR and colocalization analysis, based on 
candidate proteins determined by PWAS. The corresponding encoding genes for candidate proteins 
are listed outside the circle. Odds ratios from SMR analyses are presented in the outer circle. P-values 
for HEIDI tests are displayed in the middle circle. The posterior probabilities for colocalization 
analysis, under the hypotheses of one shared SNP associated with both protein quantitative traits and 
multiple sclerosis, are shown in the inner circle. The color of boxes in the circles represents the 
magnitude of each statistic, with warmer colors indicating stronger effects and gray indicating missing 
values. Significant results are highlighted with red asterisks, defined as Benjamini-Hochberg False 
Discovery Rate-adjusted P < 0.05 for SMR analysis, PHEIDI > 0.05, and posterior probability for 
colocalization analysis > 0.75. Gene names in red indicate that their corresponding proteins passing 
all three analyses are identified as potential causal proteins. Gene names in brown indicate that their 
corresponding proteins are potential causal proteins and adhere to the central dogma. 

Figure 3B excludes 127 out of 212 PWAS-identified candidate proteins from SMR analysis because 
their pQTLs had P-values > 5×10−8, not meeting the SMR instrument variable criterion (pQTLs with 
P-values < 5×10−8). The figure illustrates SMR and colocalization results for the remaining 85 out of 
212 candidate proteins. 

SMR: summary-data-based Mendelian randomization; PWAS: proteome-wide association study; OR: 
odds ratio; HEIDI: heterogeneity in dependent instruments test. PP.H4: posterior probability for 
colocalization analysis under the hypotheses of one shared SNP associated with both traits. 

 

Figure 4. Potential drug targets, protein-targeted drugs, and protein-protein interaction network 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 27, 2024. ; https://doi.org/10.1101/2024.09.26.24314450doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.26.24314450
http://creativecommons.org/licenses/by-nd/4.0/


29 

 

The corresponding encoding genes for these potential causal proteins are presented. Gene names in red 
indicate that their corresponding proteins adhere to the central dogma. Potential drug targets 
highlighted in yellow boxes are identified in plasma, and those in green boxes are identified in brain. 
Drug relations refer to the existing drugs targeting the identified potential drug targets. MS drug targets 
refer to proteins targeted by existing MS drugs. The protein-protein interaction network is presented 
between potential drug targets and current MS drug targets, with lines of different colors representing 
various types of interaction. 

MS: multiple sclerosis; HEIDI: heterogeneity in dependent instruments test. 

 

Figure 5. Protein-protein interaction network analysis among all identified potential drug targets 

in plasma and brain 

Protein-protein interaction network analysis was conducted among all detected potential drug targets 
(nine in plasma and nine in brain). Only those with a minimum required interaction score of 0.4 (six in 
plasma and five in brain) are considered interaction and presented in this figure. The corresponding 
encoding genes for these potential causal proteins are presented. Potential drug targets in yellow boxes 
are identified in plasma, and those in green boxes are identified in brain. The different colored lines 
connecting these potential drug targets represent various types of interactions. 
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