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Abstract
The complex diseases, namely, Type 2 Diabetes Mellitus (T2DM) and Parkinson’s
Disease (PD), are extensively studied due to their prevalence in a large population
group. Between these two diseases, T2DM is denoted as the zero index disease in
a patient, which may lead to PD in a more advanced clinical stage. Both of these
diseases may occur due to abrupt DNA methylation of genes. Likewise, both
diseases may occur in a patient due to protein misfolding. Our study proposes
a novel framework for building two disease-specific heterogeneous networks by
integrating different tissue-based transcriptomics, epigenetics, epistasis, and PPI-
based topological information. We predict the missing links between the DNA
methylation and Post-Translational Modification (PTMs) associated with protein
aggregation. Next, we have predicted the common signature of the prevalence of
linked patterns in both diseases, further validated by relevant biological evidence.

Keywords: Heterogeneous network, disease co-morbidity, transcriptomics, epigenetics,
epistasis, Type II Diabetes Mellitus, Parkinson’s disease, graph neural network
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1 Introduction
Multi-omics data provides profound insights into the complex connections of different
biological mechanisms. These new insights have helped to unravel the hidden causes
of complex diseases and their corresponding inter-relationships. In some of the recent
works, this multi-omics integration is used to identify biomarkers or pathway features
associated with complex diseases [36, 40, 41]. Currently, multi-omics methods are being
applied to comorbid diseases like Type 2 diabetes mellitus (T2D) and Parkinson’s
disease (PD).

T2D is an increasing health hazard that is closely linked to the epidemic of obesity
[16]. The core deficiencies of T2D are insulin resistance and impaired insulin secretion.
Likewise, PD is another chronic, progressive neuro-degenerative disease characterized
by both motor and non-motor features [17]. Due to its gradual degenerative effects on
mobility and muscle control, PD has a significant clinical impact on patients, families,
and caregivers [17]. T2D and PD are both comorbid diseases, with T2D as the primary
disease. In population-based cohort studies, it is observed that patients with T2D
appear to be at high risk of developing PD [13]. A progression and a more severe phe-
notype of PD share common cellular pathways [11, 19]. A multi-omics-based approach
is currently being followed to find out the increased fasting plasma glucose (FPG),
level as a potential biomarker in T2D [24]. Another work explains the functional alter-
ations of the liver in insulin-deficient T2D patients using the multi-omics technique
[5]. Similarly, the effectiveness of multi-omics is noticed in PD [32, 62]. Redenšek et
al. [62] in their recent work has analyzed the hidden molecular mechanisms of PD
using thirteen omics layer data. Similarly, biomarker identification of early-onset PD
prognosis is performed using a multi-omics joint analysis approach [32]. Epigenetic
variations add a new perspective to the above studies [69].

Integration of gene expression with DNA methylation refers to the combination
of transcriptomics and epigenomics level data. This kind of unification of two omics
data has well served the purpose of efficiently retrieving the hidden biological features
for complex diseases [44, 69, 72]. DNA methylation is one of the most elementary
aspects of this epigenetic variational study, due to its proven influence in a variety of
human complex diseases [37, 47, 48]. The reason behind DNA methylation’s claim to
be the most characterized epigenetic modification is its influence on gene expression
via the disruption of transcription factor (TF) binding in the promoter regions and the
recruitment of methyl binding proteins, that introduce chromatin compaction along
with gene silencing [69, 83]. Aberrant methylation can affect the functions of tumor
suppressor genes by altering their expression levels in CpG islands located near the
promoter region of the genome. Recently, [2, 87] analyzed the role of DNA methylation
in the pathogenesis of T2D in humans. Miranda et al. [55] have extensively studied the
implications of DNA methylation in PD. In their work, they have shown that DNA
methylation takes a crucial role in gene-environment interactions associated with PD.
Other very recent works regarding the participation of DNA methylation in PD are
also well-studied [56, 58].
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Like DNA methylation, protein misfolding is another important condition that
causes several complex diseases including diverse systematic disorders T2D, and neuro-
degenerative disorder PD. Misfolding of protein, which is either degraded or aggregated
in the cell, leads to the causation of diseases like T2D and PD [26, 68].

Heterogeneous network represents a large network embodying multiple informa-
tion. Here the nodes represent different types of entities and their corresponding
edges stand for distinct relationship types. This heterogeneous information can range
from genomics proximity to co-expression, from experimentally validated topological
interactions to associations mined from medical literature. The advantage of using
a heterogeneous network in systems biology is to logically infer the hidden patterns
or underlying connections within it from the collective information. In specific, the
integration of data sources into a heterogeneous network and the logical applica-
tion of appropriate search algorithms lead to the discovery of hidden novel links,
and yet unknown patterns [65]. In recent work, Tran et al. [73] have predicted vari-
ous novel disease-gene associations using a heterogeneous network with node kernels.
Another heterogeneous network-based approach is suggested by Sügis et al. [70] to
predict the hidden disease mechanisms of Alzheimer’s disease. Our proposed hetero-
geneous network for comorbid disease pattern analysis is constructed by integrating
gene expression, pathway, DNA methylation, single nucleotide polymorphism, amyloid
precursor proteins, and post-translational modifications.

2 Related Works
We review a few studies that showed the analysis of T2D and PD from DNA methyla-
tion and protein aggregation perspectives. Recently, a work by Kim [43] has suggested
that cumulated errors in DNA methylation lead to altered gene expression, which
affects the response to external stimuli and causes the development of T2D [23].
According to this work, passenger DNA methylation is crucial for T2D progression.
Another work shows the methylation of CpG sites in regulatory regions outside the
gene promoter region also plays a critical role in regulatory tissue-specific gene expres-
sion [2]. One of these regulatory elements is the cycle adenosine monophosphate
(CAMP) responsive element (CRE), which can bind with a diverse array of tran-
scription factors [28]. This proposed work shows that the methylation of CpG sites
within CRE reports to independently suppress insulin promoter activity by approx-
imately 50%. Similarly, the effect of DNA methylation on causing PD has recently
been observed in a few works [29, 56, 79]. These studies show that methylation of α-
synuclein (SNCA) and microtubule-associated protein tau gene appear to be of special
interest and DNA methylation effect is also observed in neighboring other candidate
genes responsible for causing PD. One of these works performs cross-sectional analy-
sis by comparing methylation profiles between cases and controls. Their method has
identified differentially methylated position(s) (DMP) in PD samples with significant
P-values (P < 5.0E-7). Another important cause of T2D and PD is protein aggrega-
tion or protein misfolding, which is also extensively studied in a few current works
[26, 56, 57]. Chiti et al. [12] have suggested that amyloid deposits in the brain of
PD patients contain 140-residue α-synuclein (SNCA), and T2D pancreatic amyloid
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deposits contain total thirty-seven residue islet amyloid polypeptides (IAPP). The pre-
dominant evidence suggests that native non-toxic monomers of α-synuclein (SNCA)
in PD and human islet amyloid polypeptide (hIAPP) in T2D, may misfold and self-
aggregate into β−sheet enriched soluble cytotoxic oligomers. These oligomers further
elongate into pathogenic insoluble fibrillar assemblies [18], and the condition leads to
these complex diseases. In recent work, Ahmed et al. [3] have shown that defective
protein folding and DNA methylation in CpG sites cause T2D. According to their
claim, the basis for this disease is attributed to oxidative stress, chronic inflammation,
non-enzymatic glycation of proteins, and epigenetic changes.

Heterogeneous multi-modal approach on different biological information infers the
novel hidden disease mechanisms of Alzheimer’s disease in the work suggested by Sügis
et al. [70].

