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Highlights 

• Nonsynonymous and synonymous mtDNA SNVs are subject to different selective pressures 

among pediatric leukemias 

• The distribution of mtDNA SNV VAFs among individual leukemic cells can provide evidence for 

selective pressure 

• The impact of mtDNA SNVs on gene expression is correlated with selective pressure 

• Somatic mtDNA SNVs associated with cell state changes are a source of heterogeneity among 

leukemic cells 
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Summary 

Somatic mitochondrial DNA (mtDNA) mutations are prevalent in tumors, yet defining their biological 

significance remains challenging due to the intricate interplay between selective pressure, 

heteroplasmy, and cell state. Utilizing bulk whole-genome sequencing data from matched tumor and 

normal samples from two cohorts of pediatric cancer patients, we uncover differences in the 

accumulation of synonymous and nonsynonymous mtDNA mutations in pediatric leukemias, indicating 

distinct selective pressures. By integrating single-cell sequencing (SCS) with mathematical modeling 

and network-based systems biology approaches, we identify a correlation between the extent of cell-

state changes associated with tumor-enriched mtDNA mutations and the selective pressures shaping 

their distribution among individual leukemic cells. Our findings also reveal an association between 

specific heteroplasmic mtDNA mutations and cellular responses that may contribute to functional 

heterogeneity among leukemic cells and influence their fitness. This study highlights the potential of 

SCS strategies for distinguishing between pathogenic and passenger somatic mtDNA mutations in 

cancer.  
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Introduction  

The mitochondrial genome, which encodes key subunits of the electron transport chain (ETC) and the 

requisite RNA machinery for their translation, is critical for supporting oxidative phosphorylation 

(OXPHOS) and producing tumor-modifying metabolic signals [e.g., ATP, reactive oxygen species 

(ROS), NAD+, and FAD]1-3. OXPHOS and the tricarboxylic (TCA) cycle are also common targets of 

metabolic reprogramming driven by oncogenic mutations in nuclear DNA-encoded genes, including 

those that dysregulate MYC and/or MTOR signaling4,5. Given the intricate interplay between OXPHOS 

and the TCA cycle6, mutations in mitochondrial DNA (mtDNA) have the potential to enhance or impede 

tumorigenesis by influencing metabolic signaling and the availability of metabolite pools3,7,8. 

Nevertheless, although somatic mtDNA mutations have been reported in approximately 46% of 

pediatric9 and 60% of adult10 malignancies, investigating their contribution to tumor pathophysiology 

has been difficult. 

Until recently, the mitochondrial genome has been resistant to modification by editing 

technologies11,12. Therefore, insights about the pathogenicity of mtDNA mutations have been limited to 

what can be inferred from primary mitochondrial diseases13-21 and modeling specific kindred22-24 or 

disease-associated mutations25-27 via cytoplasmic hybrid (cybrid) models. Cybrid cell lines are produced 

by fusing an enucleated cell (the mitochondrial donor) with a Rho0 cell (the nuclear donor), which is 

devoid of mtDNA 28. When all copies of mtDNA within cybrid cells harbor the same mutation, a state 

known as homoplasmy, the effects of clinically relevant mutations are often mediated by perturbations 

in respiratory capacity and ROS production, although the degree and direction of these changes are 

variant-specific7,22,23,25,27. However, the overlap between tumor-enriched (TU) mtDNA mutations and 

those for which cybrid models exist (e.g., maternally inherited mitochondrial disorders) is limited; 

therefore, most TU mtDNA mutations have not been modeled, and their functional consequences 

remain unknown.   

The existence of multiple copies of mtDNA within a cell further complicates modeling efforts, as 

the ability of a given mtDNA mutation to influence cellular processes depends on the level of 
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heteroplasmy, or the proportion of mutated mtDNA alleles present within a cell (i.e., variant allele 

fraction, or VAF). For instance, the clinically relevant m.3243A>G mutation in MT-TL1, a gene that 

encodes a mitochondrial transfer RNA (tRNA), is associated with various disease phenotypes that 

depend on the variant’s heteroplasmic range13,29-31. Notably, in a cybrid series harboring increasing 

heteroplasmic levels of the m.3243A>G allele, impaired OXPHOS was detected in cells with >50% 

mutated mtDNA, but altered levels of TCA cycle metabolites and concomitant changes in transcriptional 

programs and epigenomic markers were detected in cells with only 20%-30% mutated mtDNA24,32.  

Given the paucity of appropriate model systems, it is not surprising that the functional 

consequences of TU mtDNA mutations––whether they confer a selective advantage that promotes 

oncogenesis (positive selection) or impede growth and are selected against (purifying or negative 

selection) ––remain controversial. Initial investigations of adult solid malignancies suggested that the 

accumulation of homoplasmic, tumor-specific mtDNA mutations is a consequence of positive 

selection23,33-36; however, with few exceptions23,34, those studies were associative and did not consider 

the functional significance of variants. More recently, bulk sequencing data from matched tumor and 

normal tissue samples in large-scale surveys have been used to comprehensively describe the mtDNA 

mutational landscape across tumor subtypes9,10,37-41. Although these studies reported increased 

numbers of missense mtDNA mutations among tumors, resolving which selective pressure is operative 

has been challenging. Differences in cohort composition, analytical approaches, and the extent of 

functional characterization of nonsynonymous mutations have complicated efforts to distinguish 

whether TU mtDNA mutations are subjected to purifying (negative) 10,37,40,41 or positive9,37-39 selection, or 

if they arise due to relaxation of purifying selection38,41 during development of the tumor.  

In most adult tumors, deleterious truncating mtDNA mutations typically occur at lower VAFs 

than do missense or silent mutations10,41. This finding, combined with increasing evidence that tumors 

rely on OXPHOS for their growth7,42-44, has led to the notion that the propagation of deleterious mtDNA 

mutations is constrained by negative selection pressures. Although these observations appear to 

support the argument against the functional importance of mtDNA mutations in cancer, bulk DNA-
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sequencing strategies cannot determine heteroplasmy levels in individual tumor cells––information that 

is required to corroborate the effects of selective pressure on variant accrual and assess the impact of 

mtDNA mutations on cellular functions. 

Single-cell sequencing studies have suggested the utility of heteroplasmic mtDNA variants as 

markers for identifying and tracking clonal populations45-47. However, single-cell sequencing 

technologies have not been systematically deployed to answer fundamental questions about the 

heteroplasmy levels and functional impact of pathogenic variants in tumor cells. Here, we present a 

multidimensional sequencing-based approach that circumvents technological barriers that preclude 

modeling of somatic mtDNA mutations at physiologically relevant levels of heteroplasmy. We then 

apply this strategy to address questions about selective pressure and the level and functionality of 

somatic mtDNA mutations in pediatric leukemia cells.  

  

Results 

Classification of mtDNA variants 

We analyzed whole-genome sequencing (WGS) data from 637 paired pediatric tumor and germline 

(i.e., “normal” tumor-free tissue) samples sequenced under the auspices of the St. Jude/Washington 

University Pediatric Cancer Genome Project (PCGP)48. These tumors included 26 pediatric cancer 

subtypes comprising hematological (blood, 54%), central nervous system (brain, 19%) and solid tissue 

(solid, 27%) malignancies48 (Table 1). Samples were sequenced to an average depth of ~30× for 

nuclear DNA–encoded genes, leading to a depth of ~7,000× on the mitochondrial genome. Average 

sequencing coverage was then leveraged to estimate the mitochondrial DNA copy number (mtDNAcn) 

across all samples (Supplementary Note 1, Table S1A)49. To identify and classify mtDNA variants in 

pediatric samples, we mapped reads to the mitochondrial genome by using a stringent computational 

pipeline with a conservative mutation-calling threshold (Figure S1A), as was used for adult samples 

from The Cancer Genome Atlas (TCGA)10. This strategy minimized the risk of potential false-positive 
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calls associated with nuclear sequences of mitochondrial origin (i.e., nuclear mtDNA sequences)50 

(Figure S1B).  

Among the 616 paired samples that passed all quality-control (QC) thresholds, we identified 

18,372 mtDNA single-nucleotide variants (SNVs) (Table S1B). These were sorted into the following 

four SNV classes based on the VAF in the tumor and germline samples (Figures 1A and S1C): (1) 

stably inherited (INH) mtDNA SNVs; (2) TU mtDNA variants, which were present in 38.1% of the 

samples in our cohort (Supplementary Note 2); (3) mtDNA SNVs that were heteroplasmic in the 

germline samples (GH); and (4) heteroplasmic variants that were shared (SH) between the tumor and 

the germline samples. The de novo mtDNA mutations (TU, GH, and SH) represent three classes of 

SNVs acquired during development or transformation51 that can be compared.  

We then examined the class-specific distributions of mtDNA SNVs across the mitochondrial 

genome and by major tumor groups (i.e., blood, brain, and solid) (Supplementary Note 3) and 

compared the mutational signatures among the SNV classes (Supplementary Note 4). These initial 

results were consistent with TU SNVs being under different selection pressures than the other SNV 

classes (Supplementary Note 4). 

 

RNAseq approximates mtDNA VAF calls from WGS 

RNA sequencing (RNAseq) data were available for a subset of tumor samples that passed our QC 

thresholds (303/616) and were used to validate our mtDNA variant–calling pipeline. Using a sequencing 

depth criterion of ≥100 reads, we found that allelic RNA expression ratios (i.e., RNA VAFs) for mtDNA-

encoded genes were highly concordant with their DNA analogs: only 0.7% (61/8,732) variants showed 

differences of >15% between RNA and DNA VAFs (Figure 1B and Supplementary Note 5). Among 

variants with discordant allelic fractions, 82% (50/61) had lower RNA VAFs and were predominantly 

INH variants (Figure 1B and Supplementary Note 5). Thus, the high concordance between WGS and 

RNAseq VAF estimates for de novo mtDNA variants validated our variant-calling approach. 
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TU SNVs predicted to be pathogenic exist at low levels of heteroplasmy in bulk tumor samples  

To assess the potential functional significance of de novo mtDNA variants, we first surveyed the 

evolutionary conservation scores of RNA- and protein-coding variants across all mitochondrial SNVs52 

(Figure 1C). TU variants had significantly higher conservation scores (median, 93.3%) than the other 

SNV classes, including INH (median, 71.1%; P = 9.10 × 10-12, Wilcoxon rank sum test), GH (median, 

78.9%; P = 0.004), and SH (median, 0.7110; P = 0.06), suggesting a greater predilection for pathogenic 

mutations among the TU SNVs53. When we integrated conservation scores with predicted functional 

impact, all four SNV classes exhibited peaks of highly conserved variants; however, only the TU SNV 

peak was enriched with variants predicted to be pathogenic (Figure 1D).  

Next, we performed bootstrap analyses with subject-level resampling to explore whether the de 

novo mtDNA SNV classes exhibited differences in predicted impact and/or population frequency. We 

found that the mtDNA variants predicted to be pathogenic were significantly overrepresented among 

TU SNVs (bootstrap P <0.0001) but significantly underrepresented among the GH (bootstrap P 

<0.0001) and SH (bootstrap P <0.0001) SNVs (Figure 1E). Conversely, substitutions within the D-loop 

(a noncoding control region) and variants predicted to be benign were significantly enriched among the 

GH (P <0.0001, P = 0.0006) and SH (P = 0.0098, P = 0.0176) SNVs but significantly underrepresented 

among those in the TU group (P <0.0001 for both) (Figure 1E). In terms of population frequency, we 

found that whereas ~82% of the INH variants (n = 14,495) were common variants (MitoMap frequency 

>1%), more than 90% of the TU variants (n = 283) were rarely observed (MitoMap52 frequency <0.1%) 

(Figure 1F). Integration of TU VAF distribution with population frequency and predicted impact 

tabulations revealed that most rare, functionally impactful variants in the TU class existed at VAFs of 

less than 0.25 (Figure 1G).  

The relatively high proportion of pathogenic variants in the TU class was expected, given the 

mtDNA mutational signature, which suggests replication errors as a source of the mutations10,54,55. 

However, assuming that the source of mutations is the same for de novo and inherited variants10, the 

differences in the prevalence of benign vs. pathogenic mtDNA variants between the TU variants and 
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the INH, GH, and SH variants suggested that different classes are under different constraints or 

selective pressures; namely, negative selection against pathogenic mtDNA mutations in nontumor cells 

and relaxation of this negative selection in tumor cells. This notion is also supported by a comparison of 

the mutational signatures among the different classes of de novo mtDNA variants (Supplementary 

Note 4).  

Another way to ascertain selection pressure is to determine whether the ratio of 

nonsynonymous-to-synonymous substitutions (dN/dS) is greater than (positive selection) or less than 

(negative selection) neutrality56,57. Taking into consideration the mutational signature associated with 

mtDNA mutations, the calculated dN/dS40 was lower than the expected neutrality ratio among the INH, 

GH, and SH mtDNA variants (Figure S2A); however, it was higher than expected among TU variants in 

specific tumor subtypes (Figure S2B), including two B-cell acute lymphoblastic leukemia (B-ALL) 

subtypes (i.e., ETV6–RUNX1+ B-ALL and E2A/TCF3–PBX1+ B-ALL). Consistent with the dN/dS 

analyses performed on the pediatric tumor subtypes, the proportion of TU variants predicted to be 

pathogenic was significantly (bootstrap P = 0.028) higher in certain hematological malignancies (e.g., 

E2A/TCF3–PBX1+ B-ALL and DUX4r) as compared to other tumor types (Figure 1H, Figure S2C, and 

Supplementary Note 6). In contrast, lymphomas had the lowest dN/dS among adult cancers (Figure 

S2D). Collectively, these results suggest that unlike those in adult populations, pathogenic mutations in 

children are positively selected during the development of lymphoid malignancies and therefore may 

contribute to pathogenesis.  

Using bootstrap analysis again, we next compared the cumulative VAF distributions between 

nonsynonymous and synonymous SNVs among pediatric and adult tumor samples. Among pediatric 

samples we noted a clear difference in cumulative VAFs between nonsynonymous and synonymous 

SNVs, which was most pronounced among hematological malignancies (Figure 1I-J and Figure S2E). 

By contrast, we observed overlapping profiles between synonymous and nonsynonymous SNVs in 

adult tumors (from TCMA, The Cancer Mitochondrial Atlas),41,58 including hematological malignancies 

(Figure 1I-J, lower panel; and Figure S2E). These results suggest that synonymous and 
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nonsynonymous TU mtDNA SNVs in pediatric leukemias are subject to different selective pressures 

that may restrict their accumulation to varying degrees. 

 

Pathogenic TU variants accumulate to intermediate levels in subsets of cells  

Bulk WGS estimates the overall burden of mutated mtDNA across a population of cells but fails to 

indicate the extent of VAF heterogeneity within individual cells – for example, populations in which all 

cells have a uniform VAF and populations with uneven VAF distributions may have the same average 

VAF by bulk WGS. Discerning between these two scenarios is crucial, as the cellular consequences 

and clinical phenotypes associated with pathogenic mtDNA mutations vary in a VAF-dependent 

manner14,18,24,29,59. Moreover, knowledge regarding the VAFs in individual cells may also clarify which 

selective pressures are at play. Therefore, using the C1 microfluidics-based platform (Fluidigm), we first 

explored whether single-cell mtDNA sequencing (sc-mtDNAseq) could capture the VAF distribution of 

established pathogenic mtDNA variants among individual leukemic cells. 

