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Abstract 

Metastatic breast cancer remains largely incurable, and the mechanisms underlying the 
transition from primary to metastatic breast cancer remain elusive. We analyzed the 
complex landscape of primary and metastatic breast cancer using scRNA-seq data from 
twenty-three female patients with either primary or metastatic disease to elucidate the 
genetic and molecular mechanisms underlying changes in the metastatic tumor 
ecosystem. We identify specific subtypes of stromal and immune cells critical to forming 
a pro-tumor microenvironment in metastatic lesions, including CCL2+ macrophages, 
cytotoxic T cells with an exhausted gene signature, and FOXP3+ regulatory T cells. 
Analysis of cell-cell communication highlights a marked decrease in tumor-immune cell 
interactions in metastatic tissues, likely strengthening the immunosuppressive 
microenvironment. In contrast, primary breast cancer samples displayed increased 
activation of the TNF-α signaling pathway via NF-kB, indicating a potential therapeutic 
target. Our study comprehensively characterizes the transcriptional landscape 
encompassing primary and metastatic breast cancer. 

 

Introduction 

Breast cancer, which remains the most prevalent cancer in women, is a diverse and 
complex disease with a wide range of clinical manifestations and outcomes. The shift 
from an early localized primary tumor to metastatic lesions in distant organs represents 
a pivotal moment in the clinical course and prognosis of the disease. Despite advances 
in early detection and treatment, progression to metastatic disease continues to pose a 
significant clinical challenge with an unfavorable prognosis1. Individuals diagnosed with 
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localized breast cancer typically exhibit an overall survival rate exceeding 90%2. 
Conversely, the prognosis drastically declines when cancer progresses to distant 
metastasis, with survival rates plummeting to around 25%3. Therefore, understanding 
the complex mechanisms and differences between primary and metastatic breast 
cancer is essential for informing treatment approaches and improving patient outcomes.  

Tumor metastasis requires a complex, orchestrated cascade involving the inherent 
characteristics of tumor cells, such as genetic mutations, and the intricate interplay 
between cancer cells and different cellular elements within the tumor microenvironment 
(TME). This dynamic interaction encompasses a range of participants, including 
immune cells, tumor-associated macrophages (TAMs) and lymphoid cells, cancer-
associated fibroblasts (CAFs), and components of the extracellular matrix (ECM)4–6. 
Understanding the complex interactions between different cellular components in the 
TME is crucial for comprehending the mechanisms of tumor initiation, progression to 
metastasis, and prognosis. Studies have uncovered mutational and transcriptional 
signatures that are more frequent in breast cancer metastases using bulk genomic 
sequencing methods7,8. However, genetic signatures arising from bulk sequencing 
cannot decipher the sources of observed differences or the dynamic interplay between 
the cell types shaping the metastatic microenvironment in advanced breast cancer. 

Single-cell RNA sequencing (scRNA-seq) can reveal the distinct transcriptional profiles 
of individual malignant and non-malignant cells in the tumor ecosystem. This has 
enabled analysis of complex intra-tumoral heterogeneity among TME interactions in 
BCs, such as triple-negative breast cancer9. In particular, previous studies have 
suggested that FOXP3+ regulatory T cells (Tregs) in breast cancer may lead to immune 
tolerance and poorer overall survival10, while cytotoxic T cells with exhausted gene 
expression patterns might characterize an immunosuppressive TME11.While immune 
deregulations are undeniably a core component of the transition to metastatic disease, 
comprehensive transcriptomic profiling comparing the primary and metastatic breast 
cancer TME at single-cell resolution has only been applied to a limited number of cases 
and metastatic sites12. 

Here, we conduct scRNA-seq analysis to deconvolve the TME landscape in primary and 
metastatic ER+ breast cancer. We elucidate distinct gene expression profiles of tumor 
cells in primary and metastatic breast cancer while identifying specific subtypes of 
stromal and immune cells that may collectively contribute to developing an 
immunosuppressive microenvironment within metastatic tumors. Our study provides an 
overview of the underlying functional landscape of primary and metastatic breast cancer 
cells while shedding light on the heterogeneity and transcriptomic TME patterns 
underpinning disease progression.  

 

Results 

Landscape of primary and metastatic breast cancer via scRNA-seq  
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Despite the limited survival of patients with metastatic breast cancer, little is known 
about the evolution that occurs between normal and malignant cells in the tumor 
ecosystem of primary and metastatic breast cancer. To investigate this issue, scRNA-
seq was performed on an all-female patient cohort comprising individuals diagnosed 
with either primary (n=12) or metastatic ER+ breast cancer (n=11). Multiple metastatic 
sites, including the liver, bone, lymph nodes, mediastinum, adrenal gland, and skin, 
were sampled (Fig.1a). All patients were classified as estrogen receptor-positive (ER+) 
based on IHC analysis (Supp. Table 1). 