In numerous current link prediction tasks, the graph convolutional neural network
(GCN)-based semi-supervised classification technique by Kipf et al. [45] has demon-
strated outstanding success. The obtained results from this prediction have shown
high accuracy and are executed with good speed for considerably large graphs.

We propose a new way to predict and study the hidden patterns of comorbidity
between two common diseases by combining different types of biological data into a
single heterogeneous network. This network will be used for both T2D and PD. As
the combined information from transcriptomics, epigenetics, and epistasis can help
to understand better the proper biological and pathological inter-relations between
different biological entities, we propose a unique approach to build entity-type specific
subnetworks with different tissue-oriented genomic information and combine them to
infer the common target pattern from this aggregated information using heterogeneous
graph neural network. Thus, the novel contributions of our work are:

1. We integrate the different tissue-specific omics data for T2D and PD to build
individual complex heterogeneous networks.

2. We predict the connecting pathway signatures between T2D and PD based on these
heterogeneous networks regarding DNA methylated genes and post-translational
modifications.

3 Materials and Methods
This section describes the data and the details of the proposed approach.

3.1 Data description
A heterogeneous biological network is a multi-model approach, where a network is
formed by integrating the individual datatypes to infer a systematic view of disease.

In this work, we build heterogeneous networks individually for T2D and PD. We
combined the expression-level information and the topological data to build the net-
work. In particular, the heterogeneous network is made with the microarray gene
expression datasets for T2D (GSE64998 [46]) and PD (GSE99039 [64]). The tissue
samples used for gene expression profiling for T2D and PD are liver and whole blood
samples corresponding to the control and treated groups. The microarray-based DNA
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methylation profiling used for T2D is GSE65057 [46] and GSE111629 [14, 15, 30]
for PD. The tissue samples, namely, liver and whole blood, are used for methylation
profiling for T2D and PD, respectively. The Illumina Infinium 450k Human DNA
methylation BeadChip is used for both of the diseases. Similarly, the genes from the
corresponding proteins are obtained from the UniProtKB database. The other dif-
ferent biological databases used for the construction of heterogeneous networks are
defined below :

• Human biological signalling pathway interactions are obtained from MSigDB c2
(canonical pathway) database [52], downloaded on 18th July, 2020. We get a total
of 2200 sets of biological metabolism and signaling pathways.

• The central invivo and invitro seed proteins for building amyloid interactome are
taken from the work proposed by Biza et al. [8].

• The human protein-protein interaction (PPI) is retrieved from IntAct (03-2020)
in MITAB 2.5 format file [39]. We obtained a total of 1,60408 protein-protein
interactions from the final parsed file.

• The associations between protein and their corresponding post-translational mod-
ification (PTM) interactions are obtained mostly from dbPTM database [34, 51]
and BioGrid [10] and a few from UniProtKB. Specifically, the protein-PTM asso-
ciations for the PTMs, namely, acetylation, amidation, hydroxylation, methylation,
N-linked glycosylation, phosphorylation, S-nitrosylation, sumoylation, and ubiqui-
tination, are obtained from dbPTM and BioGrid databases. The remaining PTMs,
namely, proteolytic cleavage, carboxylation, disulfide bonds, and oxidation-related
protein associations, are extracted from the UniProtKB database.

• The single nucleotide polymorphisms (SNPs) for the mapped traits, namely, T2D
and PD, are downloaded from the NHGRI-EBI catalog of human genome-wide
association (GWAS) studies [All associations v1.0.2] [9].

• Associations for PTMs with the corresponding SNPs are obtained from AWESOME
database [81].

The complete heterogeneous network proposed in this work is shown in the supple-
mentary Figure S1. Next, we describe in detail the individual data components. The
schema of steps for data processing, building individual sub-networks, and integrating
them to build a heterogeneous network (for each of the diseases) to predict common
hidden patterns is shown in Fig. 1.

3.2 Gene expression profiling
Gene expression profiling is a method to determine the pattern of genes expressed.
This gene expression is studied at the transcription level, under conditioned specific
circumstances, or in a specific desired cell to get a global picture of cellular func-
tions for further molecular-level analysis. In our proposed work, DNA microarrays
are used individually for T2D and PD. To analyze the profiles, R packages namely,
oligo, oligoclasses, GEOquery, limma, hugene11sttranscriptclusters.db, pd.hugene.1.1,
Org.HS.eg.db, annotate are used. The CEL file and the corresponding series matrix
file are loaded. The steps for expression profiling for T2D and PD are defined below:
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• The phenodata of both of the diseases are retrieved from series matrix files and CEL
files for 21 samples (GSE64998) for T2D and 558 samples (GSE99039) for PD are
read.

• The obtained phenodata for T2D gives information of metabolically healthy, obese
non-diabetic, and obese type II diabetic patient samples. The phenodata regarding
PD gives information on healthy controls, Idiopathic Parkinson’s disease, genetically
unaffected controls, Parkinson’s disease with a genetic cause, etc.

• The phenodata and the CEL files individually for both of the diseases are mapped
together.

• Both of the microarray data are normalized using rma (robust multiarray average)
based method.

• To get the differentially expressed genes (DEGs) for T2D and PD, the normalized
expression sets are used to build the design matrix for them and the differences of
control and disease states from them are used to construct the contrast matrix.

• The obtained contrast matrices are then fitted in a linear model.
• Finally, the obtained DEGs are sorted accordingly with their logFC values in

ascending order and corrected P-value of < 0.05.

3.3 Gene co-expression modules using Weighted Gene
Co-expression Network Analysis (WGCNA)

To find out the correlation pattern among genes across microarray samples, gene-
correlation network analysis has already shown a greater impact [84]. On this matter,
Langfelder et al. [49] have proposed a weighted correlation network analysis method
for finding clusters (modules) of highly correlated genes. Their technique is widely
used in finding out important clusters using the module eigen genes or intra-modular
hub genes.
To build the proposed heterogeneous network, WGCNA[49] R package is used.
WGCNA builds the topologically correlated gene expression modules from the normal-
ized gene expression set dataframe. The functions used for WGCNA analysis regarding
the proposed work can be divided into (a) network construction and (b) individual
module detection.

Each of these steps is explained as followings:

3.3.1 Network construction

A network is well specified by an adjacency matrix aij , a symmetric n×n matrix with
entries [0,1], whose individual component aij encodes the network connection strength
between nodes i and j. An intermediate quantity, called co-expression similarity Sij

is defined to calculate this adjacency matrix. The function adjacency calculates the
adjacency matrix from our filtered expression data of T2D and PD.

3.3.2 Individual module detection

After the network is constructed, the topologically correlated modules are detected.
Here, the modules refer to the densely interconnected gene clusters. The module
detection operation is done by the following steps:
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Fig. 1: The workflow of link analysis between DNA methylation and post-translational
modification

• First, the topological similarity is calculated from the adjacency matrix.
• Next, hierarchical clustering is used on the obtained result in the previous step.
• The modules of biologically related correlated genes are obtained.
• The module-specific eigen genes are identified using the moduleEigengenes function.
• The correlation is again calculated using these obtained module eigen genes and the

hierarchical clustering is applied again on the previously calculated dissimilarity of
the correlation.
The aforementioned steps are applied for both diseases, T2D, and PD. After apply-
ing this WGCNA method finally we get 57 and 21 gene-coexpression modules for
T2D and PD respectively.