To this end, we selected a B-ALL sample (MLL-rearranged infant leukemia, INF010), which 

based on our WGS analyses harbored a TU m.3243A>G mutation that has been observed in several 

adult tumor samples60-63 (Supplementary Note 2). When maternally inherited, this mutation can cause 

MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes 

syndrome)13,64,65 and other primary mitochondrial disorders13,31,66-69, with compromised respiratory 

function and reduced OXPHOS being well-documented consequences of the mutation24,70-72. The 

INF010 sample also harbored a second TU mtDNA variant (m.72T>C), which is a recurrent D-loop 

variant seen in the PCGP and adult TCMA41,58 cohorts (Supplementary Note 2, and Table S1C) and in 

various noncancerous adult tissues73. 

Our sc-mtDNAseq analyses revealed several differences between the VAF distributions of the 

two TU SNVs and other de novo mtDNA variants (i.e., 1 SH variant and 1 GH variant) identified in this 

B-ALL sample (Figure 2A, Table S1D, and Supplementary Note 7). Unlike the SH variant 

(m.4674A>G MT-ND2, bulk VAF=0.266), which was consistently present in all 19 cells at low allele 
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fractions (interquartile range [IQR] = 0.053-0.248 VAF), the two TU variants were present at higher 

VAFs but only in subsets of leukemic cells (Figure2A), suggesting that the SH and TU variants are 

under different selective pressures. Additionally, there were subtle differences in the VAF distributions 

between the two TU mtDNA variants. For example, sc-mtDNAseq detected the m.72T>C mutation (bulk 

VAF = 0.124) at high heteroplasmy levels among 5 of 19 blasts (0.55-0.93 VAF), and the m.3243A>G 

mutation (bulk VAF = 0.222) in 11 of 19 blasts at intermediate levels of heteroplasmy (0.20-0.70 VAF). 

Prior studies using cybrids demonstrated that the m.3243A>G mtDNA mutation not only impairs 

OXPHOS at VAFs >0.50 but also influences epigenetic marks and nuclear gene expression at VAFs as 

low as 0.2024. Thus, our sc-mtDNAseq results demonstrate that within individual leukemic cells, 

pathogenic variants can accumulate to intermediate levels at which they are predicted, based on data 

from cybrids24, to reduce (but not abolish) OXPHOS and incite compensatory cellular responses. In 

contrast, certain variants in the regulatory D-loop region may reach higher heteroplasmic levels due to 

the mtDNA replicative advantage that they confer74,75. 

 

The expansion or loss of TU mtDNA variants contributes to subclonal diversity 

In the INF010 sample, the two TU variants were distributed among a mutually exclusive subset of cells 

(Figure 2A, right panel), suggesting that the variants were acquired at different times during 

leukemogenesis and/or in distinct populations of leukemic cells. Thus, we next explored whether we 

could determine the timing of mtDNA mutation acquisition in a leukemic sample. Here, we leveraged 

data from a prior scDNAseq study that inferred the subclonal architecture of an ETV6–RUNX1+ ALL 

sample (ETV027) based on mutational cluster analysis of nuclear DNA-encoded variants sequenced 

from individual cells76. As previously described, this mutational cluster analysis identified two 

populations that arose from a common ancestral clone harboring the ETV6–RUNX1 translocation76 

(Figure 2B). Our re-analysis of the bulk WGS data revealed that this sample harbored the TU mutation 

m.15171G>A (VAF = 0.227). This mutation, which has been reported in adult tumors (Supplementary 

Note 2), occurs in the gene that encodes cytochrome b (MT-CYB) and results in a p.G142E 
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substitution. Functionally, the mutation is predicted to disrupt ubiquinol ligand binding within the 

catalytic machinery of the cytochrome bc1 complex (complex III)77-79 and impair its activity80 as a 

consequence of increased hydration and reduced pocket volume at the ligand-binding site 

(Supplementary Note 8). Seeking to determine the allele fraction of the m.15171G>A mutation, we 

performed whole-mtDNA genome amplification and sequencing using DNA from a small subset of 

single cells (based on available material) whose clonal membership (i.e., ancestral clone, subclone 1, 

subclone 2) was previously established in the ETV027 sample76. The sc-mtDNAseq data were then 

used to calculate the VAF of the m.15171G>A mutation in individual leukemic blasts (Table S1E). 

Again, as observed with the m.3243A>G mutation in INF010, a subset of blasts (42%) harbored the 

m.15171G>A mutation at an intermediate VAF range (0.537-0.803; Figure 2B)––levels that are 

predicted to affect complex III activity27.  

Grouping the re-sequenced blasts based on clonal membership revealed only one cell with the 

nuclear mutational signature of the ancestral clone. This cell harbored the mtDNA mutation at an allele 

fraction of 0.537 (Figure 2B). We also observed a difference in partitioning of the m.15171G>A 

mutation between the two derivative clones, with elevated VAFs in most of the cells in the first clone 

and complete elimination of the variant from the second clone. Given the low sampling of the ancestral 

clone, we cannot exclude the possibility that the mtDNA mutation was acquired within this population. 

Nevertheless, in the context of clonal evolution, these results suggest that the acquisition or expansion 

of TU mtDNA mutations can occur early in leukemogenesis. Moreover, the differential co-segregation of 

pathogenic mtDNA mutations in leukemic cells with related, but distinct, leukemia-associated nuclear 

genomes raises the possibility that the accrual of certain mtDNA mutations influences or is influenced 

by clonal evolution. 

 

Detecting mtDNA VAFs by scRNAseq  

Our results suggest that pathogenic variants can accumulate to levels at which, based on prior 

studies24,27,32,81-83, they could incite cellular responses. Since estimates of the mtDNA VAFs were highly 
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concordant between RNAseq and WGS, we next sought to determine whether single-cell RNA 

sequencing (scRNAseq) could be used to simultaneously estimate mtDNA VAF distributions in larger 

populations of cells and capture cell-state changes associated with pathogenic TU mtDNA variants in 

primary leukemic blasts.  

Three B-ALL tumor samples harboring the t(1;19)(q23;p13) translocation (E2A–PBX1+)84 were 

selected for scRNAseq based on WGS results, which highlighted this subtype’s propensity for 

harboring one or more potentially pathogenic TU mtDNA mutations within a single sample (Figure 1H). 

Samples were chosen based on whether their mtDNA variants of interest were within the range of 

coverage imposed by the assay [i.e., maximal coverage within 300 bp of the poly(A) tail] 

(Supplementary Note 9). Two of the samples harbored variants reported in adult tumors (m.8172G>A 

and m.11889G>A) and one of them harbored a variant affecting a recurrently targeted amino acid 

(m.15657T>A, I304 MT-CYB) (Supplementary Note 2). After passing standard QC thresholds, which 

excluded cells with high mtDNA unique molecular identifiers (UMIs) (Table S2A), more than 1,500 cells 

(range: 1,591-2,622) from each of the three diagnostic B-ALL samples (E2A037, E2A015, E2A025) 

were analyzed. Based on the expression of nuclear-encoded RNA transcripts, individual cells from 

each sample were partitioned into transcriptionally distinct clusters and annotated with common lineage 

markers to distinguish leukemic blasts from residual normal hematopoietic elements present in the 

diagnostic sample (Figures S3A-B, S4A-B, and S5A-B). Blasts comprised ≥85% of cells in all 

samples, consistent with the flow cytometry–based enumeration of blasts at diagnosis (Table S2A). 

A critical component of our downstream analyses was the ability to detect mtDNA variants 

previously identified by WGS. As exemplified by sample E2A037, which harbored two TU variants (i.e., 

m.11865T>C and m.8172G>A), UMIs covering each of the variant locations were detected in >97% of 

cells (IQR: 8-16 UMIs/cell for m.11865, and 13-30 UMIs/cell for m.8172), giving us high confidence in 

VAF assignments (Figure S3C-D, and Table S2B). Comparable coverage was observed for the 

m.15657T>A (E2A025; IQR, 3-10 UMIs/cell) and m.11889G>A (E2A015; IQR, 12-26 UMIs/cell) TU 

mtDNA variants present in the two remaining E2A–PBX1+ samples (Figures S4C, S5C, and Tables 
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S2C-D). The m.1200G>A variant in sample E2A015 showed less coverage (IQR, 2-5 UMIs/cell) using 

the 10× sc-RNAseq strategy, but this was not unexpected given its position in the mitochondrial 

genome (Figure S5D).  

Next, we projected the mtDNA VAFs and coverage onto the clusters of cells established by the 

initial t-distributed stochastic neighbor-embedding (tSNE) plots (Figure 3A-D, left panels and Figure 

S5E). These analyses showed the expected enrichment of TU variants (e.g., m.8172G>A and 

m.11865T>C in E2A037) among the blasts, as compared to normal cell populations (Figure 3A-D, 

middle panel and Figure S5F). Nevertheless, the presence of TU mtDNA variants in small populations 

of non-blast hematopoietic cells (i.e., T-cells, monocytes, or erythroid cells) suggests that leukemia-

initiating hematopoietic stem/progenitor cells acquired the relevant somatic mtDNA mutation(s) either 

before or during the initiation of malignant transformation, such that derivatives of the cell could still 

differentiate into mature hematopoietic lineages. We also noted that the m.1200G>A and m.11889G>A 

mutations did not coexist in blasts from the E2A015 sample (Figure S5G), but 78% of blasts from the 

E2A037 sample harbored both TU mtDNA variants (m.8172G>A and m.11865T>C; Figure S3E).  

 

scRNAseq reveals mtDNA variant–specific changes in the expression of nuclear DNA–encoded 

genes 

After establishing a robust method for calling mtDNA VAFs at the single-cell level, and since pathogenic 

mtDNA mutations can influence transcriptional programs at VAFs as low as 20%24,32, we next 

compared differential gene expression patterns in leukemic blasts harboring TU mtDNA mutations 

(alternate UMI ≥20%) and those with WT mtDNA (reference UMI ≥5; alternate UMI = 0%) (Tables S2E-

I). We did not detect any significant changes in gene expression associated with the m.11865T>C 

variant in sample E2A037, despite the moderate functional impact that was predicted (Mutation 

Assessor score, 3.06) for this p.L369S substitution within MT-ND4 (i.e., NADH: ubiquinone 

oxidoreductase, core subunit 4 of complex I) (Figure 3A, right panel). In contrast, we identified several 

genes whose expression was altered in leukemic cells harboring the m.8172G>A variant in MT-CO2, 
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which encodes the second subunit of cytochrome c oxidase (COX; i.e., complex IV) (Figure 3B, right 

panel and Table S2F). A greater number of differentially expressed genes was identified in leukemic 

cells harboring the m.15657T>A (E2A025) variant that resides within MT-CYB (Figure 3C, right panel, 

and Table S2G). Variant-specific associations with gene expression were also evident within the 

E2A015 sample; in this case, the m.11889G>A variant (in MT-ND4) demonstrated the greatest number 

of significant gene expression changes among all TU mtDNA variants that were studied (Figure 3D, 

right panel, and Table S2H). Meanwhile, minimal changes in gene expression were detected in 

association with the m.1200G>A variant in MT-RNR1 (Table S2I), perhaps because of the small 

number of cells harboring the variant.   

Genes implicated in mitochondrial function and/or metabolism were among the most 

differentially expressed genes in leukemic cells from individual samples harboring WT or mutated 

mtDNA. For example, in blasts harboring the m.8172G>A MT-CO2 variant, the gene CHCHD2 (aka 

MNRR1) was dysregulated, as determined by negative binomial regression (false-discovery rate [FDR]-

adjusted P = 4.01 × 10-11) and permutation-based testing (Figure 3A, right panel and Table S2F). This 

observation is interesting, given that CHCHD2 encodes a protein that engages with COX and can 

translocate from the mitochondria to the nucleus during stress85. The negative correlation between 

CHCHD2 expression and increasing heteroplasmy of the m.8172G>A variant (Figure S3F) is also 

reminiscent of the decreased CHCHD2 expression reported in cybrid cell lines harboring the 

pathogenic m.3243A>G mutation86. As a result of the m.8172G>A mutation, a cysteine-to-tyrosine 

substitution occurs at position 196 (p.C196Y) that is predicted to disrupt copper binding (Figure S3G), 

which is required for the catalytic activity and maturation of COX87,88. To test whether disruption of COX 

activity due to copper displacement reduces CHCHD2 expression, we treated a B-ALL cell line with 

increasing concentrations of ATN-224 (bis-choline tetrathiomolybdate), a high-affinity copper chelator 

that inhibits complex IV function89. After 24 h of ATN-224 treatment, we observed a significant (P = 

0.024, ANOVA) dose-dependent decrease in CHCHD2 mRNA (Figure S3H).  

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 27, 2024. ; https://doi.org/10.1101/2024.09.26.24314381doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.26.24314381


17 
 

The m.15657T>A variant in MT-CYB replaces a hydrophobic isoleucine with a polar asparagine 

at position 304 in helix F, which is predicted to disrupt a network of hydrophobic interactions with 

surrounding residues from connecting helices. The mutation may also de-stabilize the protein, or––

since helix F forms the entrance to the Qo site––affect ligand entry (Figure S4D). Similar to what was 

reported for the disease-causing m.3243A>G mutation24, the m.15657T>A variant was associated with 

dysregulation of chaperone-encoding genes (Figure 3C, right panel, and Table S2G), many of which 

have been implicated in mitochondrial maintenance and function. For example, HSP90AA1 and HSPA8 

encode HS90A and HSP7C, respectively, and are implicated in mitochondrial pre-protein import90. 

HSPA1A encodes HSP72, which translocates to depolarized mitochondria and is essential for proper 

function of Parkin, an E3 ubiquitin ligase involved in mitophagy91,92. HSPB1 encodes the chaperone 

HSP27, which has been implicated in mitochondrial QC93. Thus, the reduced expression of HSP genes 

associated with the presence of m.15657T>A (Figure 3C, right panel) may constitute a compensatory 

response in which complex III dysfunction reduces mitophagy levels to increase mitochondrial content. 

In the case of the E2A015 sample, the m.11889G>A variant was associated with significant (P 

< 10-5) changes in the expression of many nuclear DNA–encoded genes, including upregulation of 

genes encoding ribosomal proteins (e.g., RPL7, RPS20, RPL37, RPS23, RPS14, RPL8, RPL30) and 

those involved in targeted translational programs and accelerated protein synthesis (EIF3E, NPM1)94-99, 

mitigation of oxidative stress (MTX1, NPM1)100-104, and subversion of stress-induced apoptotic signaling 

(NPM1)104-106 (Figure 3D, right panel, and Table S2H). Induction of EIF3E was particularly intriguing, as 

its gene product enhances the synthesis of proteins with membrane-associated functions, including 

ETC components, and is critical for preserving mitochondrial function107,108. Further investigation of the 

relationship between EIF3E expression and increasing m.11889G>A levels revealed a positive 

correlation (Figure S5H), suggesting that m.11889G>A heteroplasmy alters MT-ND4 function and 

triggers a compensatory EIF3E response to regulate cellular respiratory activities107,108. Of note, the 

m.11889G>A variant results in a p.G377E substitution that may profoundly affect MT-ND4 function 

(Mutation Assessor score, 4.81) as the G377 residue is located within a discontinuous helix (Figure 
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S5I) that forms a hydrophobic, protein–protein interface between MT-ND4 and MT-ND5 (NADH: 

ubiquinone oxidoreductase core subunit 5, complex I)109. Inward-facing residues, such as G377, tilt the 

lower half of the discontinuous ND4 helix at an angle so that helix–helix packing is favored; thus, the 

inability to place the charged glutamate (E377) residue in the required inward-facing conformation most 

likely disrupts helix packing. Together, these results highlight variant-specific changes in the expression 

of nuclear DNA-encoded genes associated with tumor-enriched mtDNA variants, affecting both the 

identity and the number of genes impacted. 