After quality control, removal of batch effects, and principal component analysis, 56,384 
single cells from primary breast cancer tissues and 42,813 single cells from metastatic 
breast cancer tissues, a total of 99,197 cells, were visualized using UMAP for 
downstream analysis. The cells were partitioned into fifty-four clusters, consisting of 
seven main cell types: malignant cells, myeloid cells, T cells, natural killer (NK) cells, B 
cells, endothelial cells, and fibroblasts (Fig. 1b, 1c). Each cell type was characterized 
using established gene expression markers13–15 (Fig. 1d). Additional details and 
corresponding references for the methodologies employed can be found in 'Methods'. 

Copy number variation (CNV) profiles were determined using gene expression data and 
used to identify normal and malignant cells (see Methods). While both primary and 
metastatic samples exhibited the same main cell types, the proportions of each cell type 
varied widely between patients (Supp. Fig.1a, 1b). However, when we explored the 
differences in minor cell types (subtypes) within each group, we found a clear distinction 
in the proportion of cellular subtypes associated with primary and metastatic disease 
(Fig. 1e, 1f, Supp. Fig. 1c). Malignant epithelial cells were present in similar proportions 
in both primary and metastatic samples. In primary samples, FOLR2 and CXCR3 
positive macrophages, which have been associated with a pro-inflammatory 
phenotype16–19, were predominantly observed. In contrast, macrophages positive for 
CCL2 and SPP1, which have been associated with a pro-tumorigenic subtype20,21, were 
more abundant in metastatic samples. Our observations highlight changes in the TME 
that are associated with primary and metastatic tumors, potentially underlying the 
transition toward the metastatic state. 

 

Genomic and phenotypic alterations within malignant cells 

To identify cell types that exhibit high levels of gene expression heterogeneity, we 
performed differential gene expression analysis between patients for each major 
lineage. We found that malignant cells exhibited the most remarkable diversity of 
differentially expressed genes (DEGs), indicating pronounced transcriptional dynamics 
within these cellular populations across varying environmental conditions (Fig. 2a). To 
validate our malignant cell assignments and further define the tumor phenotype and 
clonal substructure, we estimated CNV using InferCNV22 and CaSpER23. T cells were 
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used as a reference for each condition (primary/metastasis) (Fig. 2b, Supp. Fig. 2a, 
Supp. Document 1).  

CNV analysis revealed substantial copy number alterations in both primary and 
metastatic disease. Our analysis identified substantial inter-patient differences within the 
primary or metastatic group. We then compared the overall CNV structure in both 
groups and identified substantial inter-site differences. Notably, we observed significant 
variations in CNVs on chromosomes 1, 6, 11, 12, 16, and 17 when comparing primary 
and metastatic samples. These unique genomic alterations could potentially play a role 
in facilitating the transition to metastasis24. 

To comprehend the distinct clonal structures between primary and metastatic breast 
cancer patients, we integrated CNVs from all tumor subpopulations per patient. We 
compared the overall pattern of copy number alterations across chromosomal arms. 
Our analysis led us to identify the top 25 CNVs within chromosomal arms that were 
specific to metastatic or primary subclones (Supp. Fig. 2b). In particular, CNVs in 
specific chromosomal regions, namely, chr7q34-q36, chr2p11-q11, chr16q13-q24, 
chr11q21-q25, chr12q13, chr7p22, and chr1q21-q44, were more frequent in the 
metastatic samples. Intriguingly, these regions encompass genes that have previously 
been associated with progression and aggressiveness of different cancer types, 
including ARNT, BIRC3, EIF2AK1, EIF2AK2, FANCA, HOXC11, KIAA1549, MSH2, 
MSH6, and MYCN25–32. These genes are associated with various aspects of cancer 
development and progression, including cell growth, proliferation, metabolism, and 
survival25–32. Elevated expression of several of the genes affected by these 
chromosomal alterations has also been reported to be associated with poorer survival 
rates in ER+ breast tumors33 (Supp. Fig. 3a).  

We then calculated CNV scores for each cell (see Methods) using InferCNV, which 
represents the extent of copy number variations within a cell and reflects genomic 
instability. We found higher CNV scores in tumor cells from metastatic patients 
compared to primary breast samples (Fig. 2c). This finding is consistent with previous 
studies that have linked high CNV scores to poor prognosis in various types of 
cancer34,35. Besides intertumoral heterogeneity, intratumoral heterogeneity presents 
another significant challenge in accurately depicting the genomic landscape36. To further 
investigate intratumoral heterogeneity of copy number alterations, we used the 
SCEVAN37 algorithm to identify tumor sub-populations with different copy number 
alterations for each sample. Our observations indicate that metastatic tumors have a 
higher intratumoral heterogeneity gene expression score (ITHGEX)38 compared to 
primary tumors, consistent with metastatic breast cancer samples exhibiting higher 
levels of intratumoral heterogeneity (Fig. 2d). This is further evidenced by the existence 
of more tumor subclones within metastatic samples (Supp. Fig. 2b, Supp. Table 2). 