3.4 Differential methylation profiling
The recent advances in transcriptomics data have helped to focus on the statistical
analysis of DNA methylation data for a deep understanding of epigenomic activ-
ities in a cell. In our proposed method we have used GSE65057 and GSE111629
microarray-based methylation data for T2D and PD respectively. The analysis is per-
formed using R packages namely, GEOquery, minfi, limma, IlluminaHumanMethyla-
tion450kanno.ilmn12.hg19, IlluminaHumanMethylation450kmanifest, missMethyl, and
DMRcate. The steps for performing DNA methylation experiment are as below:
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• At the first step, the methylation data is used to build the expression set, and the
metadata is extracted from the series matrix using the GEOquery package.

• The extracted metadata is then mapped to the expression set to the sample-specific
group status (i.e. control and disease) and associated tissue information.

• The expression set is then sorted according to their p-values < 0.05.
• The samples with poor quality are discarded and the remaining sample expression

set is extracted.
• The expression set matrix is normalized using processQuantile() function as in the

methylation profile only one type of tissue namely, the liver in T2D and whole blood
are used for PD.

• In the next step, the M-values, and β-values are calculated from the normalized
expression set. The M stands for methylation intensity and β refers to the ratio of
methylation intensity and summation of methylation and unmethylation intensities.

• The M-values and β-values are calculated using getM() and getBeta() functions
respectively.

• Now the design matrix is formed using the control and disease status. For, T2D
these different labels are obese non-diabetics, obese type II diabetics, and metabol-
ically healthy individuals. Whereas, for PD these labels are PD-free control and
Parkinson’s disease associated with female and male patients.

• Finally, the differentially methylated positions (DMPs) are obtained for the desired
coefficient with their corresponding M-values and sorted accordingly with their P-
values.

• Next, we extract the differentially methylated regions (DMRs) using DMRcate()
package by fixing the parameters lambda = 1000 (lambda denotes the gap value
between significant CpG sites) and scaling factor for bandwidth fixed to 2.

• To get the multiple comparisons Benjamini-Hochberg (BH) [7] based FDR (False
Discovery Rate) is used, where values below 0.05 are considered significant.

Now, we extract the overlapping DMPs and DMRs with the genes in the gene-
coexpression modules obtained using the WGCNA method individually for T2D and
PD.

3.5 Pathway sub-networks on the basis of individual
gene-coexpression network modules

The pathway sub-network building for individual gene-coexpression modules is
inspired by the concept proposed by Zheng et al. [86]. The whole method of
sub-network formation is divided into the following explained steps.

3.5.1 Projecting the candidate genes from each gene-coexpression
network modules to individual pathways

In our proposed work, the candidate genes from all 57 gene-coexpression modules for
T2D and 21 gene-coexpression modules for PD are extracted individually to get the
module-specific collective genes. The biological signaling pathways are obtained from
the database MSigDB C2 (canonical pathway), from which we obtain a total of 2199
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sets of biological metabolism and signaling pathways. The module-specific candidate
genes are projected into the pathways to calculate the activity score of each pathway.

The gene expression values are retrieved from the normalized gene expression value
set obtained earlier for each of the candidate genes collected from the corresponding
unique coexpression modules. The activity scores are calculated according to these
expression values of the candidate gene set on each sample. The gene expression value
of a gene in the biological pathway for every sample constitutes an expression value
matrix; where each column represents a sample and each row represents a gene. A
biological pathway includes Np genes, whose expression values can form a matrix of
Np rows. Each biological pathway refers to an activity vector, and the dimension of
the vector is the number of samples, that is in each sample j, an activity score can be
calculated. The calculation formula is given below:

Xtj =

Np∑
i=1

eij√
Np

(1)

Where, Xtj represents the activity score of the t biological pathway in the j sample,
and eij represents the gene expression value of the i gene in the t biological pathway
of the sample j, and Np is the number of genes in the biological pathways; vector
[Xt1,Xt2,. . . ,Xtm] represent the activity score of the t biological pathway in m samples.
Then a phenotype vector is formed based on the phenotype labels of the samples, and
then the mutual information between the activity vector and the phenotypic vector of
the samples (control and case) is computed by combining the activity vectors of each
biological pathway.

3.5.2 Mutual information with the phenotype

Mutual information (MI) is the most commonly used method of information theory,
meant for information calculation. By calculating the MI between activity vectors
and phenotypic vectors of the respective biological pathways, the correlations between
the two vectors are measured. This shows the influence of a biological pathway on
the phenotype of T2D as well as the same method applied to PD. Constructing a
phenotype of the sample [C1,C2,. . . ,Cm], the phenotype vector is a zero-one vector,
where if the sample is diabetic it must be 1 otherwise it is 0 and a similar convention
is also followed for PD and non-PD samples as well.

Using X(i) to indicate the activity score of the ith biological pathway to each
sample, X(i) = [Xi1,Xi2,. . . ,Xim]. C is used to define the phenotype vector of m
samples, C = [C1,C2,. . . ,Cm]. Thus, the correlation between the biological pathways
and disease phenotypes S(i) can be represented by mutual information, MI(X

′
(i),C)

between X
′
(i) and C vectors. Here, X

′
is the discretized form of X. The applied

formula is given below:

M(i) = MI(X(i), C) =
∑
z∈X′

∑
y∈C

p(z, y) log
P (z, y)

p(z)p(y)
(2)

Where, the activity score X is discretized into median value based equally spaced
bins to obtain the X

′
, respectively, p(z, y) is the joint probability density function of
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X
′
and C and p(z) and p(y) are the marginal probability density function of X

′
and

C. The whole method is applied individually for all of the gene-coexpression modules.

3.5.3 Gene-coexpression module specific pathway network
construction

The module-specific pathway-pathway interaction can be represented as a module-
specific sub-network, which is constructed as follows:

Let, the subgraph Hmk(Vmk, Emk) is comprised of a set Vmk of module specific
pathways and a set Emk denotes the module specific weighted pathway-pathway inter-
action network with Emk ∈ Vmk ∗ Vmk. To define this weight the logarithm of the
summation of phenotypic mutual information (calculated previous section) and seman-
tic similarity is taken. Here, Vmk = {Pmk1, Pmk2,. . . , Pmkn} and n = |Vmk|. Matrix A
represents the weighted n×n adjacency matrix of Hmk; where k is the number of mod-
ules (gene-coexpression modules). For an instance say, two pathways Pmk1 and Pmk2

are the set of genes from the module mk participating in the corresponding pathways.
Pmk1 = {gmk11, gmk12, . . . , gmk1n}; Pmk2 = {gmk21, gmk22, . . . , gmk2l}
The semantic similarity is measured by the mutual sharing of GO (Gene Ontology)

functions among the module-specific pathway pairs. The calculation is done by the
following :

simPmki,Pmkj
=

∑
gmkix, gmkjy∈Pmki,Pmkj

sim(gmkix, gmkjy)

M +N
(3)

Where, M = |Pmki| is the number of genes on the pathway Pmki and N = |Pmkj |
is the number of genes on the pathway Pmkj .