 

Statistical modeling suggests that selective pressures shape mtDNA VAF distributions in a 

variant-specific manner 

We aimed to determine whether mtDNA variant-associated changes in gene expression were sufficient 

to influence cell state. We hypothesized that if these changes impacted cell state in ways that were 

either beneficial or detrimental to leukemia development, the variants would be subjected to positive or 

negative selection. Conversely, if the mtDNA mutations were functionally inert, we would expect no 

evidence of selection. To test this hypothesis, we developed Mitovolve, a statistical model that utilizes 

single-cell sequencing data to infer the evolutionary history of somatic mtDNA mutations.  

Mitovolve assumes that an initiating leukemic cell has a fixed mtDNA copy number (derived 

from its WGS estimate) with initial VAFs (iVAF) ranging from 0 to 1.0. The probability distribution of 

mutant mitochondrial genomes in each daughter cell is sampled from a pool of duplicated mitochondrial 

genomes within the parent cell, a process reiterated for each successive generation of daughter cells 

(Figure S6A-C). Hypergeometric sampling is used for models without selection, whereas selection 

models sample a noncentral hypergeometric distribution with the log odds ratio (logOR) of selecting a 

mutant mtDNA defined as a cubic polynomial function of the VAF110,111. Given these initial parameters, 

the model (i.e., favoring either homoplasmic or heteroplasmic accumulation of mutant mtDNA, or no 

selection) that ultimately best fits the observed data can be identified. 
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For each of the four mutations shown in Figure 3, we first evaluated 30,351 – 62,913 selection-

free models per variant (fixed mtDNAcn; iVAFs: 0.01-1 in increments of 1/mtDNAcn; generations: 0-

200). The limit of 200 generations was determined empirically to capture the best selection-free model 

for each variant.  Using our scRNAseq UMI-count data, we calculated the probability distribution and 

the negative log-likelihood (nLL) for each selection-free model112 and identified the best fit model with 

the minimum nLL. Since our null hypothesis assumed no selection, the best fit selection-free model was 

p.null ~ 1. We expanded our analysis to include models that were not significantly different from this 

best fit model (p.null > 0.05) to yield a narrow range of models that closely approximated the observed 

data (Table S2J and Figure S6D). Next, unique starting parameters (i.e., iVAF and generation number) 

from each of these top selection-free models were used to perform selective pressure modeling. This 

allowed us to identify the selection beta coefficients associated with each best-fit selection model 

(Table S2J). Likelihood ratio testing was then utilized to identify which (if any) of the best-fit selection 

models outperformed the best-fit selection-free model (p <0.05) (Table S2J).  

To visualize the nature of the selective pressures that may be shaping the observed VAF 

distributions for each of our variants, we generated plots for each variant showing the logOR cubic 

function for each of the best fit selection models (Figure 4A-C, top panel; 4D, left panel). Lines 

depicting each model were color-coded based on p-values (p.alt) and illustrate the first notable 

difference among the variants – that with the exception of the m.11865T>C variant (p >0.07), all variant 

models with selection were predicted to fit the observed data better than their respective best selection-

free models (p < 4.6x10-5 for m.8172G>A; p <1. 06x10-22 for m.15657T>C; p <2.89x10-19 for 

m.11889G>A (Figure 4A-C, top panel; 4D, left panel). Although the magnitude and direction of the 

selection pressure predicted by the models can vary with different starting parameters (i.e., iVAF and 

number of generations; Table S2K), using the starting parameters from the top selection-free models 

(Table S2J), there were appreciable variant-specific differences in the logOR. With the exception of 

m.11865T>C, the plots suggest that the variants accumulate to intermediate VAF levels and then 

undergo negative selection at higher VAFs.  
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We next generated smoothened histograms of the inferred frequency of cells with increasing 

VAFs (adjusted based on UMI counts) to compare the best-fit selection model with the lowest p-value 

(p.alt) to the best-fit selection-free model with the highest p-value (p.null) and to the observed data 

(Figure 4A-C, bottom panel; 4D, middle and right panels). Here, we find that the models with selection 

fit the observed data better than the best selection-free model for all variants except for the 

m.11865T>C variant, where the lines were virtually indistinguishable. Finally, using the most significant 

p.alt-value as an indication of the likelihood that selection played a role in shaping the VAF distribution, 

we found a positive relationship between the number of differentially expressed genes (FDR ≥ 0.05) 

associated with each variant and the degree of support for its best selection model (Figure 4E). Thus, 

combining the evidence for selection with variant-associated gene expression changes may provide a 

means of distinguishing somatic mtDNA mutations that are likely to affect cellular function and/or 

growth properties (e.g., m.11889G>A) from those that are functionally inert (i.e., m.11865T>C).  

 

NetBID identifies hidden drivers and pathways associated with pathogenic mtDNA variants 

We next further investigated the cell state changes associated with the three mtDNA mutations for 

which there was evidence of selection. To do this, we turned back to the expression data and 

addressed a common issue with single-cell transcriptomic data-  the inconsistent or lost expression 

(i.e., “dropout”) of transcripts in cells113. Moreover, many signaling proteins and transcription factors that 

dictate cellular function are not differentially expressed at the mRNA level but are instead regulated by 

posttranslational or other modifications. Therefore, changes in their activities may be “hidden” by using 

conventional gene expression profiling approaches. To recover information about cell state despite lost 

transcripts and in recognition that important biological activities are often driven by “hidden” drivers, we 

deployed a network-based, systems biology approach, (i.e. Network-based Bayesian inference of 

drivers, or NetBID)114 to infer changes in the activity levels of these drivers in cells harboring somatic 

mtDNA variants.  
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For each TU mtDNA variant with significant (FDR <0.05) changes in gene expression (i.e., 

m.8172G>A, m.11889G>A, or m.15657T>A), blasts were dichotomized as being either mutant 

(alternate UMI ≥20%) or WT (reference UMI ≥5%. alternate UMI = 0%). Next, we used SJARACNe 

(v.0.2.1), an information theory–based algorithm for gene network reverse engineering115, to reconstruct 

a B-ALL–specific network of interactions between hub genes (1,643 transcription factors and 6,247 

signaling factors) and their downstream targets from the bulk RNAseq-derived transciptomes of 185 

pediatric B-ALL cases (TARGET cohort)116. The expression-based interactome encompassed 21,659 

genes and 830,215 interactions, which were weighted based on the strength of the interaction between 

each hub-target pair117. The scRNAseq datasets were then projected onto the SJARACNe B-ALL 

network, and the activity of each hub gene in each cell was inferred based on the aggregate weighted 

expression of its targets117. Using NetBID’s Bayesian linear–modeling function on blasts within each 

sample that harbored WT or mutant mtDNA, we then calculated differential activity (DA) scores and 

identified genes with significantly (P <10-5) higher or lower activities in mutant vs. WT cells (Figure 5A). 

In accordance with our single-cell gene expression studies, cells harboring the m.11889G>A 

mutation had the most extensive portfolio of altered gene activities, many of which would not have been 

predicted based on gene expression alone (Figure 5B-D, Figure S6A and Table S2L). We observed 

significant mtDNA mutation–associated and VAF-dependent increases in the DA scores of many 

drivers (PPA1, TEAD4, ACOT7, NPM1, AHCY, and PRDX6). GABRR1, a γ-aminobutyric acid (GABA) 

rho-subunit receptor implicated in regulating hematopoiesis118,119, was among the drivers with 

significantly reduced activity (Figure 5B and Figure S6B). Many genes whose activities were altered in 

cells harboring the m.11889G>A mutation (e.g., ACOT7, AHCY, NPM1, GABRR1) were also 

dysregulated in cells harboring the m.15657 T>A mutation (E2A025), but in the opposite directions 

(Figure 5C). Similarly, there were several genes (e.g., FUT9, KL) whose activities were differentially 

altered in cells with the m.8172 G>A (E2A037 sample, downregulated) or m.15657 T>A (upregulated) 

mutations (Figure 5C-D). KL encodes the single-pass transmembrane protein Klotho, which inhibits the 

PI3K–AKT pathway, among others120. Additionally, Klotho protects normal cells from oxidative stress 
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but alters the metabolism of cancer cells (i.e., it inhibits glycolysis and reduces mitochondrial activity 

and membrane potential), thereby inhibiting their growth121. Klotho also increases the efficacy of certain 

types of chemotherapy122. Thus, changes in Klotho activity associated with certain TU mtDNA 

mutations may influence the growth and/or response to chemotherapy of subpopulations of cells.  

We next performed gene set/pathway enrichment analyses on driver genes associated with the 

relevant TU mtDNA mutations (i.e., m.8172G>A, m.11889G>A, m.15657T>A, Table S2M). As a point 

of comparison, we also performed gene set/pathway enrichment analyses on driver genes associated 

with m.3243A>G mutation in cybrids with either increasing levels of heteroplasmy or lacking mtDNA 

(Rho0) (Table S2N). Results from the m.11889G>A mutation analyses suggested significant (P <10-5) 

dysregulation of numerous cellular programs, including the upregulation of gene networks associated 

with mitosis (AURKB targets)123, proliferation (MYC targets V1)124, cytokinesis125,126, and protein 

synthesis (cytosolic tRNA aminoacylation)127-129 (Figure 5E and Tables S2M, S2O-P). Many of the 

constituent members of these networks are components of the DREAM complex, a master regulator of 

cell cycle progression (DREAM targets)130 that works with E2F-bound targets 131 to coordinate periodic 

expression of genes among cycling cells132. In addition to the deregulation of cell cycle genes, the 

profile of gene activities associated with the m.11889G>A mutation had features similar to those 

typically observed in aggressive malignancies (e.g., thyroid cancer poor survival [UP, upregulated 

genes])133, and those with poor response to therapy (vincristine-resistant B-ALL [DN, downregulated 

genes]134, ALL glucocorticoid therapy DN135). Notably, many of the most differentially activated drivers 

in cells harboring the m.11889G>A mutation were members of the ALL glucocorticoid therapy DN gene 

set135 (FigureS6C), comprising genes that are typically downregulated in ALL samples in response to 

glucocorticoid treatment but are upregulated in glucocorticoid-resistant blasts (Supplementary Note 10 

and Tables S2Q-R).  

A comparison of selected pathway analysis results revealed that the enrichment of differentially 

activated drivers involved in glucocorticoid resistance was not a universal feature of the variants. We 

found only a modest upregulation in cells with the m.8172G>A variant (E2A037) and downregulation in 
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cells with the m.15657T>A variant (E2A025) (Figure 5F, Table S2M, and Supplementary Note 10). 

Similarly, robust induction of mTORC1 (mTOR complex 1) signaling and associated anabolic programs 

(fatty acid metabolism, amino acid activation, tRNA acetylation) were more strongly associated with the 

MT-ND4 variant than the other two variants (Figure 5E-F, Table S2M). MYC target genes, including 

those involved in glycolysis, were also enriched in blasts harboring either the m.11889G>A (MT-ND4) 

or m.8172G>A (MT-CO2) variant; however, only the MT-ND4 mutation demonstrated a simultaneous 

increase in OXPHOS. Notably, the simultaneous activation of mTOR, MYC, OXPHOS, and glycolysis 

were also features of the proliferative metabolic phenotype seen in ALL cell lines and patients whose 

disease was characterized as glucocorticoid resistant136. Downregulation of innate immunoregulatory 

pathways and upregulation of pathways related to growth and proliferation were also associated with 

the m.11889G>A (MT-ND4) and m.8172G>A (MT-CO2) variants, but those pathways were inversely 

affected by the m.15657 T>A (MT-CYB) variant. Another notable difference associated exclusively with 

the m.15657 T>A variant was the upregulation of genes typically downregulated in B-ALL samples 

resistant to vincristine.  

Together, these findings highlight potential differences in cellular responses (including pathways 

involved in cell proliferation, innate immunity, and sensitivity to chemotherapy) associated with the TU 

mtDNA mutations at physiologically relevant levels of heteroplasmy. Although the TU mutations were 

each associated with a unique constellation of changes, the magnitude and types of changes 

associated with these mtDNA mutations were comparable to those associated with the m.3243A>G in 

cybrids with 60%-90% heteroplasmy (Figure 5F). 

 

Characterization of TU mtDNA variants in relapsed ALL 

Considering that certain somatic mtDNA variants underwent expansion in leukemic blasts, co-

segregated with distinct subclonal leukemia genomes, and exerted changes in transcriptional programs 

that may support oncogenic processes and/or alter sensitivity to therapy, we next examined the fate of 

somatic mtDNA mutations in the context of recurrent acute leukemia. Towards this end, we collated 
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WGS data from 123 matching diagnosis, relapse, and germline (i.e., tumor-free) samples obtained from 

two published cohorts of pediatric patients with ALL (Shanghai Children’s Medical Center ALL-2005 

frontline treatment protocol137 and St. Jude Total Therapy studies XI-XVI138). We used a modified 

analysis pipeline that integrated information across trios (Methods and Table S1F) and stringent QC 

processes that eliminated 35 samples, resulting in a total of 3,031 mtDNA SNVs detected among the 

remaining 88 (70 B-ALL and 17 T-ALL) relapsed sample trios (Table S1G). Of these, we identified 108 

TU mutations (i.e., present in the diagnosis and/or relapse samples but not in the germline sample) in 

56 (64%) of the trios.  

TU SNVs were further stratified according to whether variants were present only at diagnosis 

(“lost” in relapse), were maintained from diagnosis to relapse (“persistent”), or were present only at 

relapse (“gained”). Based on this classification schema, ~60% of TU SNVs were lost (Figure 6A), and 

most (63%) were nonsynonymous mutations (Table S1G). Although the VAFs of the lost TU SNVs 

were often lower than the persistent TU SNVs (Figure 6B), the higher-than-expected dN/dS among lost 

SNVs (Figure 6C) suggests that these mtDNA mutations not only mark a minor clone with increased 

sensitivity to chemotherapy but also have the potential to contribute to the treatment response139-141. 

Among the lost variants, we also found a m.15657T>C mutation, which results in the substitution of the 

hydrophobic isoleucine at position 304 of MT-CYB with a polar amino acid (threonine) (Figure 6D). 

Based on our single-cell sequencing data, a similar mutation (m.15657T>A) resulting in the substitution 

of MT-CYB I304 with a polar amino acid (asparagine) was associated with a signature predictive of 

vincristine sensitivity134 (Figure 5F).  

Next, patients were classified based on the composition of the TU variants (if any) that they 

harbored (Figure 6E) and whether there were associations between these classes and time to relapse 

(TTR) (Table S1G). The TTR was significantly shorter among patients who harbored only persistent 

mutations, as compared to those who had only lost mtDNA SNVs (median 307 vs. 436 days; P = 0.023; 

Wilcoxon rank-sum test), those who only gained mtDNA SNVs (median 307 vs, 814 days; P = 0.006; 

Wilcoxon rank-sum test), or harbored a mixture of TU variants (median 307 vs 714 days; P = 0.023; 
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Wilcoxon rank-sum test) (Figure 6F). Similarly, we found that the TTR among patients who possessed 

at least one persistent TU SNV was significantly shorter than that of patients harboring only lost or 

gained TU SNVs (median 307 vs. 528 days, P = 0.01; Wilcoxon rank-sum test) (Figure 6G). Patients 

were also categorized into 3 groups according to their clinical risk, which was based on molecular 

subtyping142,143: ETV6–RUNX1, hyperdiploid, and DUX4r B-ALL were considered low risk, and all other 

disease subtypes were considered intermediate/high risk. Although subtype risk group (low vs. 

intermediate/high) was an independent predictor of TTR (P <0.01; Wilcoxon rank-sum test) (Figure 

6H), we detected no interaction between TU variant type and B-ALL risk group (P = 0.520; two-way 

ANOVA). Together, these analyses suggest that certain pathogenic mtDNA mutations present at 

diagnosis undergo negative selection and are eliminated during relapse, while others that persist may 

simply serve as biomarkers of relapse. 

 

Discussion 

Large-scale sequencing studies have facilitated the improved detection of somatic mtDNA mutations 

across diverse tumor subtypes. Despite the growing body of evidence supporting oncogene-driven 

changes in mitochondrial metabolism as drivers of disease, the oncology field has struggled to define 

the contribution of somatic mtDNA mutations to cancer pathophysiology. Here, we address this gap in 

knowledge by presenting conceptual and methodological advances that elucidate the level and 

functionality of somatic mtDNA mutations in pediatric ALL. Our approach involved the development of 

new pipelines for analyzing data from existing WGS datasets and from our own exploratory single-cell 

sequencing experiments. 

First, we demonstrated that pediatric cancers are enriched with mtDNA variants that are distinct 

from other de novo mtDNA variants that arise during normal development. Through a comprehensive 

investigation of population variation, conservation scores, and predicted functional impact, we found 

that TU variants are rare in the general population and are more likely than other de novo variants to 

disrupt protein function. This observation aligns with prior data showing that although mutational origins 
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may be equivalent, pathogenic variants in tumor cells are not subject to the same purifying selective 

pressure that operates in nontumor tissues and contexts (i.e., relaxation of negative selection)9,37-39,144.  

Second, our initial analyses of bulk sequencing data from pediatric malignancies indicated that 

pathogenic mtDNA SNVs tend to exist at relatively low VAFs, consistent with previous reports9,10,40,41. 

However, unlike in adult malignancies, where nonsynonymous and synonymous variants showed 

similar cumulative VAF distribution patterns, nonsynonymous variants in pediatric malignancies 

accrued with greater restriction than their synonymous counterparts. It is plausible that significant 

disruption of OXPHOS in malignant cells harboring high levels of a pathogenic mtDNA mutation 

impedes their proliferation43,145,146, thereby limiting variant accrual in bulk WGS assays. Indeed, the 

application of Mitovolve to data from our single-cell sequencing studies, which provide insights into VAF 

heterogeneity not evident through bulk WGS, suggests that functionally impactful mutations can 

accumulate to intermediate levels before undergoing negative selection at high VAFs. This pleiotropic 

relationship between selection pressure and VAF is not surprising given that mtDNA mutation-

associated alterations in metabolism, transcription and epigenetics also vary in a VAF-dependent 

manner24,29,59,147. Moreover, the positive correlation between the degree of selection and the associated 

gene expression changes suggests that Mitovolve may be used to distinguish functionally impactful 

variants from those that are inert.  

Our results demonstrate the utility of combining scRNAseq with systems-based computational 

biology approaches (e.g., NetBID) to identify cell-state changes associated with somatic mtDNA 

mutations in primary cells. For example, we identified mtDNA mutation-specific changes in the activities 

of pathways related to mTORC1 signaling and energy metabolism (e.g., glycolysis, fatty acid 

metabolism, OXPHOS). As a master regulator, mTORC1 integrates environmental cues with the 

metabolic needs of the cell148, thereby serving as a molecular fulcrum that shifts metabolic activities in 

response to changing bioenergetic and stress-related stimuli. Alterations in mitochondrial function are 

sufficient to provoke such shifts149-152; however, their impact on mTORC1 signaling appears to be 

contingent upon the degree and/or mode of disruption of OXPHOS, as well as the cellular context. For 
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example, pharmaceutical inhibition of ETC components or ATP synthase impairs mTORC1 signaling in 

cell lines149,151, whereas mtDNA deletions in a mouse model of mitochondrial myopathy hyperactivate 

mTORC1 in vivo150. In patient-derived cells and muscle biopsies harboring the pathogenic m.3243A>G 

mutation, increases in PI3K–Akt–mTORC1 pathway activity have been coupled to changes in 

metabolite composition associated with the mutation152. Given that mtDNA integrity and ETC fitness are 

important determinants of mTORC1 function, it is not surprising that the three TU mtDNA mutations of 

interest were all associated with changes in mTORC1 activity. Similarly, as MYC is involved in 

retrograde-signaling pathways, linking mitochondrial function with the expression of genes involved in 

growth, metabolism, and mitochondrial biogenesis153-155, the observed mtDNA mutation–associated 

changes in MYC activity are consistent with alterations in mitochondrial function in leukemic cells 

bearing mtDNA mutations. Only the m.11889G>A variant was associated with dual induction of both 

OXPHOS and glycolytic programs. This metabolic reprogramming, in conjunction with the increased 

MTORC1 and MYC activities, may help to explain the persistence of this mutation at intermediate VAFs 

136,156,157. 

Notably, we observed that the direction and magnitude of expression changes in many common 

genes and associated pathways were inconsistent across the variants studied. Although all genes 

encoded by the mitochondrial genome ultimately impact OXPHOS, these results suggest that different 

mutations and the resulting changes in the structure of mtDNA gene products can elicit distinct types of 

cellular responses. While this variability may be attributed to many causes (e.g., the specific effects of 

different mutations on mitochondrial gene products, varying levels of heteroplasmy, distinct 

compensatory mechanisms activated by cells, interactions between mitochondrial and nuclear 

genomes, and/or differing levels of oxidative stress and ROS production), investigations of additional 

mutations may help to identify groups of mtDNA mutations that are associated with similar changes in 

cell state, which may enable functional categorization of mtDNA mutations. 
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Therapeutic resistance, disease recurrence, and poor prognosis are commonly attributed to 

subclonal variation158. Understanding clonal evolution may depend on our ability to reconstruct the 

subclonal acquisition of nuclear mutations; however, recent studies45-47 have suggested using 

mitochondrial SNVs as stable markers for clonal progression. Here, through sc-mtDNAseq of a sample 

with established clonal architecture76, we determined the clonal trajectory of a TU mtDNA mutation 

(m.15171G>A in MT-CYB) and not only confirmed its early appearance in the ancestral clone but also 

found evidence for its propagation in one of the two clonal derivatives. Given that our scRNAseq 

studies revealed cell-state changes associated with pathogenic TU mtDNA mutations in primary 

leukemic blasts and considering that the m.15171G>A mutation occurs at a highly conserved residue 

that might hinder complex III function, the early enrichment and subsequent loss of this mutation in 

subclones with distinct leukemia genomes suggests that the mtDNA mutation (1) contributed to the 

evolution of the clones and/or (2) affected the fitness of clones throughout therapy and disease 

progression. Therefore, somatic mtDNA mutations may not be merely markers of clonal progression but 

may help shape the divergence of clones (Figure 7A-C). 

In addition, certain TU mtDNA mutations (perhaps a different subset than those promoting 

leukemogenesis) may sensitize leukemic cells to chemotherapy (Figure 7D). In a study that 

investigated the subclonal properties of diagnostic samples collected from patients with relapsed B-

ALL, Dobson et al.159 discovered that, at diagnosis, relapse-fated subclones are uniquely poised to 

survive chemotherapy based on transcriptional alterations related to mTOR activation, stress response, 

and mitochondrial metabolism. Although these same pathways appeared to be upregulated in blasts 

harboring the m.11889G>A mutation, which were predicted to be less sensitive to glucocorticoids than 

their WT counterparts, the small degree of change in prednisone sensitivity may not be sufficient to 

influence disease outcome. In contrast, a mutation at position m.15657T>A (E2A025) was predicted to 

sensitize cells to vincristine; a similar mutation (m.15657T>C, also causing the replacement of I304 in 

MT-CYB by a polar amino acid) was among the lost variants in the relapse cohort. The overall 

decrease in synonymity (elevated dN/dS) among lost variants, compared with that of persistent or 
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gained variants, further supports the notion that certain somatic mtDNA mutations sensitize cells to 

chemotherapy (Figure 7A-D).  

Although the results of dN/dS analyses argue against a major role for persistent or gained 

variants, the TTR study results suggest that they are useful as markers of the relapsed clone (Figure 

7E-F). Additional studies of larger patient cohorts and samples will be needed to determine whether 

there are common cell-state changes associated with lost mtDNA mutations, compared with those of 

persistent or gained mutations. In particular, the repeated occurrence of somatic mtDNA mutations 

impacting the I304 residue among four separate leukemia samples warrants further investigation. 

While it is commonly believed that critical determinants of tumor pathophysiology reside 

primarily within the nuclear genome, we anticipate that single-cell approaches, such as those described 

here, will help shift the focus to the mitochondrial genome. These methods provide a means to stratify 

mtDNA variants based on evidence of selection and associated cell-state changes, thereby 

streamlining strategies to assess their contributions in multiple disease settings. 

 

Methods 

Patient samples and datasets 

WGS datasets for 637 diagnostic pediatric tumors and their matched germline samples, along with 307 

matched RNAseq datasets, were extracted from the PCGP48. Datasets from 123 WGS relapsed 

pediatric ALL samples were collated from 102 Chinese genomes provided by Li et al.137 and from 21 

PCGP genomes provided by Waanders et al.138. The prednisolone-sensitivity prediction (PSP) score 

analysis utilized RNAseq datasets from 161 pediatric patients with newly diagnosed B-ALL (discovery 

cohort) and 179 adult and pediatric patients with B-ALL (validation cohort) provided by Autry et al160. 

Study approval was granted by the St. Jude Institutional Review Board, and informed consent was 

obtained from the parents/guardians of each child. 
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mtDNA WGS analysis 

WGS reads were aligned to the human reference genome build 37 (GRCh37)161 and to the revised 

human mitochondrial reference (NC_012920)162 using Burrows-Wheeler Aligner (BWA) v.0.7.12163. 

Sequencing reads and depths were calculated using SAMtools v.1.2 

(http://samtools.sourceforge.net/)164. Due to the exceedingly high number of mtDNA molecules in each 

cell, the average mtDNA-sequencing depth (7,204×) was considerably higher than the typical 30× 

nuclear genome coverage, which afforded increased confidence in calling lower VAFs. Furthermore, 

WGS coverage availed estimates of the mtDNAcn, which were calculated using mitoCalc49. 

 

mtDNA variant detection and classification 

To align sequence reads, an established “double-alignment” algorithm49 was used to compensate for 

the circular nature of the mitochondrial genome. Variants with >1 read supporting the alternate allele 

were extracted using Bambino165, followed by elimination of variants with <100 read coverage, variants 

that were the product of strand bias (>90% of the mutant-allele–supporting reads from only 1 strand) 

and variants in which <10 reads supported the mutant allele. Variants were then classified according to 

the following criteria (tVAF, tumor VAF; gVAF, germline VAF): 

• INH (inherited): tVAF ≥0.97 AND gVAF ≥0.97 

• TU (tumor-enriched): (tVAF ≥0.03 AND gVAF <0.01) OR (tVAF/gVAF >3) 

• GH (germline heteroplasmy): (gVAF ≥0.03AND tVAF <0.03) OR (tVAF ≥0.97 AND gVAF 

<0.97 AND tVAF/gVAF ≤0.03) 

• SH (shared heteroplasmy): all other SNVs 

SNVs in which both the germline and the tumor VAFs were <0.03 were excluded from further analyses. 

Relapse samples were subjected to the same pipeline (Supplementary Fig. 14) as the PCGP-

paired tumor–germline samples but with an additional paired run (i.e., relapse–germline). The same 
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variant-detection algorithm was also used, with the following modified classifications to account for the 

relapse samples (rVAF, relapse VAF): 

• INH (inherited): tVAF ≥0.97 AND rVAF ≥0. 97 AND gVAF ≥0.97 

• RP (TU, persistent): (tVAF ≥0.03 AND rVAF ≥0.03 AND gVAF <0.01) OR (tVAF/gVAF 
>3 AND rVAF ≥0.03) 
 

• RL (TU, lost): (tVAF ≥0.03 AND rVAF <0.03 AND gVAF <0.01) OR (tVAF/gVAF >3 AND 
rVAF <0.03) 

 
• RO (relapse-only): tVAF <0.03 AND rVAF ≥0.03 AND gVAF <0.01 

• GH (germline-specific): tVAF ≤0.03 AND rVAF ≤0.03 AND gVAF ≥0.03 

• SH (shared): all other SNVs 

 

Elimination of false positives 

Although the PCGP dataset has been carefully curated166, we supplemented our pipeline with several 

metrics to minimize the likelihood of calling false positives. First, the minor cross-contamination (C-

value) was estimated in a manner like that of Ju et al.10, in that the VAF of autosomal-homozygous 

SNPs genotyped from common SNP sites was used to gauge the level of adulteration. On the basis of 

this criterion, we removed seven samples that had >2% autosomal contamination in the tumor 

(SJE2A021, SJINF020032, SJNBL006, SJE2A064, SJNBL039, SJNBL021) or the germline 

(SJCBF013). We also disposed of known false-positive variants that were symptomatic of either 

misalignment triggered by mtDNA homopolymers or common sequencing errors (A302C, C308T, 

C309A, C309T, T310C, C314T, G513A, C516T, A517T, A567C, C3106G, A16183C, T16189C, 

T16189A, C16192T). Well-characterized germline polymorphisms were used to identify false somatic 

substitutions (SJBALL020625) and detect germline back-mutations, both of which are also indicative of 

contamination. Thirteen samples had ≥2 germline back-mutations and were removed (SJMB031, 

SJBALL021170, SJHYPER084, SJPHALL020040, SJERG020051, SJHYPER119, SJE2A006, 

SJHYPER010, SJBALL021058, SJBALL021516, SJBALL021893, SJHYPER123, SJHYPER095). 
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Finally, we used C-values to calibrate VAFs and eliminated SNVs with an adjusted tumor VAF or an 

adjusted germline VAF <0.03. 

To test the ability of our pipeline to detect true mtDNA variants with confidence while filtering out 

potential background signal arising from nuclear mtDNA sequences50, we performed WGS on a human 

osteosarcoma cell line (143B) and its mtDNA-deficient derivative Rho0 (or ρ˚)167. The overall coverage 

depth across the nuclear genome was comparable between the two cell lines (~37× and ~39×, 

respectively), yet none of the 33 mtDNA variants detected in the parental cell line were identified in the 

Rho0 sample.  