We have used the GoSemSim R package for the semantic similarity calculations.
The semantic similarity sim(gmkix,gmkjy) between genes, refers to the similarity on
the basis of Molecular function (MF), Biological process (BP), and, Cellular compo-
nent (CC). Wang’s method [75] is used to calculate the semantic similarity in the
proposed work. The edge weight calculation is performed for all the pathway pairs of
each module of obtained all 57 gene-coexpression modules for T2D and all 21 gene-
coexpression modules for PD. To calculate the final edge weight of each module-specific
pathway-pathway network, we follow a specific trick to integrate the phenotypic mutual
information and semantic similarity scores. This technique calculates the maximum of
pairwise pathways and summed up with the corresponding semantic similarity of the
pathway-pathway interaction. For instance, say, we have two pathways p1 and p2 and
their corresponding mutual phenotypic weights are wp1 and wp2, respectively. The
semantic similarity score between these pathways is wsem. Then the mutual phenotypic
information weight is calculated as the following:

wmax = max

{
max

(
wp1,

wp1+wp2

2 )

max
(
wp2,

wp1+wp2

2 )
(4)

So, the final weight of the corresponding edge between p1 and p2 is :

Eweight = wmax + wsem, (5)
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where, Eweight is the interaction weight between the pathways, p1 and p2.
This pathway-pathway edge weight calculation is also applied similarly to PD.

3.6 Amyloid protein-protein interactome construction using
seed proteins

To build the amyloid protein-protein interaction (PPI) network, we first parse the
PPI data from IntAct (05-2016) is retrieved in a MITAB 2.5 format file [39] with two
columns of gene names. Then, we apply the Markov Clustering (MCL) algorithm [20]
to obtain the clusters of proteins. We get the 28 invivo amyloid proteins, the most
critical central proteins responsible for amyloid fibril formation. The work by Biza et
al., [8], is the source of all 28 seed amyloid precursor proteins. These invivo amyloid
proteins are then mapped to their corresponding UniProtKB gene names. We then
search for the clusters (obtained using MCL), which contain at least one or more
than one seed protein. The clusters containing seed protein(s) are combined to get
the final desired proteins to build the amyloid interaction network. These proteins are
then searched through the IntAct database for related interactions. We group all these
PPIs to get the final amyloid protein interactome. We finally get a total of 46,634
interactions. We refer to this network as AmyNet.

3.7 Mapping of PTMs with corresponding proteins and
building PTM-AmyNet

Post-translational modifications (PTM) are essential in different stages of amyloid for-
mation. It is already a known fact that enzymatic PTMs are extensively linked to
protein misfolding or protein aggregation and cause amyloid dispositions in pathologi-
cal conditions. When enzymatic PTMs result in excessive or differential modifications,
they can adversely impact the propensity of protein and lead to protein aggregation.
So PTM and corresponding protein associations are important, as their collective
information can shed light based on PTM participation in protein misfolding.

In this method, we have used 14 types of PTM associations. These are (i) Acetyla-
tion, (ii) Amidation, (iii) Hydroxylation, (iv) Methylation, (v) N-linked Glycosylation,
(vi) O-linked Glycosylation, (vii) Phosphorylation, (viii) S-Nitrosylation, (ix) Sumoy-
lation, (x) Ubiquitination, (xi) Carboxylation, (xii) Disulfide-Bond, (xiii) Oxidation,
and (xiv) Proteolytic Cleavage. To obtain the PTM corresponding protein associations,
we search through the dbptm database. From dbptm, we get the protein associations
to the PTMS, namely Acetylation, Amidation, Hydroxylation, Methylation, N-linked
Glycosylation, O-linked Glycosylation, Phosphorylation, S-Nitrosylation, Sumoylation
and Ubiquitination. But for the Proteolytic Cleavage, Disulfide Bond, Carboxylation,
and oxidation we mined the protein associations from the UniprotKB database. Next,
we search all these PTMs PTM-associated proteins in our AmyNet network to obtain
those proteins’ corresponding interactions. Finally, we build the PTM-AmyNet (PTM-
Amyloid protein Network) network by integrating the PTM-protein associations with
the AmyNet interactome.
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3.7.1 Building PTM projection network from the bipartite network
with PTMs-Protein associations

The bipartite network from PTMs to protein associations is built using the python
Networkx package. The aim of building this bipartite network is to obtain the PTM
projection network from it. After getting the PTM projection network, we calculate the
edge-betweenness centrality of the PTM-PTM pairs. We used the algorithm proposed
by Girvan et al. [25] to obtain the edge betweenness centrality scores. These scores
are sorted in descending order, and only the highest centrality PTM pairs are taken.
For instance, if we get more than one PTM pair with similarly high scores, all the
same high-scoring pairs or edges are considered. Finally, the PTM_AmyNet network
connects the PTM pairs with these high edge betweenness centrality scores.

3.8 SNP variant analysis and building SNP-SNP epistasis
network

The corresponding query SNPs are extracted and parsed to get the GWAS-based query
SNPs for mapping traits as T2D and PD. These obtained SNP variants are then used to
collect the proxy SNPs by using snipa https://snipa.helmholtz-muenchen.de/snipa3/
[4] online tool. The analysis is being performed by using the LD ≥ 0.8 (linkage disequi-
librium). Thus, we get the desired proxy SNPs with their corresponding minor allele
frequencies. The consequence types, alternative, and reference allele information with
their corresponding phenotypic and disease associations of the acquired proxy SNP
variants are obtained using Ensembl-VEP [53] tool. As our performed experiments
are based on the liver tissue and whole blood tissue for T2D and PD, respectively,
of the European population, we now matched the VEP SNP outputs with the GTEx
(Genotype-Tissue Expression) [1] European population-based dataset. Finally, we
obtain the GWAS-based SNP variants for tissue-specific European population-based
Ensembl-VEP results for each of the diseases. From these SNP variants with corre-
sponding minor allele frequency (MAF) ≥ 0.05 are only selected for analysis, and the
remaining are discarded.

The reason to select MAF ≥ 0.05 is to find the actual SNP variants that affect
population genetics by causing complex diseases. To get the epistasis interaction (SNP-
SNP interaction), the PLINK [60] analysis tool is used. The PLINK-based analysis
always requires only PLINK-associated genotypic data formats and results to perform
its analysis. The corresponding PLINK analysis is done for case-control analysis for
the proposed work. These associated data formats are .ped/map extended file formats
for the corresponding case-control-based genotypic and phenotypic information. These
specific types of file creation further need the base files of three particular results,
which are in .bim, .fam, and .bed file formats. Researcher Alejandro Ochoa recently
built an R package, namely, genio (Genetics Input/Output Functions) [82] to analyze
and create allele-specific population genetic data for SNP variants. In this analysis,
we take the same number of cases as in the expression set along with the randomly
shuffled 20%
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3.9 Extracting Hypo/Hyper methylated genes and connect to
SNPs

The differential methylation profiling obtained from subsection 3.4 gives the profil-
ing results for T2D (GSE65057) and PD (GSE111629). Individually, after getting
the DNA methylated DMPs (differentially methylated positions) and DMRs (differ-
entially methylated regions), the gometh() and goregion() methods are used from
missMethyl R package. These methods help to perform the enrichment analysis
of the CpG-associated genes. The following steps are performed to extract the
hypo/hypermethylated genes:

• We perform the gene enrichment analysis to get the overlapping genes with DMRs.
• Now, the bocals or β-values of the CpG-specific data frame obtained earlier are

divided into case and control groups by mapping with their metadata information.
• For T2D, the case-control study is being performed between Obese_type2_diabetes

and Metabolically_healthy patient samples. Similarly, the case-control distinction
is performed for PD based on disease and PD_free_control individuals.

• From each disease-specific CpG data frame, β-value row means are calculated, and
the absolute difference between the row mean β-values of each CpG is measured
based on case-control samples. This row mean β-value is called ∆ β.

• We concatenate the CpG specific ∆ β values with the associated entire dataframe.
• ∆ β > 0.2, the associated CpGs are hypermethylated, and the CpGs associated

with ∆ β < 0.2, are referred to as hypomethylated.
• We make two class-specific CpG divisions and perform the DMP along with DMR

enrichment analysis using gometh() and goregion() methods, respectively.
• From the obtained results, the CpG entries with P-value < 0.05 are considered for

further analysis.
• Now, previously obtained genes from each of the gene-coexpression modules, are

mapped with these DNA-methylated genes.
In the overlapping of these gene-DNA methylation associations, we get a total of
135 and 169 genes hypomethylated in T2D and PD, respectively. No overlap for
each of the diseases is found for hypermethylation.
The SNPs from European population-based liver tissue (for T2D) and whole blood
tissue (for PD) related genetic associations are mapped with the integrated SNP
variants from the epistasis network. Then, obtained SNP variants are mapped with
the acquired hypomethylated genes and the Ensembl-VEP (Ensembl Variant Effect
Predictor) [53] generated findings. Finally, these selected SNP variants from the
epistasis interaction network are linked with the VEP overlapped DNA methylated
genes.

3.10 Connecting SNP and PTM nodes using AWESOME
dataset

The SNP variants that affect the PTMs are analyzed and predicted by Yang et al. [81]
in their AWESOME database. So, the interconnection between the epistasis network
and PTM-AmyNet can be initiated by these SNP-PTM interactions. We used this
AWESOME dataset to connect these two sub-networks. To get all the SNPs from the
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epistasis interaction, all the SNPs are integrated and mapped to the parsed result of
the AWESOME dataset. The previously mentioned 14 PTMs are only mapped to the
data, and the rest have been discarded. Among them, in very few of these interactions,
only 22 interrelations of SNP variants and their corresponding PTMs are obtained
from these mappings for T2D, and only 6 interrelations of SNP variants are found to
be associated with PTMs in PD.

3.11 Selective interactions for individual networks with
ICD-10-CM codes E11.8 (T2D) and G20 (PD)

The selective interactions with the ICD-CM code E11.8 and G20 for T2D and PD are
divided into two kinds of information in the network. One is the global information
PTM-AmyNet, and the two local information collectively pathway-pathway interac-
tion and SNP-SNP interaction. As a result, the following three interactions help to
identify these interactions:

• Central Amyloid proteins to ICD - The invitro and invivo seed amyloid pre-
cursors are the central proteins of the PTM-AmyNet network because these critical
seeds are used to populate the whole Amyloid protein sub-network. Hence, we
only connect these central seed proteins to ICDs E11.8 and G20 for T2D and PD,
respectively.

• Pathways to ICD - It is a well-known fact that the causation of any disease is
highly related to its corresponding pathway relations. So, in the proposed work,
these module-specific pathways are also connected to the ICD code.
The pathway nodes with the highest page-rank-based centrality scores from each
module-specific network are selected.

• SNPs to ICD - The Ensembl-VEP output for T2D and PD individually gives the
SNP variant information with their DisGeNET-specific known disease associations.
Then, the SNPs from the obtained epistasis interaction are integrated to map with
these VEP SNPs.

3.12 Edge contraction for the sub-networks associated with
the ICD-10-CM nodes (T2D:E11.8 and PD:G20)

As in the heterogeneous networks for T2D and PD, there is only one node type,
ICD-10-CM-E11.8 and ICD-10-CM-G20, respectively. We combine this single node
type with another one using an edge contraction strategy. Edge contraction is used to
exclude redundant edges in the network without losing any vital information. To follow
this, we select the central amyloid seed proteins for individual networks as the nodes for
combining the ICD-10-CM codes. The central amyloid proteins are essential amyloid
precursors responsible for protein misfolding in co-morbid diseases. The pathway to
ICD entity links and SNP to ICD entity links are connected to this modified node type
in each network. In the case of T2D, the ICD-10-CM-E11.8 node type is combined
with the 32, and for PD, the ICD-10-CM-G20 node type is combined with 40 different
central amyloid precursors. The selected pathway nodes of each module and SNP
nodes are connected with these combined nodes.
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3.13 Integration of all interactions and assigning weights to
unweighted edges for individual heterogeneous network

To build the heterogeneous network individually for T2D and PD, all the corre-
sponding subnetworks (i.e., intra-connections ) are combined with their associated
interconnections.

The subnetworks are, namely, (i) module-specific pathway networks, (ii) gene
coexpression module networks, (iii) case-control-based SNP-SNP epistasis interaction
networks, and (iv) amyloid PPI along with PTM integrated network. All these subnet-
works are linked up with their inter-associated networks. This obtained heterogeneous
network is partially weighted because, among all interactions, only pathway-pathway
network and module-specific gene coexpression networks are weighted. So, to give
weight to the remaining unweighted interactions, a new strategy, namely, link entropy,
is introduced in our proposed method. This link entropy method is proposed by Qian
et al. [61] in their recently published work. This link weightage technique is divided
into two strategies, namely (i) NMF (Non-negative Matrix Factorization) [? ], pro-
posed on the whole network topology, and (ii) QS (Quantification Strategy), which is
finally used to calculate the LE (Link Entropy) values of all the edges to quantify their
significance edge weights. These two strategies are briefly explained in the following
sections:

3.13.1 NMF (Non-negative Matrix Factorization)

In this link entropy calculation, we initially consider the whole network unweighted,
representing an adjacency matrix A of 1s and 0s. Now, it is assumed that the pairwise
interactions in A are influenced by an unobserved expectation network, say, Â. This
Â can be defined as:

Â = XXT , (6)
Where the non-negative matrix factorization is being used to get this X. Here,

X and XT are considered equivalent to each other. We pick X here to calculate the
quantification strategy for it further.

3.13.2 Quantification Strategy

In this method, as each row of X defines the probability distribution of the correspond-
ing nodes, we can find the most uncertain nodes based on the values of X. We have
used the information entropy and the Jensen-Shanon divergence of the node probabil-
ity distribution to obtain the quantification measure and formulate the significance of
edges. These two measures can be defined as the following:

H(Xi) = −
K∑

k=1

xik log(xik) (7)

Finally, the edge weight between a pair of nodes is defined as L E ij and represented
below:
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L E ij =
(H(Xi)+H(Xj))

2 + JSD(Xi||Xj)

2
, (8)

where H(Xi) is the information entropy of node i, Xi is the probability distribution
of node i and JSD(Xi||Xj) is the Jensen-Shanon divergence between Xi and Xj .
Thus, the whole undirected (initially assumed) heterogeneous network is weighted by
this method. We only assign these link entropy weights to the unweighted edges. The
other two previously assigned weights (i.e., for pathway-pathway and gene coexpression
networks) are the same as earlier.

3.14 Identifying all different entities and build word2vec
embedding of all the unique entities BioBERT model

Different entities are used to construct these disease-specific heterogeneous networks.
We first collectively identify these other kinds of unique entities, and their con-
cepts are formed by appending additional information. These various types of entities
are, namely, pathway, only hyper/hypo methylated genes, only up/downregulated
genes, down/up-regulated hypermethylated genes, down/up-regulated hypomethy-
lated genes, SNP variants, and all amyloid proteins, mapped to their UniProt
identifiers, PTMs, and ICD-CM (i.e., E11.8 and G20) codes. There are a total of 31918
unique entities present in the T2D network and 47561 unique entities present in the
PD network. We have used the BioBERT (Bidirectional Encoder Representations from
Transformers for Biomedical Text Mining) [50] model to convert entity-associated con-
cepts to vector embeddings. So, finally, we get an initial vector embedding for each
unique entity for the individual heterogeneous networks.