We used a simulation to evaluate the impact of tumor purity on our pipeline’s ability to detect TU 

variants. As a point of reference using the PCGP dataset48, acute leukemia samples consisted of at 

least 70% blasts (i.e., leukemic cells); tumor purity exceeded 50% in brain tumor samples and ranged 

from 48% to 96% in solid tumor samples. First, we generated a grid of theoretical coverage depth 

(100×-10,000×) with a step size of 100 and variant allele read support for both tumor and germline 

samples. For tumor samples, the grid was generated using the full range of VAFs (0.01-1.0) with a step 

size of 0.01. For the germline samples, since the germline VAFs for >92% of the TU SNVs was <0.02, 

the grid was generated using integer-based alternative read counts as large as the number supporting 

VAFs of 0.02. We then applied our pipeline to the 101 million theoretically possible combinations of 

tumor and germline read counts. Assuming a model of 100% tumor purity, we found that 97 million 

combinations passed our pipeline’s detection for TU mutations.  

Next, we generated new grids for the tumor samples to model a range of tumor purity 

percentages (50%-99%) using a step size of 1% and adjusting the tumor VAF at each step. The 

simulated data were then submitted through our pipeline. With each 1% decrease in tumor purity, less 

than 0.1% of all possible simulated combinations were lost. Mutations with tumor VAFs close to 0.03, 

which were at the lower bound of our filtering threshold, were the ones most likely to be lost as tumor 

purity decreased. Overall, the results suggested that the main impact of low tumor purity is a small 
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decrease in our ability to detect TU variants at thresholds near our VAF cutoff of 0.03. Similarly, a small 

percentage of variants classified as GH might be SH variants in cases with low tumor purity. 

 

RNAseq pipeline validation 

Tumor VAF estimates from WGS were validated using matched RNAseq data from 307 pediatric tumor 

samples. For mitochondrial variants detected by WGS, the corresponding supporting reads for the 

reference and mutant alleles in the RNAseq BAM files were extracted to compute the VAF. Reads 

flagged as optical or PCR duplicates and those with a base quality score <15 were excluded from the 

estimation of the VAF. Samples with VAF differences >0.99 in one or more variants were also 

eliminated (SJRHB012, SJMEL001004, SJTALL002, SJTALL012). 

 

Variant annotation 

Successful candidate SNVs were annotated with population-frequency tabulations, and predicted 

impact scores were based on information from databases of mtDNA common polymorphisms168,169, 

MITOMAP52 (accessed July 11, 2018), and Mutation Assessor (v3.0)170. For simplicity, all synonymous 

and neutral-impact variants were classified as “predicted benign,” whereas all other protein-encoding 

sequence variants were classified as “predicted pathogenic.” MitoTIP171 was used to predict the 

pathogenicity of mitochondrial tRNA variants, and rRNA variants were assessed using heterologous 

inferential analysis (HIA)172,173. ANNOVAR174 was used to append location and functional annotation 

(nonsynonymous, synonymous, stop gain/loss) to each variant and to translate amino acid changes for 

all coding nonsynonymous SNVs. Any variants occurring in intergenic regions or lacking information 

from the above sources were categorized as having an unknown predicted impact. Conservation 

scores were determined based on the percentage of residues that matched the rCRS derived from all 

species and are provided for all protein-coding, tRNA, and rRNA variant loci. 
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Bulk nuclear DNA variant calls and detection for correlational analyses 

WGS data were processed and analyzed according to previous methods48, and somatic nuclear SNVs 

and structural variants were identified and sorted into tiers as previously described175,176. 

 

Mutational signature and recurrence 

Mutational signature comparisons between TU mitochondrial and nuclear genomes were based on a 

suite of COSMIC mutational signatures developed by Alexandrov et al.177. For each SNV class, strand-

specific substitution rates were derived from tabulating the occurrence of 192 possible trinucleotide 

contexts (96 each on the L-strand and the reverse-complemented H-strand) among SNVs. Assuming 

an equal probability of allelic substitutions, the expected value of each triad was calculated based on its 

frequency in rCRS162, and its substitution rate was determined by the number of observed/expected 

mutations. Comparisons between TCGA and PCGP TU mutational signatures and signature 

comparisons among pediatric SNV classes were tested by cosine similarity178. Because different 

patients harbor varying numbers of mutations, the individual probability of a mutation at a given genetic 

locus will also vary by individual. Therefore, we used GRIN analysis179 to adjust for this variation and 

determined the P-value by computing the probability distribution for the number of individuals with a 

mutation in each given region by chance. 

 

scDNA-seq of primary leukemic blasts 

Based on previously developed protocols76, primary leukemic blasts were isolated from the bone 

marrow of two pediatric ALL cases (INF010, ETV027); each was processed separately and subjected 

to individual cell-capture and multiple displacement-amplifications using the C1 Single-Cell Auto Prep 

System (Fluidigm). Briefly, individually captured primary leukemic blasts were counted, evaluated for 

singlets, and assessed for viability (on chip LIVE/DEAD stain, Invitrogen) using phase contrast and 

GFP/Y3 fluorescence filters on a Leica microscope. On the Integrated Fluidic Circuit (IFC) chip, cells 

were then lysed and subjected to whole-genome amplification (REPLI-g Single Cell Kit, Qiagen), 
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followed by enrichment of mitochondrial genomes with a pool of custom-capture oligos (Table S2Q) 

purchased from IDT.  

Bulk DNA from all three samples were also re-sequenced with the same strategies used to 

interrogate single cells. Libraries from enriched mitochondrial genomes were constructed using the 

KAPA HyperPlus kit (Roche). All libraries were then subjected to 2 × 150-bp paired-end sequencing on 

a MiSeq (Illumina). For ETV027, mtDNA variants were then connected to the clonal nuclear variants 

identified in those cells76. Sequenced data were then subjected to quality trimming and adapter removal 

using Trimmomatic180. Using BWA v.0.7.12163, reads were subsequently aligned to hg19(GRCh37)161 

and the revised human mitochondrial reference genome (NC_012920)162. Then they were sorted, 

compressed, and indexed using Picard (https://broadinstitute.github.io/picard/). Variants with >1 read 

supporting the alternate allele were extracted using Bambino165 and annotated with ANNOVAR174. We 

next focused on variants previously identified by WGS and excluded cells that either did not have an 

average of 10 reads per selected loci and coverage greater than 1.5× the upper boundary of the IQR 

(potential doublets). 

 

scRNAseq of primary leukemic cells 

Viable single-cell suspensions from three pediatric E2A–PBX1+ ALL tumor samples were processed 

using the Chromium v.2 Single Cell 3′ Library and Gel Bead Kit, in conjunction with the 10X Genomics 

Chromium single-cell platform (10X Genomics). Libraries were paired-end sequenced (26-bp read 1, 8-

bp I7 index, and 98-bp read 2 configuration) on an Illumina NovaSeq 6000 genome analyzer; 100-bp 

reads were aligned against the human genome (hg19) using the 10X Cell Ranger pipeline (ver. 1.2.0). 

QC, cell clustering, and expression analyses were enabled by the R Seurat toolkit 3.0.1181. Cells were 

retained for subsequent analyses (see also Supplementary Dataset 3) based on the following criteria: 

number of genes per cell was ≥200 and ≤6000, the fraction of mitochondria UMIs per cell was ≤0.5, and 

the minimal number of expressed cells (UMI >0) for each gene was 3. For example, the gene × cell 
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after QC for each diagnostic leukemia sample were as follows: 14413 × 2074 (E2A037), 14002 × 

1591(E2A025), and 15467 × 2622 (E2A015). 

For cell clustering, we first removed mitochondrial and ribosomal genes and then normalized 

(NormalizeData) and scaled (ScaleData) the single-cell data. Principal component analysis (PCA) was 

then performed (RunPCA), and cell clusters were inferred (FindClusters) based on the normalized 

expression values and markers (FindMarkers) in each cluster. After identifying the cell types of each 

cluster, we merged clusters of blast cells into a single cluster and identified the top differentially 

expressed genes among different clusters (FindMarkers). The tSNE results (RunTSNE) were 

generated using the top 10 principal components. 

Aligned BAM files were parsed to enumerate the number of reads containing reference or 

alternative nucleotides at each locus of interest (i.e., harboring a variant previously identified by WGS) 

by using the SAMtools pileup method implemented in Pysam (https://github.com/pysam-

developers/pysam)164. The cell barcodes and UMIs were retrieved for each read by using the tag CB 

(cell-barcode) and UB (UMI-barcode), respectively. Low-quality bases/reads (i.e., base quality <15, 

mean read quality <15, and 10× adjusted mapping quality <255) were discarded, and only the reads in 

cells that passed Seurat QC were retained for VAF calculations. 

 

Differential expression analysis  

For each TU mutation under investigation, cells were classified as mutant if the alternate UMI was 

≥20%, whereas those with an alternate UMI = 0% and reference UMI counts ≥5 were classified as WT. 

After exclusion of potential doublets, differential expression (DE) analysis was performed using the 

widely accepted negative binomial distribution to model UMI counts182-184. Specifically, the edgeR 

package185 was used and parameter configurations were adjusted to accommodate scRNAseq data 

(e.g., likelihood ratio test; set prior.count = 0), while the scran package186 was utilized to estimate the 

library size186. Log2-fold change (log2FC) was reported to describe the effect size and the FDR was 

reported to account for multiple-comparisons testing. With regards to the association between 
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m.8172G>A and CHCHD2, we tested for robustness by using the nonparametric Wilcoxon rank-sum 

test, which yielded a similar significance value (P = 3.8 × 10-15). To further confirm that the significance 

of the association was not by chance, we performed DE analysis on permuted VAF-based phenotypes. 

The permutation-based analysis was repeated 1,000 times, resulting in 12,859 × 1,000 p-values), and 

as a result, the P-value of CHCHD2 from the observed data was ranked the second smallest among all 

12,859,000 permutated tests (substantially less than P-value = 0.05). 

 

Mitovolve: inference of the evolutionary history of somatic mtDNA mutations 

Mitovolve starts with an initiating parent cell with a given number of WT and mutant copies of mtDNA 

that, for simplicity, are doubled prior to division of the parent cell. Hypergeometric sampling of parent 

cells generates the partitioning of mitochondrial genomes into daughter cells, resulting in a probability 

distribution for the number of mutant mtDNA in the daughter cells. For each subsequent generation, the 

process is reiterated for a given number of generations to obtain a final probability distribution for the 

number of mutant mtDNA per cell. This theoretical probability distribution is defined by parameters 

representing the number of observed mtDNA UMIs per cell that yield an expected probability 

distribution, and results in a histogram representing the expected mutant allele fraction in the dataset. 

To model this process with evolutionary selection, Mitovolve uses a noncentral hypergeometric 

distribution with the log odds ratio of selecting a mutant mtDNA defined as a cubic polynomial function  

q(f) = b0 + b1f + b2f2 +b3f3 

of the mutant allele frequency (MAF) f. To model the process without evolutionary pressure, Mitovolve 

uses a central hypergeometric distribution obtained by setting b0 = b1 = b2 = b3 = 0 in the above 

equation so that there is no preference for a mutant mtDNA over a WT mtDNA (the log odds ratio q(f) = 

0). Positive values for q(f) indicate a selective preference for the mutant mtDNAs whereas negative 

values for q(f) indicate a selective preference for the WT mtDNAs.   
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Mitovolve uses a likelihood framework to evaluate the fit of a series of theoretical models to the 

observed distribution of WT and mutant mtDNA UMIs that cover a particular base-pair locus across 

individual cells from the single-cell sequencing data. The negative log likelihood (nLL) of a given model 

(i.e., based on initial VAF and generation number, with or without selection) is then computed by 

comparing the theoretical distributions of mutant and WT mtDNA genomes per cell (weighted based on 

UMIs) to the observed distribution. For a user-specified range of starting VAFs and generation 

numbers, Mitovolve uses a likelihood ratio test to compare the best nLL among models with selection to 

the best nLL among models without selection to determine whether there is statistically significant 

evidence that the mtDNA mutation was subject to selective pressure. Mitovolve also uses a series of 

likelihood ratio tests to find models with fits that are not significantly worse than that of the model with 

the best nLL.    

NetBID identification of drivers and pathways associated with pathogenic mtDNA mutations 

To systematically infer drivers of both gene and protein expression from the scRNAseq data, we 

deployed NetBID (v.2.0, https://jyyulab.github.io/NetBID/)114. Single cells were first classified as either 

mutant or WT for each mtDNA mutation by using the criteria described above, with each variant 

considered separately. Within the NetBID environment, SJARACNe (v.0.2.1, 

https://github.com/jyyulab/SJARACNe)115 was utilized to construct the B-ALL interactome from an 

RNAseq dataset representing the transcriptomes of 185 pediatric B-ALL cases (TARGET cohort)116, 

integrate scRNAseq expression data from WT and mutant cells with the B-ALL interactome, and 

generate networks of transcription factors and signaling molecules, from which driver activity was 

inferred for each of the 7,890 hub genes in each cell using NetBID’s cal.Activity function. Bayesian 

linear analysis was then used to identify differentially expressed drivers between mutant and WT cells, 

at both the inferred gene expression (DE) and activity (DA) levels. The m.1200G>A SNV (in E2A015) 

and m.11865T>C SNV (in E2A037) were excluded from further analyses due to minimal effects on 

gene expression/activation (data not shown). STRING database analysis was used to initially 
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characterize the biological implication of the top 50 significant DA drivers by using the normal gene set 

analysis settings and inclusion of all active interaction sources. 

Pathway activity was computed (cal.Activity.GS) based on each cell’s inferred hub gene 

activities, with the activity of a pathway P in cell c was defined by the following equation: 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝑃𝑃𝑐𝑐 =
∑ (∑ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 × 𝑀𝑀𝑆𝑆𝑖𝑖𝑖𝑖 × 𝐸𝐸𝐸𝐸𝐸𝐸𝑐𝑐𝑖𝑖

𝑛𝑛𝑖𝑖
𝑖𝑖=1 𝑛𝑛𝑖𝑖)⁄𝑛𝑛𝑃𝑃

𝑖𝑖=1

𝑛𝑛𝑃𝑃
 

 

The gene expression matrix was z-normalized in each cell. The 𝑛𝑛𝑃𝑃 and 𝑛𝑛𝑖𝑖 are the number of hub genes 

in pathway 𝐸𝐸 and the number of target genes of hub gene 𝑖𝑖, respectively. 𝐸𝐸𝐸𝐸𝐸𝐸𝑐𝑐𝑖𝑖 is the expression value 

of gene 𝑗𝑗 in cell 𝐴𝐴. 𝑀𝑀𝑆𝑆𝑖𝑖𝑖𝑖 is the mutual information between hub gene i and its target gene 𝑗𝑗. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 is the 

sign of Spearman correlation between gene i and its target gene 𝑗𝑗. After MSigDB (v7.4)187 gene sets 

were curated to exclude irrelevant positional (C1), computational (C4), and cell-type signature (C8) 

gene sets. Bayesian linear modeling was used to calculate differential pathway activity 

(𝑔𝑔𝑔𝑔𝐴𝐴𝑔𝑔𝐸𝐸.𝐵𝐵𝑆𝑆𝑔𝑔. 2𝑆𝑆).  