3.15 Applying Heterogeneous Graph Transformer Network
(HGT) to individual disease-specific heterogeneous
networks to perform link analysis

After building the individual disease-specific networks for T2D and PD, we infer the
plausible links between DMGs and PTMs for each network respectively. As PTM is
one of the most critical factors causing protein aggregation, unknown links associated
with PTMs are crucial for our investigation. These findings are due to the participation
of protein aggregation, which results in both T2D and PD in patients. Likewise, DNA
methylation is another complex mechanism that plays a crucial role in causing the
same co-morbid diseases. Hence, to figure out the plausible latent cause of these two
co-morbid diseases, link analysis between DMGs and PTMs is essential. We use the
graph neural network-based method, HGT (Heterogeneous Graph Attention Network),
for our proposed individual heterogeneous network associated with T2D and PD.
The motivation for using this model for our network analysis is its potential for link
prediction while capturing heterogeneous attribute information in the network. This
HGT method was first introduced by Hu and his group in their paper [33] for node
classification and link analysis tasks in a heterogeneous graph. The heterogeneous
graph consists of different types of nodes and edges. Hence, this type of network always
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contains rich semantic information. So, the mere application of a simple graph-based
deep learning approach is not suitable for learning these networks.

A
B

C

D

Heterogenous Graph

A. Gene Coexpression Network
B. SNP-SNP Network
C. Pathway-Pathway Network
D. Ptm-Amyloid Protein Network

HGT

L HGT
Layers

H(L)[T]
Link

Prediction
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Target Node
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Gene Node

Pathway node

K-Linear(MG)

K-Linear(Ptm)
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Ptm Node
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Q-Linear(t)
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A-Linear(t)
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Fig. 2: Proposed heterogeneous transformer architecture

We define the HGT model by our disease-specific heterogeneous graph G, which
is made up of V, E ,A,R. Each node v ∈ V and each edge e ∈ E has a mapping
function f(v) that goes from V to A and ϕ(e) that goes from E to R. Here, V denotes
the entities, and E denotes the biological relations in the heterogeneous graph G.
An edge e = (s, t) linked from source node s to target node t, whose meta-relation
is denoted by < f(s), ϕ(e), f(t) >, and the inverse relation is referred to as ϕ(e)

−1.
Specifically, the node represents the genes (including methylated ones), pathways,
SNPs, PTMs, and amyloid proteins (including central amyloids). The edges represent
the interrelations among the connected nodes. So, the meta-relations are different
for each type-specific edge. For instance, pathway-methylated refers to the connection
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between the relation between node pairs pathway and methylated gene. The HGT
extracts all the biologically linked node pairs of target node t and source node s via
the edge e. The output of the l − th layer is denoted as H l, fed to the (l + 1) − th
layer as input. The end node representations of the whole graph HL can be obtained
while stacking the L layers. The input heterogeneous graph with the transformer
architecture is shown in Figure 2. The mutual attention between the node pair s
and t is calculated through the following GNN attention mechanism:

H[t]l ←− Agg
∀s∈N(t),∀e∈E(s,t)

(Att(s, t) ·Msg(s)), (9)

where Att estimates the attention of the source node using an additive mechanism,
Msg refers to the information propagated through only the source node, and Agg
aggregates the neighborhood message by the attention weight that follows the non-
linear activation function. To calculate the attention, we measure the dot product of
the target node t and the source node s after mapping t to a query vector Q and s to
a key vector K. Due to the heterogeneous nature of the graph for different biological
relation, we calculate the h− head attention as follows:

AttHGT (s, e, t) = softmax
∀s∈N(t)

(∥
i∈[1,h]

A− headi(s, e, t)),

A− headi(s, e, t) = (Ki(s)WA
ϕ(e)Q

i
tT ) ·

µ<f(s),ϕ(e),f(t)>√
d

,

Ki(s) = K − Linearif(s)(H
(l−1)[s]),

Qi(t) = Q− Linearif(t)(H
(l−1)[t])

(10)

For the i − th attention head A − headi(s, e, t) we project the f(s) type node s

into the i− th vector Ki
(s) applying a linear projection K −Linearif(s) : R

d → R d
h to

move the i− th attention head A−headi(s, e, t) into the i− th key vector Ki(s). Here,
h is the number of heads, and d

h is the number of dimensions of each head. As in our
disease-specific heterogeneous graph, each node type has a different linear projection
to reflect the distribution differences throughout the model. Hence, K −Linearif(s) is
indexed by the source node’s type f(s) and Q−Linearif(t) linear projection is indexed

for i− th target node. For different edge type-specific matrix WA
ϕ(e) ∈ R d

h× d
h for each

of the edge types ϕ(e), as the attention weight to measure the similarity between
query vector Qi(t) and key vector Ki(t) instead of using simple dot product between
these two vectors. For instance, in Figure 2 the DNA methylated gene edge attention
matrix WA

(MG,t), for PTM WA
(Ptm,t), and for pathway WA

(Pw,t) are shown. For each
node pair (s, t), multi-head message passing is employed as follows:MsgHGT (s, e, t) = ∥

i∈[1,h]
M − headi(s, e, t),

M − headi(s, e, t) = M − Linearif(s)(H
(l−1)[s]) ·WM

ϕ(e)

(11)

Hence, to obtain the i−th message head M−headi(s, e, t), we project f(s) message
vector with WM

ϕ(e) ∈ R d
h× d

h matrix to capture the edge dependency. To obtain each of
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the target node t’s attention vector, softmax is employed to sum up altogether to one
and used to average the messages coming from the source node that leads to producing
updated vector Ĥ l[t] as below:

Ĥ l[t] =
⊕

∀s∈N(t)
(AttHGT (s, e, t) ·MsgHGT (s, e, t)) (12)

This aggregation fetches all the different types of source node information and
aggregates them to the target node t. In the final step, for each target node, t is mapped
to each node type f(t). This is calculated by applying A−Linearf(t) projection to the
updated vector Ĥ l[t] with the non-linear activation on it and the residual connection
as well:

H l[t] = σ(A− Linearf(t)Ĥ
l[t]) + Ĥ(l−1)[t] (13)

Finally, the HL representation is obtained by stacking HGT blocks for L layers,
and that is used to perform the link prediction between the desired node pairs for each
disease-specific heterogeneous network.

4 Experiments
To initiate the experiment, at first, the entire dataset with their corresponding entity
embeddings for T2D and PD individually are converted into DGL API [76] compatible
data format. Then, each dataset is split into train, valid, and test sets. Next, the Open-
HGNN [27] framework is used for our experiment. We use the Heterogeneous Graph
Transformer Network (HGT) graph neural network model to perform the link predic-
tion tasks for individual disease-specific heterogeneous networks. Then, we generate
the desired target link-specific comparative ROC-AUC (Receiver Operating Charac-
teristic Area Under Curve) accuracy scores for each network. We also predict some
novel common pathway signatures relating to T2D and PD in the experiment. We
further validate these findings with the available literature.

4.1 Link Prediction for Desired Target Relations
Our constructed individual disease-specific weighted heterogeneous networks asso-
ciated with T2D and PD are used independently for link analysis tasks, to infer
the plausible common target links between these two prevalent diseases. The edge
weights calculate the message passing through the graph neural network. To per-
form the link analysis using the HGT model, the first task is to form the meta-paths
between the different entities in the network. The meta-paths for T2D are comprised
of the nodes namely, pathway, gene, downregulated_ hypomethylated_ gene, upregu-
lated_ hypomethylated_ gene, hypomethylated_ gene, snp, amyloid_ protein, ptm,
and central_ amyloid_ protein_ with_ ICD-E11.8. Similarly, for PD the meta-paths
contain pathway, gene, downregulated_ gene, upregulated_ gene, downregulated_
hypomethylated_ gene, upregulated_ hypomethylated_ gene, hypomethylated_
gene, snp, amyloid_ protein, ptm, and central_ amyloid_ protein_ with_ ICD-G20.
The elaborate description of individual relations with corresponding meta-path ID
between entity pairs of the diseases T2D and PD are given in the Supplementary file.
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Table 1: Target relation-specific roc_auc scores for T2D
Target

Links for T2D
Models

HGT
(roc_auc)

HAN
(roc_auc)

pathway-hypo 0.83 0.75
pathway-central_amyloid_protein_T2D_E11.8 0.89 0.80

central_amyloid_protein_T2D_E11.8-ptm 0.87 0.78

In each of the specific disease-based heterogeneous networks, a desired target link
is considered and link analysis is performed using the HGT model individually for
both diseases. We use the OpenHGNN [27] framework for implementing our T2D and
PD-specific heterogeneous network-based HGT model. In the case of T2D, we split the
whole constructed dataset as 70% for training, 10% for validation, and the remaining
20% for testing. The dataset associated with PD is being split as 60% for training,
20% for validation, and the remaining 20% for testing. To get the performance of each
relation-specific link for each disease, roc_auc accuracy is calculated by optimizing
the parameters using the validation dataset. For the HGT model, we take the hidden
dimension as 128, the number of heads as 8, the learning rate as 0.005, and weight
decay as 0.001. In association with that, the Adam optimizer is used for tuning the
parameters.

5 Results
To our knowledge, no computation method exists for finding hidden co-morbid pat-
terns from heterogeneous multi-omics networks associated with T2D and PD. However,
we perform our method’s comparative analysis with the Heterogeneous Graph Atten-
tion Network (HAN) [77] model. From the result in Tables 1 and ‘2, we can see visibly
good accuracy scores due to the higher number of link instances in the individual net-
works. For example, the target link pathway-central_amyloid_protein_T2D_E11.8
for T2D gives a good result of 0.89 accuracy. Similarly, the relation pathway-
central_amyloid_protein_pd_G20 also provides a good accuracy score of 0.85. Our
proposed methodology infers the hidden biological connections between T2D and
PD based on common pathway signatures. T2D and PD module-specific pathway
sub-networks are merged to obtain the final common signature. Thus, we get the
overlapped known pathway links to exit among these two diseases. The novel hidden
common signature analysis is done on two factors, namely hypomethylation and PTMs
linked to familiar predicted pathway entities individually for T2D and PD. The new
findings of common pathway signatures for hypomethylation, PTMs, and, finally, in
association with the known pathway links are given in the subsequent sections below.
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Table 2: Target relation-specific roc_auc scores for PD
Target

Links for PD
Models

HGT
(roc_auc)

HAN
(roc_auc)

pathway-hypo 0.88 0.82
pathway-pathway-central_amyloid_protein_pd_G20 0.85 0.82

pathway-central_amyloid_protein_pd_G20-ptm 0.86 0.81

5.1 Newly predicted common pathway signature between
hypomethylated genes for T2D and PD

Our proposed method predicts the common pathway signatures linked to the
hypomethylated genes for T2D and PD. Among all the newly predicted pathway
signatures for both the co-morbid diseases, few have been found in the liter-
ature ( see the supplementary Table S3 and S4, available online). To cite an
example, a predicted instance is shown in the supplementary Figure S2 (available
online). It is observed that in Figure S2(a), the common pathway pattern REAC-
TOME_INNATE_IMMUNE_SYSTEM is linked with the hypomethylated genes
VIPR2/VPAC2 for T2D and QRSL1 for PD. To further clarify the finding we search
for its basis in the existing literature. It is already a known fact that vasoactive
intestinal peptide (VIP) can stimulate glucose-dependent insulin secretion by bind-
ing to VIPR2 receptors [31]. In another literature [85], it is shown that pituitary
adenylate cyclase-activating peptide (PACAP) can activate VPAC1 and VPAC2 (i.e.
VIPR2) receptors and in association with that, the VPAC1-mediated hepatic glucose
increase prevents the increased insulin secretion by VPAC2 activation. So, PACAP
derivatives such as VPAC2 can efficiently promote glucose-dependent insulin secre-
tion and safeguard islet beta cells. It legitimately defines VIPR2 as an important
target gene that can be associated with T2D. Now, the hypomethylation of genes is
already proven to be related to DNA damage and oxidative stress, leading to beta
cell dysfunction [74]. This hypomethylation can be observed at target genes and can
be explained through competing for proapoptotic and anti-apoptotic processes dur-
ing ER (Endoplasmic Reticulum) stress response in diabetic islets. The researchers
further report that specifically an altered DNA methylation profile in the pancreatic
islets of T2D patients with a major dominance of hypomethylation in sequences out-
side CpG islands (CGIs). Hence the dysregulation of genes may notably contribute to
beta cell functionality, cell death, and adaptation to metabolic stress. This concludes
that hypomethylation of VIPR2 can significantly affect the performance of beta cells
in T2D patients. In connection regarding the gene QRSL1 and its hypomethylation
related to PD can similarly be verified by few literature [21, 22]. Mitochondrial dys-
function plays a crucial role in causing PD, but the underlying mechanism still needs
to be addressed. Various facts show that QRSL1 is a rare, damaging gene variant
accountable for mitochondrial dysfunction leading to PD in patients. In light of keen
observation, it may be inferred that the genomic global hypomethylation of QRSL1
may play a key role in the causation of mitochondrial dysfunction. The activation of
the innate immune system is closely related to the pathogenesis of T2D [59]. This

21

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted September 27, 2024. ; https://doi.org/10.1101/2024.09.26.24314438doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.26.24314438


study analyses the complex interplay between inflammation and neuronal dysfunction
associated with T2D. Neuronal death can induce inflammation while releasing apop-
totic and necrotic cellular factors. These factors can be recognized by innate immune
cells [38]. The activation of innate immune cells by different verified factors can then
introduce an adaptive immune response which leads to selective and specific patterns
of neuronal injury. This neuronal dysfunction carries an important role in the patho-
genesis of PD. In a few works, [6, 66] show that the innate immunity system pathway
is related to VIPR2 and QRSL1. So, this biological literature verifies our predicted
links of innate immunity system pathway to hypomethylated genes in the relevance
to link the co-morbid signature between T2D and PD.