Independently curated gene sets from MSigDB database (collection H, C2, C3, C5, C6, C7) 

were also queried for enrichment of drivers by using significantly differentially activated drivers of 

variants m.8172G>A, m.11889G>A, and m.15657T>A. To include a similar number of top drivers of 

each variant in the analysis, different P-value cutoffs were used for the three variants (m.11889G>A: P 

<6.7 × 10–6; m.15657T>A: P <6.7 × 10–6; m.8172G>A: P ≤0.05). Gene sets with <30 or >500 genes 

were excluded from the analysis, and Fisher’s exact test (funcEnrich.Fisher) was used to evaluate 

statistical significance. 

Ex vivo prednisolone sensitivity in primary leukemia samples 

Primary leukemia cells were isolated from the bone marrow or peripheral blood of patients with newly 

diagnosed ALL and tested for prednisolone sensitivity (Solu-Medrol, Pfizer) by 3-(4,5-dimethyl-2-

thiazolyl)−2,5-diphenyl-tetrazolium bromide (MTT) assay, as previously described160. 
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NetBID estimation of biomarker-based PSPs 

Each patient’s RNAseq profile (log2-transformed FPKM) was first standardized by z-transformation so 

that comparisons could be made across samples. Activity scores were individually calculated for each 

of the 200 hub genes (top 100 upregulated hub genes and top 100 downregulated hub genes) by using 

the B-ALL–specific interactome and NetBID’s weighted mean function (𝐴𝐴𝑐𝑐𝑐𝑐.𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝐴𝐴𝑖𝑖𝐴𝐴𝐴𝐴). For a patient 𝑝𝑝, 

we used a weighted (+1 for positive drivers and −1 for negative drivers) mean of activities across all 

200 drivers as the PSP: 

𝑆𝑆𝑝𝑝 =
∑ 𝑍𝑍𝑖𝑖×𝐴𝐴𝑐𝑐𝐴𝐴𝑝𝑝𝑖𝑖200
𝑖𝑖=1

200
, 

 
where 𝑍𝑍𝑖𝑖 is the z-score of hub gene 𝑖𝑖 between sensitive and resistant samples, and 𝐴𝐴𝐴𝐴𝐴𝐴𝑝𝑝𝑖𝑖  is the activity 

of the hub gene 𝑖𝑖 in sample 𝑝𝑝. The above procedure was also used to estimate PSPs in cell lines.  

 

Rotenone treatment of B-ALL cells 

Drug sensitivity was tested by treating the B-ALL cell line RS;411 with either prednisolone (Solu-

Medrol, Pfizer; 0.05, 0.015, or 0.15 µM) alone or in combination with various concentrations of rotenone 

(R&D Systems; 0.1 pM–0.8 µM). Viability assays were performed using CellTiter-Glo (Promega). 

Synergistic or additive changes were assessed via response surface modeling188,189, which was 

implemented in MATLAB vR2016a (MathWorks). RS;411 cells were also treated with either 0.019 μM 

or 0.038 μM rotenone (R&D Systems), harvested at 72 h posttreatment, and then RNA was extracted 

with TRIzol (Invitrogen). Transcriptomes were interrogated on a Clariom S human array (Affymetrix), 

which was scanned using a GeneChip Scanner 3000 7G System (Affymetrix). 

 

Quantitative real-time PCR (ΔCt method) 

Endogenous CHCHD2 expression was measured in the 697 B-ALL cell line (gift from Dr. Charles 

Mullighan, St. Jude Children’s Research Hospital) treated with either increasing concentrations of ATN-
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224 (Cayman Chemical) or DMSO vehicle (Sigma-Aldrich). After 24 h, samples from each treatment (n 

= 3) were collected; RNA was extracted using TRIzol (Invitrogen); and cDNA was synthesized using 

SuperScript IV VILO Master Mix with ezDNase enzyme (Invitrogen). Standard curves were derived 

from 10-fold serial dilutions of the DMSO-treated 697 cell line. Quantitative real-time PCR was 

performed using TaqMan assays HS03043895_g1 (CHCHD2) and Hs99999901_s1 (18s) (Applied 

Biosystems), TaqMan Fast Advanced Master Mix (Applied Biosystems) and fast cycling conditions 

(initial incubation: 50°C for 2 minutes; polymerase activation: 95°C for 20 seconds; 40 cycles of 

denaturation at 95°C for 1 second and anneal/extension at 60°C for 20 seconds) on a QuantStudio7 

real-time PCR system (Applied Biosystems). Cycle thresholds and standard curve information were 

calculated using the QuantStudio7 software, and then each sample’s replicate (n = 3) had its log input 

normalized to standard curves per gene. Normalized ratios (CHCHD2/18s) were compared, and mean 

values were reported (Tukey’s post hoc pairwise testing, n = 9 replicates from 3 experiments). 

 

Structural analysis and functional modeling of amino acid substitutions 

Structural information was derived from human respiratory complex I (PDB IDs: 5XTC, 5XTD) and 

human respiratory complex III (5XTE)190. Structures solved by Esser et al.79 were used to model the 

functional effect of the p.G142E (MT-CYB) substitution, with specific focus on the structure bound to 

stigmatellin A (PDB ID: 1SQX) as a starting point for docking and molecular dynamics (MD) 

simulations. The Schrodinger software suite was used to model MT-CYB and to perform docking 

(Glide)191, and LigPrep and Prime192 were used for ligand and protein preparation, respectively. Docking 

was done to confirm ubiquinol binding to cytochrome b and to understand the interactions between the 

bound ligand and cytochrome b residues. The configurations observed for ubiquinol, along with 

structural information available from other crystal structures (e.g., PDB ID:1EZV), confirmed that 

Gly142 occupies a critical area in the ligand-binding pocket of cytochrome b.  
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MD simulations started with the 1SQX structure, using CHARMM-GUI webserver (Membrane 

Builder)193,194 to build a system that utilized either pure phosphatidylcholine (POPC) lipids or binary 

mixtures of POPC and ubiquinol lipids at different ratios. MD simulations of WT and G142E-mutant MT-

CYB were also performed, with and without bound ligand, to test the potential effect of the p.G142E 

mutation on ligand binding. The final system was solvated in water (TIP3P model)195, and the charge 

was neutralized with 150 mM NaCl ions. CHARMM36m force-field196 with a 2 fs time step was used to 

integrate the forces, and long-range electrostatics were treated using Particle Mesh Ewald197 with a real 

space cutoff of 1.2 nm and 0.12 nm Fourier grid spacing (0.12 nm cutoff was also applied to van der 

Waals interactions). Temperature was kept at 310K by using a Nosé-Hoover thermostat198,199; a 

Parrinello-Rahman barostat200 kept the pressure at 1 bar, using a coupling constant of 5 ps and 

compressibility of 4.5 × 10-5 bar-1. Covalent bonds to hydrogen atoms were constrained using the 

LINCS algorithm201. All simulations were performed using GROMACS software (v2021)202,203, where 

simulation lengths varied based on the setup employed (100 ns for WT and p.G142E mutant proteins 

only; 300 ns for WT and p.G142E mutant with bound ligand; up to 500 ns for unbiased ligand binding).   

Cavities were measured using mdpocket204 with default settings. The software identified several 

pockets; therefore, a pocket that coincided with the ligand-binding cavity was manually selected and, 

for consistency, the same coordinates were applied for both WT and the p.G142 mutant. ProLint205 was 

used to analyze the number of water molecules. Raw data (transparent plots) were plotted with their 

rolling mean (averaged >50 samples), and protein visualizations were done using VMD206 and Mol*207. 

Finally, hydrophobic contacts were calculated by using the default setting in Mol*. 

 

Statistical analyses 

Statistical analyses were performed using the R statistical package (www.r-project.org). Associations 

between categorical variables were evaluated using a two-sided Fisher’s exact test and Poisson-

regression modeling was used to examine the associations between variant frequency and disease 
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subtypes. Correlations between nuclear SNVs and mtDNA SNVs were analyzed with Spearman rank-

order and Pearson’s product-moment where appropriate. The mtDNAcn differences were analyzed 

using log2-transformed values. Differences in mtDNAcn among different tumors and subtypes and 

differences in TTR among relapsed groups were determined using Wilcoxon signed-rank testing. Two-

way ANOVA was used to test interactions between relapse groups and risk by using log10-transformed 

TTR. PSP score comparisons excluded patients with intermediate PSP scores, so that 92 (Total 

Therapy XV), 69 (Total Therapy XVI), and 179 (n=115 pediatric and n = 64 adult) B-ALLs were 

compared (Supplementary Fig. 8b-c and Supplementary Dataset 8).  

 

Bootstrap procedure 

A bootstrapping procedure208 was used to rigorously evaluate the association of variants’ properties, 

disease characteristics, and patient outcomes. Our procedure generated 10,000 bootstrap datasets by 

resampling patients with replacement. This process mimics 10,000 replications of a study that selects 

patients and collects data similar to those of our cohort. We then computed an estimate of an 

association parameter for the scientific question of interest with the original data and each of the 10,000 

bootstrap datasets. A 95% bootstrap confidence interval for the association parameter was defined and 

computed as the 2.5 percentile and 97.5 percentile of the estimates from the bootstrap samples. All the 

association parameters estimated by our bootstrap procedure were defined on the real line, and a value 

of zero corresponded to the null hypothesis. Therefore, a bootstrap P-value was defined and computed 

as the proportion of bootstrap samples giving an estimate with sign opposite to that obtained for the 

original dataset; this definition is motivated by inverting the bootstrap interval (opposite process as 

inverting a test to obtain a confidence interval). 

We defined and computed several association parameters, as appropriate for the scientific 

question under evaluation. One association parameter was the difference in prevalence of a categorical 

property of a variant across two groups of variants. The difference in prevalence was used to evaluate 

the associations of variant properties, such as the predicted impact of a variant or base pair substitution 
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category (C>T vs. T>C), with one another or with characteristics of the patient’s disease (such as 

diagnosis or disease subtype). Another association parameter was the difference of the mean or 

median of a quantitative characteristic of a variant across two groups of variants. For cross-tabulations, 

we computed the differences between the observed cell count data and the expected null cell count. 

DATA AVAILABILITY 

PCGP WGS and RNA-seq datasets are available through St. Jude Cloud 

(https://platform.stjude.cloud/data/cohorts), accession code SJC-DS-1001. Datasets from WGS of 

Chinese pediatric relapse tumors may be obtained from the corresponding author of Li et al.137, and 

WGS of relapsed PCGP genomes may be accessed from the European Genome-Phenome Archive 

(accession code EGAS00001003975). RNA-seq datasets used for PSP analysis can be found at the 

Gene Expression Omnibus (GEO) under accession codes GSE115525 and GSE124824. 

 

CODE AVAILABILITY 

Source code for single-cell analyses can be found at https://github.com/disonchang/Mito_scRNA. 

Codes for NetBID (v.2.1.1) analysis are available at GitHub (https://github.com/jyyulab/NetBID). 

SJARACNe (v.0.2.1, https://github.com/jyyulab/SJARACNe) was utilized within the NetBID 

environment. The Mitovolve package can be found at https://github.com/yonghui-ni/Mitovolve. 
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FIGURES 