5.2 Newly predicted common pathway signature between
PTMs for T2D and PD

Few of our predicted common pathway signature links to PTMs show a literature val-
idation for predicted PTM links association to T2D and PD. For instance, in Figure
S2(b), the REACTOME_EGFR_DOWNREGULATION is linked to two PTMs,
namely phosphorylation and acetylation. It is observed that [71], the primary client
protein of the beta cell ER is proinsulin. To promote its perfect folding, the conse-
quence of entering the proinsulin in ER is bound reversibly by molecular chaperones,
namely, BiP. When free BiP levels fall due to its binding to newly produced pro-
teins, this triggers the PERK gene to phosphorylate eIF2α, and protein translation
fails during ER stress. In the scenario of PERK, reduced protein synthesis prevents
new proteins from entering the ER when nothing can be correctly folded. Due to the
defect of insulin folding, T2D can occur. Another incident occurred due to the acti-
vation of the insulin receptor signal in the cell’s interior via the phosphorylation of
target molecules, including insulin receptor substrate 1 (IRS1) on tyrosine residues.
This can be blocked if phosphorylation occurs in IRS1 on serine residue by the Jun-
N-terminal kinase (JNK) and triggers in the peripheral tissue of obese individuals. So,
phosphorylation participates in the formation of protein misfolding, leading to T2D.
One recent work proposed by Yakhine et al. [80] is significant in showing the rela-
tionship between protein acetylation and PD. According to the authors, acetylation
is a post-translational modification regulated by antagonistic enzymes, histone acetyl-
transferases (HATs), and histone deacetylases (HDACs). HATs transfer the acetyl
group from acetyl-COA to lysine residues of proteins, whereas HDACs remove it. The
impairment of HAT and HDAC activities causes changes in cellular processes, which
leads to PD in patients. Hence, the acetylation level of proteins leads to cell death in
idiopathic Parkinson’s disease individuals. The association between the EGFR path-
way and the acetylation is observed in the work by Song et al. [67]. As alterations of
epidermal growth factor receptors are involved in various human diseases, the EGFR
pathway plays an essential role in developing T2D and PD. Another study by Wee et
al. [78] shows that adding EGF Hela cells activates the EGFR to cause global phos-
phorylation. The connection between the EGFR pathway and protein acetylation is
observed in the study by Kim et al. [42]. This verifies that our proposed prediction for
the EGFR pathway and acetylation leads to PD in healthy individuals.
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5.3 Common pathway signature linked to the newly predicted
pathway signatures for T2D and PD

To show the final common pathway signature connected to the predicted
pathway signatures of T2D and PD, we retrieve the commonly known con-
nection from the common pathway-pathway interactions. Among all the con-
nected signatures, we obtained a few findings verified with justified biolog-
ical validations. For instance, in Figure S2(c) the known common pathway
KEGG_GLYCOLYSIS_GLUCONEOGENESIS is connected with the predicted
pathway signatures namely, REACTOME_INNATE_IMMUNE_SYSTEM and
REACTOME_EGFR_DOWNREGULATION. One report [63] shows that differen-
tial glycogen and glucose meta-
bolism in dendritic cells within the innate immune response, concluding to their inter-
related pathway connections. Catabolic pathways, including glycolysis and fatty acid
oxidation (FAO), are interconnected with biosynthetic and redox pathways. Innate
immune cell activation and differentiation trigger immense metabolic changes to sup-
port their functional activities [54]. In some studies, it has been noticed that increased
glycolytic activity authenticates the formation of many complex diseases. Pyruvate
dehydrogenase (PDH) complex acts as a gatekeeper between glycolysis and oxidative
phosphorylation, and activation of PDH inhibits glycolytic activity. Another study
by Jeon et al. [35] shows that EGFR signaling pathways play a crucial role in the
upregulation of large-sized glycosomes in diseased cells, which functionally govern
the promotion of glycolysis-derived biosynthesis. These validations further show the
plausible connection of hidden co-morbid factors for T2D in association with PD in
patients.

6 Discussion and Conclusion
This paper proposes a novel approach for building disease-specific heterogeneous
networks while integrating different tissue-specific information and identifying the
common co-morbid patterns between T2D and PD. Here, we choose common pathway
signatures based on hypomethylation and PTM as these co-morbid patterns. To the
best of our knowledge, the proposed approach is the first method of its kind, where
we build two different tissue-specific heterogeneous networks by integrating transcrip-
tomics, epigenetics, and epistasis data for both of these co-morbid diseases. We refer
to these tissue-specific sub-networks as local networks. Then, we connect these two
heterogeneous networks with the Amyloid-PTM interactome (i.e., PTM-AmyNet) and
refer to it as a global network. Our method shows various advantages in the view of
heterogeneous data fusion and how these heterogeneous networks help to infer new
latent co-morbid patterns between T2D and PD. First, we perform the tissue-specific
microarray-based gene-expression analysis and build a set of weighted gene modules or
gene expression subnetworks using WGCNA. Then, based on those modules, we build
weighted pathway-pathway sub-networks for each module. In the pathway-pathway
sub-networks, the inter-related edge weights are calculated using the mutual pheno-
typic information of the gene-expression specific values and semantic similarity. To
reflect the optimal pathway importance in the corresponding edge weights, we take
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the maximum of the phenotypic score and their mean scores and sum it up with the
semantic score to get the final weight of individual pathway pairs. This technique
incorporates the importance of the pathway in a specific relation associated with the
similarity value of gene ontology scores. Second, to obtain the overlapping genes with
differentially methylated genes, we perform the DNA methylation profiling of the same
tissue-specific gene expression microarrays individually for T2D and PD. Third, we
build the epistasis network using the GWAS-based query SNPs for mapped traits such
as T2D and PD for the desired population. These query SNPs are further used to
fetch proxy SNPs with the MAF scores ≥ 0.05. The final SNP-SNP sub-network is
formed using the PLINK tool by considering the MAF scores for binomial probabilis-
tic random genetic distribution to build the sample genetic weight matrix for PLINK
analysis. As the MAF scores with ≥ 0.05 are already verified to be responsible for
complex diseases like T2D and PD, we select them as the probabilistic score for cre-
ating the genetic weight matrix. Hence, these probabilistic values are reflected in the
selection of SNP variants. These SNP-SNP network variants are further analyzed with
the Ensembl-VEP tool to obtain disease associations and genetic links. After building
this heterogeneous network, we create a unique entity concept for each node entity.
Then, BioBERT embedding is used to get the context-specific unique embedding for
each entity ID. This approach helps to give the model type-specific information for
the corresponding nodes in the individual heterogeneous networks. We try to capture
the topological information of the network based on the importance of the entities in
the network. So, we calculate the link entropy of the whole network to obtain the link
weight of all the inter- and intra-related relationships in the network. Only we keep the
gene-gene and pathway-pathway edge weights the same as we calculated earlier, and
the remaining edges are weighted according to the obtained link entropy weights. This
method incorporates the entity-specific information according to the gene expression
values and the topological significance of the remaining sub-networks. Besides building
tissue-specific individual disease-based heterogeneous networks by integrating multi-
ple genomic level information through a unique approach, our method also further
bridges the latent factors, namely, hypomethylation and PTM based on unique path-
way signatures. Few of these predictions have also been biologically validated, and the
remaining findings may need more important biological investigations.

Despite the novel co-morbid pattern predictions from our novel method of build-
ing disease-specific heterogeneous networks, there is still room for improvement in the
work. In our method, due to the number of target relation-specific instances for indi-
vidual diseases, our proposed network may lack some vital information that may lead
to a few more exciting outcomes. We may further integrate more of these instances to
infer more unknown and valuable results in the future. Our proposed approach uses
the HGT graph, a neural network model, to learn the individual heterogeneous net-
works and obtain link prediction scores of target relationships. We may further train
our network with other heterogeneous graph neural network models for a comparative
analysis of individual relationships. Another modification can be made to the nega-
tive sub-graph construction methodology to get more critical latent patterns from the
network. Finally, we hope that our proposed work will be helpful in the integration
of tissue-specific transcriptomics, epigenetics, and epistasis-related data in association
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with the amyloid-PTM network for T2D and PD and infer hidden common co-morbid
patterns that can be targeted as potential biomarkers for a better prognosis of these
prevalent diseases. However, our findings may require further biological intervention
for better verification. These latent pattern predictions may be further helpful in con-
tributing to the research of drug therapeutics to treat the target factor responsible for
creating T2D and its co-morbid condition, PD, at the same time in patients.

Supplementary information. The Supplementary file is provided along with the
manuscript.
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