Figure 1. Tumor-enriched mtDNA variants exist at low levels of heteroplasmy and are more 
likely than other de novo mtDNA variants to be rare among the general population and of 
functional consequence. (A) Total number and percentage of samples carrying mtDNA variants in 
inherited or somatic SNV classes. SNV classifications are depicted by color and abbreviation. (B) 
RNAseq validation of 8,732 mitochondrial variants reveals a high degree of concordance between 
VAFs based on RNAseq (RNA VAF) and those based on WGS (DNA VAF). Left panel: Boxplots 
illustrating differences between RNA and DNA VAFs by gene groups. The gray dashed lines denote a 
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15% difference threshold. Right panel: Histogram showing mtDNA SNV counts binned by the difference 
between RNA and DNA VAFs. (C) Boxplot of mtDNA SNVs and percent evolutionary conservation 
(across all species) among inherited and somatic mitochondrial SNV classes. Total number of SNVs 
with conservation score, per class were INH, n = 13,274; TU, n = 277; GH, n = 110; SH, n = 69. 
Comparisons were made using two-sided Wilcoxon signed-rank tests. **P ≤0.01; ****P ≤0.0001. (D) 
Stacked histograms integrating predicted functional impact (benign, pathogenic, or unknown) with 
percent evolutionary conservation and faceted by mtDNA SNV classification. Noncoding D-loop regions 
do not have conservation scores, thus are absent from the analysis. (E) Percentage of SNVs predicted 
by impact (D-loop/regulatory, benign, pathogenic, or unknown) among the SNV classes. P-values 
represent bootstrapped differences between observed and expected (dashed grey lines) prevalence for 
each predicted impact. The total number of SNVs per class were INH, n = 17,784; TU, n = 313; GH, n = 
169; SH, n = 106. ****P ≤0.0001. (F) Percentage of SNVs predicted by MitoMap52 population frequency, 
from common (pale blue) to extremely rare (purple) among the different SNV classes. P-values 
represent bootstrapped differences between the observed and expected (dashed grey lines) 
prevalence for each MitoMap frequency group. Total number of SNVs per class were INH, n = 17,784; 
TU, n = 313; GH, n = 169; SH, n = 106. ****P ≤ 0.0001. (G) Stacked histograms integrating MitoMap 
frequency with WGS estimates of tumor VAF, revealing increased presence and clustering of rare 
mtDNA mutations that are predicted to be pathogenic at low allelic fractions. (H) Forest plot depicting 
the prevalence of TU SNVs predicted to be pathogenic among pediatric tumor subtypes with at least 30 
samples. Confidence intervals (CI) are denoted by horizontal gray lines, and the overall prevalence 
across all subtypes is denoted by the vertical, dashed gray line. Bootstrapped P-values (OS, 
P = 0.0072; E2A, P = 0.0284). (I) Forest plot illustrating the mean difference in VAF between 
synonymous and nonsynonymous mutations. Overall mean VAF differences are depicted for each 
cohort and further categorized by tumor groups. The null value is depicted by a vertical, dashed gray 
line and CIs by horizontal gray lines. Bootstrapped mean difference with 95% CIs (PCGP overall, 0.119 
(0.009, 0.236); PCGP Blood, 0.167 (0.006, 0.335)). (J) A comparison of cumulative VAF distributions 
between nonsynonymous (green) and synonymous (purple) mutations within the blood tumor groups of 
the PCGP (top panel) and TCMA (bottom panel) cohorts. Statistics presented in Figure 1I. 
Abbreviations: C1-5, complex I-V; DUX4r, DUX4-rearranged; E2A, E2A–PBX1 translocation; EPD, 
ependymoma; ETV, ETV6–RUNX1 translocation; EWS, Ewing sarcoma; GH, germline heteroplasmy; 
HGG, high-grade glioma; HYPER, hyperdiploid; INH, inherited germline; Int, intergenic; LGG, low-grade 
glioma; mtDNA, mitochondrial DNA; NBL, neuroblastoma; OS, osteosarcoma; PCGP, Pediatric Cancer 
Genome Project; rRNA, ribosomal RNA; SH, shared heteroplasmy; SNV, single nucleotide variant; 
TCMA, The Cancer Mitochondrial Atlas; tRNA, transfer RNA; TU, tumor-enriched; VAF, variant allele 
fraction; WGS, whole-genome sequencing. 
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Figure 2. Single-cell DNA sequencing-based characterization of tumor-enriched, pathogenic 
mtDNA variants in two patients with B-ALL reveals intermediate VAFs in a subset of cells. 
Experimental sc-mtDNAseq overview and corresponding single-cell VAF results for select mtDNA 
variants. (A) Results from an infant MLL-rearranged B-ALL sample (INF010); a violin plot (middle 
panel) depicts VAF at single-cell resolution for each de novo mtDNA variant in the sample. Individual 
points represent single cells; red lines indicate WGS VAF estimates from the bulk tumor. The heatmap 
(right panel) shows the VAF for each de novo variant and one inherited variant on a cell-by-cell basis. 
White cells indicate an absence of mutation. Notably, TU variants were present at intermediate levels in 
mutually exclusive subsets of cells, and the SH variant was present in almost all cells. (B) Results from 
an ETV6–RUNX1+ B-ALL sample (ETV027); select cells that were originally sequenced for a clonal 
architecture study (left panel) were re-sequenced to detect a TU variant that impairs complex III activity. 
Nuclear SNVs and rearrangements identified from the original study are listed below each clone 
(ancestral, subclone 1, subclone 2). Violin plot (middle panel) illustrates TU VAF patterns of individual 
cells by clonal assignment; scatterplot (right panel) highlights the increased VAF among subsets of 
individual cells. The bulk WGS VAF estimate for this same variant (red line) was 22.7%. 
Abbreviations: B-ALL, acute B-lymphoblastic leukemia; GH, germline heteroplasmy; INH, inherited 
germline heteroplasmy; sc-mtDNAseq, single-cell mitochondrial DNA sequencing; SH, shared 
heteroplasmy SNV, single-nucleotide variant; TU, tumor-enriched; VAF, variant allele fraction; WGS, 
whole-genome sequencing.  
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Figure 3. scRNAseq reveals that pathogenic, TU mtDNA mutations are subject to variant-
specific forms of selective pressure that are commensurate with changes in gene expression. 
Single-cell RNA sequencing (scRNAseq) provides critical insight into mtDNA VAF distributions, 
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operating selective pressure, and cell-state changes associated with pathogenic TU mtDNA variants in 
primary leukemic blasts. Each row represents a specific TU mtDNA variant. (A-D, left panels) 
Projection of variant allelic fractions (VAF) onto cells within discrete clusters identified by each sample’s 
initial tSNE analysis. Scatter point sizes reflect variant coverage. Cells are colored to reflect the 
magnitude of the VAF. (A-D, middle panels) Single-cell VAF distribution of TU variants among 
different cell-type clusters reveals early appearance of somatic mtDNA mutations; red dashed line 
indicates the bulk tumor WGS estimate. (A-D, right panels) For each TU mutation, a volcano plot 
examining differential gene expression between cells harboring the mutation (alternate UMI ≥ 20.0%) or 
WT allele only (reference UMI ≥ 5 and alternate UMI = 0.0%), with P values (-log10) on the y-axis and 
expression (log2 fold change) on the x-axis. Left side of plot denotes genes with reduced expression in 
mutant cells; right side of plot denotes increased expression of genes in mutant cells. Differentially 
expressed genes with FDR<0.05 are depicted in dark gray. Green dots represent genes where 
relationships between expression and heteroplasmy levels were explored further; blue dots represent 
notable differentially expressed genes. Abbreviations: CHCHD2, Coiled-Coil-Helix-Coiled-Coil-Helix 
Domain-Containing Protein 2; EIF3E, Eukaryotic Translation Initiation Factor 3 Subunit E; FC, fold 
change; FDR, false discovery rate; HSP, heat shock protein; MT1X, Metallothionein 1X; NPM1, 
Nucleophosmin 1; RPL or RPS, ribosomal protein; tSNE, t-distributed stochastic neighbor embedding; 
WGS, whole genome sequencing. 
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Figure 4. Statistical modeling suggests that selective pressures shape mtDNA VAF distributions 
in a variant-specific manner. (A-C, top panel; D, left panel): For each variant, a series of best-fit 
selection models were identified using starting parameters defined by the best no-selection models (i.e. 
p.null >0.05). The models were projected onto a plot of logOR against VAF to gauge the magnitude and 
direction of selective pressure operating on each variant. Positive values for the logOR indicate positive 
selective pressure for the variant while negative values indicate negative selective pressure. (A-C, 
bottom panel) Smoothened total UMI-adjusted histograms show comparison of best selection model 
versus the best selection-free model and the observed data for each of the following variants: 
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m.11865T>C, m.8172G>A, and m.15657T>C. (D, middle and right panel) For m.11889G>A, 
smoothened total UMI-adjusted histograms (middle) with expanded view (right) highlight the 
comparison between the best selection model versus the best selection-free model and the observed 
data. With the exception of m.11865T>C, the best selection model approximates the data better than 
the best no selection model. (E) Graph demonstrating the relationship between number of differentially 
expressed genes (FDR>=0.05) for each variant plotted and the strength of support (i.e. p.alt) for 
selection models approximating the observed data. Abbreviations: iVAF, initial variant allele fraction; 
logOR, log odds ratio; p.alt, statistical test comparing the best selection model with the best non-
selection model. 
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Figure 5. NetBID analyses highlight cell state changes associated with the presence of tumor-
enriched mtDNA variants at intermediate levels of heteroplasmy. (A) Schematic for NetBID114. 
Using SJARACNe115, a B-ALL interactome was constructed from an RNAseq dataset comprising 185 
pediatric B-ALL samples (TARGET cohort)116. Single-cell RNA-sequenced blasts from each TU mtDNA 
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variant with significant (FDR <0.05) changes in gene expression (i.e., m.8172G>A, m.11889G>A, 
m.15657T>A) were dichotomized as either mutant (alternate UMI ≥20%) or WT (reference UMI ≥5 and 
alternate UMI = 0%). The scRNAseq datasets were then projected onto the SJARACNe B-ALL 
network, and the activity of each hub gene in each cell was inferred based on the aggregate-weighted 
expression of its targets. DA scores were then calculated and used to identify genes with significantly 
(P <10-5) higher or lower activities in mutant vs. WT cells. Similarly, the activity of each selected 
MSigDB187 pathway in each cell was estimated by averaging the expression of genes involved in the 
pathway. Then, the differentially activated hub genes (P < 10-5) and pathways (FDR-adjusted P < 10-5) 
were identified using NetBID’s Bayesian linear modeling function. The Fisher’s exact test-based 
pathway enrichment analysis of the hub genes with significantly higher or lower activities in mutant vs. 
WT cells were performed separately. The differentially activated pathways in mutant vs. WT cells 
across all mtDNA variants were combined and visualized with bubble plot. (B-D) Volcano plots 
reflecting differential activation of drivers in cells harboring specific somatic TU mtDNA mutations, as 
compared to those harboring only WT mtDNA. The left side of the plot denotes drivers with reduced 
activity in mutant cells; the right side denotes increased activity of drivers in mutant cells. The dashed 
black horizontal line denotes a conservative threshold for significance (P = 10-5). (E) NetBID’s linear 
modeling reveals significant (FDR-adjusted P <10-5) differences in pathway activities between the 
m.118889G>A mutant and WT cells. The volcano plot highlights pathways affected by the m.11889G>A 
variant; the top pathways identified by Fisher analysis are highlighted in dark pink, and the other 
pathways of interest are highlighted in magenta. Dashed black lines indicate significant P-value 
(horizontal line) and log2 FC (vertical lines) thresholds. (F) Comparison of differentially activated 
hallmark and drug pathways across the mtDNA variants that were predicted to be functionally impactful, 
contrasted with data from a cybrid series harboring progressive increases of the pathogenic 
m.3243A>G mutation24. Upregulation (red) and downregulation (blue) of pathways depended on 
mtDNA mutation context. For example, upregulation of glucocorticoid (e.g., prednisolone) resistance 
(dark pink) was most prominent in leukemic blasts harboring the m.11889G>A mutation, and vincristine 
sensitivity (magenta) was most prominent in blasts carrying the m.15657T>A mutation and in cybrids 
carrying the m.3243A>G mutation at VAFs >0.6. Abbreviations: B-ALL, B-cell acute lymphoblastic 
leukemia; DA, differential activity; DN, downregulated; E2F, E2F transcription factor 1; FDR, false 
discovery rate; G2M, gap 2 phase/mitosis; GO, gene ontology; H, hallmark; IL6, interleukin 6; JAK, 
Janus kinase; Kras, Kirsten rat sarcoma virus; mtDNA, mitochondrial DNA; MTORC1, mechanistic 
target of rapamycin (mTOR) complex 1; NetBID, network-based Bayesian inference of drivers; R, 
reactome; scRNAseq, single-cell RNA sequencing; STAT3, signal transducer and activator of 
transcription 3; TNFa, tumor necrosis factor alpha; TU, tumor-enriched; UMI, unique molecular 
identifier; UP, upregulated; UV, ultraviolet; VAF, variant allele fraction; WT, wild-type. 
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Figure 6. Characterization of mtDNA single-nucleotide variants in samples of relapsed acute 
lymphoblastic leukemia. Distribution and characteristics of 108 TU mtDNA SNVs, as determined by 
WGS of 88 matching diagnosis, relapse, and germline samples from two published cohorts of pediatric 
patients with ALL137,138. (A) The proportion and trajectory of TU mtDNA SNVs that persisted (green) 
from diagnosis to relapse or were lost (blue) or gained (purple) at relapse. (B) Paired boxplot illustrating 
changes in the mtDNA SNV variant allele fraction (VAF) from diagnosis to relapse among the variants 
that were either “lost” at relapse (blue), persisted from diagnosis to relapse (green), or were “gained” at 
relapse (purple). Variant trajectories are colored according to their predicted impact.  (C) Barplot 
illustrating differences in the observed ratio of nonsynonymous-to-synonymous (dN/dS) substitutions 
among TU mtDNA mutations that are lost, gained, or persist at relapse. The expected dN/dS (3.3) for 
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neutrality after considering the mtDNA mutational signature is denoted by a dashed line. For lost 
mutations, the bootstrapped P-value = 0.0708. (D) ProteinPaint209 depiction of the mitochondrial 
genome annotated with TU mutations lost at relapse (see color key). Notably, most lost mutations were 
nonsynonymous (in red), including the MT-CYB I304T substitution (arrow), which is predicted to be 
similar, in terms of structural consequences, to the I304N substitution in E2A025 from the discovery 
PCGP cohort. D-loop/regulatory, tRNA, and rRNA mutations are annotated as SNVs; all other 
mutations are annotated using amino acid alteration nomenclature. (E) Nested pie chart illustrating the 
proportion of samples with the indicated type(s) of TU mtDNA SNVs. Outer arc: samples with at least 
one TU mtDNA SNV (i.e., persistent, lost, and/or gained) were classified as harboring at least one 
persistent mtDNA SNV (gold) or only SNVs that were lost or gained (i.e., no persistent mtDNA SNVs, 
dark purple). Inner arc: samples with at least one TU mtDNA SNV were further stratified based on the 
number and type of SNVs. Samples with only persistent (green), lost (blue), or gained (purple) mtDNA 
SNVs are distinguished from those harboring multiple mtDNA SNVs of different classes, which were 
denoted as mixed (pink). Samples with no TU mtDNA mutations are depicted in gray. (F) Boxplots 
comparing median time to relapse among patients whose samples were categorized as in the inner arc 
of panel e. Patients whose samples harbored exclusively persistent (green) mtDNA SNVs relapsed 
sooner than all other groups. Comparisons were made using two-sided Wilcoxon signed-rank tests. 
(G) Boxplots comparing the median time to relapse between patients whose samples had at least one 
persistent mtDNA SNV (gold) and those harboring only lost or gained SNVs (dark purple). Median time 
to relapse was significantly shorter among samples with at least one persistent SNV (307 vs. 528 days, 
two-sided Wilcoxon signed-rank, P = 0.02). (H) Boxplot indicating that leukemia risk group is an 
independent predictor of time to relapse (in days). Comparisons were made using a two-sided Wilcoxon 
ranked sum test, **P ≤ 0.01. Abbreviations: a.a., amino acid; ALL, acute lymphoblastic leukemia; ATP, 
adenosine triphosphate; COX, cytochrome c oxidase; GO, gained only; LO, lost only; MT-CYB, 
mitochondrially-encoded cytochrome b; mtDNA, mitochondrial DNA; ND, NADH: ubiquinone 
oxidoreductase; PO, persistent only; rRNA, ribosomal RNA; SNV, single-nucleotide variant; tRNA, 
transfer RNA TU, tumor-enriched; WGS, whole-genome sequencing. 
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Figure 7. Contributions of somatic mtDNA mutations fluctuate throughout pediatric leukemia 
progression. (A) Homoplasmic or near-homoplasmic levels of pathogenic somatic mtDNA mutations 
may disrupt mitochondrial bioenergetic/biosynthetic functions in a manner that is prohibitive of 
enhanced self-renewal, transformation, and/or clonal expansion of leukemia-initiating stem cells. This 
may help explain the decreased representation of leukemic cells harboring high levels of mutated 
mtDNA. (B) In contrast, intermediate levels of pathogenic somatic mtDNA mutations may render pre-
leukemic hematopoietic stem cells more permissive to transformation by specific oncogenes. Founding 
oncogenic translocations and mutations in nuclear DNA–encoded oncogenes or tumor suppressors can 
alter metabolic homeostasis within pre-leukemic hematopoietic stem cells, thus requiring mitochondrial 
adaptation. Clones with intermediate levels or certain mtDNA mutations may be metabolically rewired 
to rapidly replenish amino acids, fatty acids, nucleotides, metabolites, and energy substrates in 
response to mTORC1 and MYC signaling and may even stimulate these pathways through metabolic 
signaling (e.g., ATP, reactive oxygen species, NAD+, FAD). Thus, pre-leukemic hematopoietic stem 
cells exposed to intermediate levels of functionally impactful mtDNA mutations may adapt to oncogenic 
stimuli more effectively than do cells without such mutations (or those with near-homoplasmic levels of 
somatic mtDNA mutations). (C-F) In leukemia-initiating stem cells, the differential acquisition of 
mutations in nuclear DNA–encoded genes and their derivatives often results in an assortment of 
diverse clones at diagnosis, each with a distinct leukemic genome. These clones compete for fitness at 
various stages of disease progression and throughout treatment. Therefore, depending on the 
functional alteration and context, mtDNA mutations that were advantageous early in disease may be 
selected against later in disease [e.g., the acquisition of additional mutations in nuclear DNA–encoded 
genes (C) or upon exposure to certain chemotherapeutic agents (D)]. Other somatic mtDNA mutations 
may become inconsequential and serve as markers of resistant clones (E,F). 
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Table 1. PCGP tumor subtypes categorized by tissue type (blood, brain, or solid) and the 
number of subtypes sequenced per platform. Abbreviations: ACT, adrenocortical carcinoma; ALL, 
acute lymphoblastic leukemia; AML, acute myelogenous leukemia; AMLM7, acute megakaryoblast 
leukemia; CBF, core-binding factor AML; CPC, choroid plexus carcinoma; E2A, E2A–PBX1 B-lineage 
ALL; EPD, ependymoma; DUX4r, DUX4-rearranged B-lineage ALL; ETV, ETV6–RUNX1 B-lineage 
ALL; EWS, Ewing sarcoma; HGG, high-grade glioma; HYPER, hyperdiploid B-lineage ALL; HYPO, 
hypodiploid B-lineage ALL; iAMP21, intrachromosomal amplification of chromosome 21 B-lineage ALL; 
INF, infant B-linage ALL; LGG, low-grade glioma; MB, medulloblastoma; MEL, melanoma; OS, 
osteosarcoma; mt, mitochondria; PH, Philadelphia chromosome B-lineage ALL; PHL, Philadelphia 
chromosome–like B-lineage ALL; PHL-Hyp, Philadelphia chromosome–like B-lineage ALL with 
hyperdiploid/hypodiploid features; RB retinoblastoma; RHB, rhabdomyosarcoma; RNAseq, RNA 
sequencing; TALL, T-lineage ALL; TCF3-HLF, TCF3–HLF B-lineage ALL; WGS, whole genome 
sequencing. 
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SUPPLEMENTARY FIGURES 
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Figure S1. Pipeline for the identification and classification of mtDNA variants. (A) Curation of 
mtDNA variants from paired tumor–germline samples collected under the auspices of the PCGP48.  
(B) WGS pipeline validation results for a human 143B TK- osteosarcoma cell line (parental) and its 
mtDNA-deficient derivative (Rho0, ρ0). Lollipop barplots indicate equivalent autosomal coverage 
between cell lines (left), yet negligible mitochondrial genome coverage (middle) and absence of 
mtDNAcn in the ρ0 cell line (right). (C) Distribution of 18,372 mtDNA SNVs based on tumor and 
germline (nontumor) VAFs. SNV classification (depicted by color) is based on the ratio of VAFs 
estimated by WGS. SNV and sample counts per SNV class are shown in the bottom panel. 
Abbreviations: gVAF, germline variant allele fraction; mtDNAcn, mitochondrial genome copy number; 
PCGP, Pediatric Cancer Genome Project; SNV, single nucleotide variant; tVAF, tumor variant allele 
fraction; WGS, whole-genome sequencing. 
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Figure S2. Characterization of TU mutations in PCGP and TCMA cohorts. (A) Barplot illustrating 
observed dN/dS ratios among different classes of pediatric mtDNA SNVs. SNV classifications are 
depicted by color and abbreviation. ***P ≤0.001; ****P ≤0.0001. Dashed gray lines show the expected 
dN/dS ratio for each SNV class after considering the mutational signature. (B) Observed ratio of non-
synonymous to synonymous substitutions (dN/dS) among TU SNVs in pediatric tumor subtypes with at 
least 30 samples. The expected dN/dS ratio is denoted by a dashed line. Bootstrapped P-values (ETV, 
P = 0.0954; E2A, P = 0.0864; EWS, P = 0.0638). (C) Mosaic plot illustrating the proportion of total TU 
SNVs distributed among each subtype (width of horizontal, stacked bar), and the proportion of SNVs 
that are classified by predicted functional impact. Subtypes with fewer than 30 samples were excluded 
from the analysis. (D) Barplot depicting observed dN/dS ratios among adult tumors from the TCMA 
cohort, grouped by tumor type (blood, brain, or solid). The expected dN/dS ratio (3.7) for adult tumors is 
denoted by a dashed line. *P ≤0.05; **P ≤0.01; ***P ≤0.001. (E) A comparison of overall cumulative VAF 
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distributions between nonsynonymous (green) and synonymous (purple) mutations, within the PCGP 
(top panel) and TCMA (bottom panel) cohorts. Abbreviations: dN/dS, ratio of nonsynonymous-to-
synonymous substitutions; DUX4r, DUX4-rearranged ALL; E2A, E2A–PBX1 ALL; EPD, ependyoma; 
ETV, ETV6–RUNX ALL; EWS, Ewing sarcoma; GH, germline heteroplasmy; HGG, high-grade glioma; 
HYPER, hyperdiploid; INH, inherited germline heteroplasmy; LGG low-grade glioma; mtDNA, 
mitochondrial DNA; NBL, neuroblastoma; OS, osteosarcoma; PCGP, Pediatric Cancer Genome 
Project; SH, shared heteroplasmy; SNV, single-nucleotide variant; TCMA41,58, The Cancer 
Mitochondrial Atlas; TU, tumor-enriched; VAF, variant allele fraction. 
 

 

  

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 27, 2024. ; https://doi.org/10.1101/2024.09.26.24314381doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.26.24314381


73 
 

Figure S3. Single-cell RNA sequencing reveals that m.8172G>A is the dominant tumor-specific 
variant among E2A037 leukemic blasts. (A) A tSNE plot illustrating discrete clusters of cell 
populations and blast subpopulations within the E2A037 sample, with colors and numbers delineating 
clusters. (B) Representative violin plots of select cell-lineage markers with their expression and 
distribution among tSNE clusters. (C) Bubble plot depicting the allelic fraction of the m.11865T>C 
variant (VAF) as a function of the number of unique molecular identifiers (UMIs) among 2,074 analyzed 
cells. Dashed red line indicates the bulk tumor WGS estimate. Marginal plots indicate the number of 
cells binned per nUMI (top) and per VAF (right). VAF counts are binned in 5% increments (e.g., the 
lowest VAF bin includes cells with 0 to <0.05 VAF).  (D) Bubble plot depicting the VAF of E2A037’s 
second TU variant, m.8172G>A, among 2,074 analyzed cells. The plot is as described in panel c. (E) 
Stacked bar plots detailing the percentage of cells harboring each of the E2A037 variants and their 
dissemination among cell clusters. (F) Relation between log-normalized CHCHD2 expression and VAF 
(binned) of the m.8172G>A mutation. The bins are 0, 0-0.1, 0.1-0.2…, 0.9-1.0, and boxplots inside 
each violin show the bootstrapped 95% CI of the mean. Marginal plots indicate the number of cells per 
binned VAF (top) and per normalized gene expression value (right) intervals. (G) Structural modeling of 
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the cysteine-to-tyrosine conversion at position 196 (p.C196Y) that results from the m.8172G>A 
mutation. The mutation is predicted to alter copper binding within the binuclear copper A center (CUA) 
of MT-CO2 (mitochondrially encoded cytochrome c oxidase II). (H) Pharmacological sequestration of 
copper results in attendant reduction of CHCHD2 expression, as measured by real-time PCR (ΔCt 
method). The B-ALL cell line 697 was subjected to increasing concentrations of ATN-224 (bis-choline 
tetrathiomolybdate), a high-affinity copper chelator that inhibits complex IV function. At 24 h post-
treatment, significant (P = 0.024, ANOVA) dose-dependent decreases in CHCHD2 expression were 
observed, with the largest difference between vehicle only and 0.1 nM ATN-224 (Tukey’s post-hoc 
pairwise testing, n = 9 replicates from 3 experiments, adjusted **P = 0.00897). Abbreviations: ALL, 
acute lymphoblastic leukemia; CD3E, CD3 epsilon subunit of T-cell receptor complex; CHCHD2, coiled-
coil-helix-coiled-coil-helix domain containing 2; HBA2, hemoglobin subunit alpha 2; Mut, mutant; nd, not 
determined; nUMI, number of unique molecular identifiers; PAX5, paired box 5; PBX1, PBX homeobox 
1; tSNE, t-distributed stochastic neighbor embedding; VAF, variant allele fraction; WGS, whole-genome 
sequencing; WT, wild-type.   
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Figure S4. Single-cell RNA sequencing of E2A-PBX1+ sample E2A025 reveals VAF distribution 
pattern for m.15657 T>A variant, which impacts MT-CYB. (A) A tSNE plot illustrating discrete 
clusters of cell populations and blast subpopulations within the E2A025 sample, with colors and 
numbers delineating clusters. (B) Representative violin plots of select cell-lineage markers and their 
gene expression and distribution among tSNE clusters. (C) Bubble plot depicting the VAF of the 
m.15657T>A as a function of nUMIs among 1,591 analyzed cells. Red line indicates the bulk tumor 
WGS estimate. Marginal histogram plots indicate the number of cells binned per nUMI (top) and per 
VAF (right). VAF counts are binned in 5% increments (e.g., lowest VAF bin includes cells with 0 to 
<0.05 VAF). (D) Position of the I304 residue in the secondary structure of MT-CYB, and the 
hydrophobic interactions (inset, yellow lines) between I304 and the surrounding residues (i.e., L102, 
L301, Y107, and I362) in human MT-CYB. Abbreviations: ALL, acute lymphoblastic leukemia; CD19, 
B-lymphocyte antigen CD19; CD3E, CD3 epsilon subunit of T-cell receptor complex; CD58, lymphocyte 
function-associated antigen 3; HBA2, hemoglobin subunit alpha 2; I, isoleucine; L, leucine; MT-CYB, 
mitochondrially encoded cytochrome b; N, asparagine; nUMIs, number of unique molecular identifiers; 
PAX5, paired box 5; PBX1, PBX homeobox 1; tSNE, t-distributed stochastic neighbor embedding; VAF, 
variant allele fraction; WGS, whole-genome sequencing; Y, tyrosine; WT, wild-type.   
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Figure S5. The m.11889 G>A variant in E2A-PBX1+ sample E2A015 is the dominant tumor-
enriched variant. (A) A tSNE plot illustrating discrete clusters of cell populations and blast 
subpopulations within the E2A015 sample, with colors and numbers delineating clusters. (B) 
Representative violin plots of select cell-lineage markers with their expression and distribution among 
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tSNE clusters. (C) Bubble plot depicting the allelic fraction of the m.11889G>A variant (VAF) as a 
function of the number of unique molecular identifiers among 2,622 analyzed cells. Dashed red line 
indicates the bulk tumor WGS estimate. Marginal plots indicate the number of cells binned per nUMI 
(top) and per VAF (right). VAF counts are binned in 5% increments (e.g., the lowest VAF bin includes 
cells with 0 to <0.05 VAF). (D) Bubble plot depicting the VAF of E2A015’s second TU variant, 
m.1200G>A, among 2,180 cells with coverage at this locus. The plot is as described in panel c. (E) 
Projection of m.1200G>A VAFs onto cells within discrete clusters identified by the tSNE analysis. 
Scatter point sizes reflect variant coverage. Cells are colored to reflect the magnitude of the VAF. (F) 
Distribution of the m.1200G>A VAF among different cell clusters, demonstrating the paucity of cells 
harboring the variant; red dashed line indicates the bulk tumor WGS estimate. (G) Stacked barplots 
detailing the percentage of cells harboring each of the E2A015 variants and their dissemination among 
clusters. (H) Increased EIF3E expression associated with increased VAF (binned) of the m.11889G>A 
variant. The bins are 0, 0-0.1, 0.1-0.2…, 0.9-1.0, and the boxplots inside each violin show the 
bootstrapped 95% CI of the mean for each bin. Marginal plots indicate the numbers of cells per binned 
VAF (top) and per normalized gene expression value (right). (I) Complex I structure (PDB ID: 5XTD) in 
light grey, with MT-ND4 (light blue) and MT-ND5 (darker grey) proteins highlighted. The p.G377E 
substitution, which is induced by the m.11889G>A mutation, occurs within a discontinuous helix 
(TMH12) and is predicted to profoundly alter ND4 function (Mutation Assessor score: 4.81). Expanded 
view (inset left) and rotated view (inset right) of inward-facing I373, G377, and V381 residues of ND4. 
Residues that form the protein–protein interface are shown as pink sticks, and hydrophobic interactions 
are shown as dashed, yellow lines. Red spheres are used to show the location of alpha carbons.  
Abbreviations: ALL, acute lymphoblastic leukemia; CD19, B-lymphocyte antigen CD19; CD3E, CD3 
epsilon subunit of T-cell receptor complex; CD68 CD68 antigen; HBA2, hemoglobin subunit alpha 2; E, 
glutamic acid; EIF3E, eukaryotic translation initiation factor 3 subunit E; G, glycine; MT, mitochondrially-
encoded; Mut, mutant; ND4, NADH: ubiquinone oxidoreductase core subunit 4; ND5, NADH: 
ubiquinone oxidoreductase core subunit 5; nd, not determined; nUMI, number of unique molecular 
identifiers; PAX5, paired box 5; PBX1, PBX homeobox 1; PDB, Protein Data Bank; TMH, 
transmembrane helix; tSNE, t-distributed stochastic neighbor embedding; TU, tumor-enriched; VAF, 
variant allele fraction; WGS, whole-genome sequencing; WT, wild-type.  
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Figure S6. Overview of selection-free modeling process using Mitovolve. (A) An initial cell with 
four wildtype mtDNAs (black) and two mutant mtDNAs (red) followed by duplication of its mtDNA. The 
red histogram represents the probability distribution for the number of mutant mtDNAs inherited by the 
daughter cell and is defined by hypergeometric sampling from the duplicated mtDNA. (B, left panel)  
The same process is repeated for the next daughter cell, effectively rendering a convolution of 
hypergeometric models. Each histogram bar represents the number of inherited mutant mtDNAs by the 
next daughter cell.  (B, right panel) The number of mutant mtDNAs in subsequent generations is 
modeled by iterative convolution of hypergeometric models. (C, left panel) Single-cell sequencing 
generates a distribution of mtDNA reads per cell. (C, middle panel) For a given number of total mtDNA 
reads, the number of mutant mtDNA reads is modeled by hypergeometric sampling of reads from 
mtDNAs. (C, right panel) The model produces a theoretical distribution for the fraction of mutated 
reads across cells that can be compared to the observed empirical distribution. (D) Scatter plot 
illustrating the range at which selection-free models best approximated the observed scRNA-seq data 
(p.null ≥ 0.05) for the m.11865T>C variant. Selection-free model testing parameters: iVAFs in 0.01-1 in 
0.01 increments; fixed mtDNAcn = 312; generations: 1-200. mtDNAcn was derived empirically from the 
patient’s WGS data. Abbreviations: mtDNAcn, mitochondrial DNA copy number; p.null, p-value that 
compares each selection-free model with the observed data; iVAF, initial variant allele fraction; WGS, 
whole genome sequencing.  
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Figure S7. NetBID infers the differential activity of drivers in cells with or without mtDNA 
variants. (A) Paired boxplots comparing driver activity (left panel) and gene expression (right panel) for 
select genes from the volcano plot in Figure 4B. Comparisons are made between WT cells (gold) and 
cells harboring the m.11889G>A mutation (Mutant, turquoise). (B) Examples of VAF-associated 
changes in activity levels of drivers that were altered in cells harboring the m.11889G>A mutation. 
VAFs are binned as < 0.03, 0.3-0.1, 0.1-0.2, 0.2-0.4, 0.4-0.6, and > 0.06. (C) Volcano plot illustrating 
differential activity of drivers from the ALL-Glucocorticoid therapy DN (Rhein) gene set in cells 
harboring the m.11889G>A mutation as compared to WT cells. Abbreviations: ACOT7, acyl-CoA 
thioesterase 7; AHCY, adenosylhomocysteinase; ALL, acute lymphoblastic leukemia; DA, differential 
activity; DAPK2, death associated protein kinase 2; DE, differential gene expression; DN, 
downregulated; FC, fold change; GABRR1, gamma-aminobutyric acid type A receptor subunit Rho1; 
NPM1, nucleophosmin 1; PPA1, inorganic Pyrophosphatase 1; TEAD4, TEA Domain Transcription 
Factor 4; VAF, variant allele fraction; WT, wild-type.  
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