 

Gene regulatory signatures across primary and metastatic breast cancer 
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Next, we aimed to uncover the cellular processes potentially involved in primary and 
metastatic breast cancer by constructing lineage-specific gene regulatory networks 
(GRNs) based on transcription factor (TF) activity and their associated targets using 
SCENIC39. Through GRN analysis, we identified specific regulatory mechanisms in 
each significant cell type for primary and metastatic breast cancer. Our study revealed 
distinct expression patterns of the transcription factors associated with breast cancer 
pathophysiology (Fig. 2e).  

Primary breast cancer malignant cells demonstrated higher regulon activities of 
transcription factors such as ETS2, EPAS1, BATF, NFIL3, TCF7L1, KLF6, MAFF, 
KLF10, CEBPD, and ATF3. These transcription factors are involved in various cellular 
functions implicated in tumor development, apoptosis, immune cell differentiation, 
energy metabolism, and regulation of essential signaling pathways40–46. For instance, 
ETS2 is known to regulate both tumor initiation and apoptosis40, while EPAS1 plays a 
crucial role in cellular responses to hypoxia41. BATF controls the differentiation of 
immune cells42, while NFIL3 is involved in energy metabolism and immune cell 
differentiation43,44. TCF7L1 mediates the Wnt signaling pathway45, and KLF6 modulates 
metabolism, immunity, and oncogenesis46. 

In metastatic breast cancer, higher regulon activities of transcription factors, including 
HOXC13, GATA2, IRF9, MLX, CREB3L4, NFATC4, STAT1, HTATIP2, USF1, and 
CREB3, indicate their potential roles in facilitating cancer metastasis by influencing 
various biological processes. For instance, HOXC13 and GATA2 have been linked to a 
poor prognosis and aggressive phenotypes in a number of cancer lineages47,48. IRF9, 
an interferon response marker, is primarily known for its role in anti-viral immunity and 
has been linked to tumor growth and metastasis49. MLX coordinates lipid storage with 
metabolic gene expression regulation and is linked to poor prognosis50, whereas 
CREB3L4 is involved in unfolded protein response and has been associated with breast 
carcinoma progression51. 

The differential activities of specific regulons in malignant cells reveal distinct 
mechanisms that could potentially be targeted in primary and metastatic tumor states.  

 

Metastatic breast cancer displays an enrichment for more aggressive Integrative 
Clusters. 

We scrutinized gene expression data and classified individual cells using Integrative 
Clusters (IntClust) derived from the METABRIC study52. The classification was based on 
raw expression data derived from the METABRIC study, using the top two hundred 
DEGs for each IntClust. To compute scores for each IntClust and classify each 
malignant cell, we employed the Cluster Independent Annotation (CIA) tool53. We 
performed a statistical proportion analysis for each cluster to determine whether any cell 
type was preferentially enriched or depleted for each method. 
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Malignant cells in primary tumors showed an increased presence of signatures 
associated with IntClust3, 4ER+, 4ER−, 5, and 10. IntClust3 is known for distinct 
patterns of chemosensitivity, and IntClust10 is associated with a stable probability of 
relapse-free cases among ER patients after five years54. In contrast, in metastatic 
malignant cells, we observed significant enrichment of signatures associated with 
IntClust1, 2, and 9. These three IntClust types are associated with more aggressive 
tumor behavior52–54. IntClust1 is characterized by late-recurring ER-positive genomic 
subgroups54, IntClust2 is associated with genomic alterations that contribute to its 
aggressive behavior54, and IntClust9 is distinguished by amplification of the MYC 
oncogene at 8q24 in 89% of tumors54 (Fig. 2f). Furthermore, we observed significant 
intratumor heterogeneity in the expression of IntClust types suggesting that tumors may 
contain cells with differing IntClust subtypes. The dominant IntClust types that represent 
the most frequent cellular subtypes varied for each sample, highlighting the complexity 
of the underlying cellular landscape (Supp. Fig. 3b). 

 

Primary breast cancer samples displayed increased activation of the TNF-α 
signaling pathway via NFkB 

TNF-α and NFkB signaling pathway activities were elevated in malignant cells of 
primary breast cancer samples compared to those of metastatic samples. In contrast, 
we observed higher JAK-STAT pathway activity in metastatic samples compared to 
primary samples using Progeny pathway activity55 (Fig. 2g, 2h).  We further investigated 
highly expressed genes from the NF-kB and JAK-STAT pathways in malignant cells 
from primary and metastatic samples. We found that many of the JAK-STAT-related 
genes enriched in metastatic malignant cells were also associated with interferon 
activity, while malignant cells from primary breast samples were enriched for genes 
associated positively with chemotaxis or immune regulation such as CCL20 and 
CXCL256,57 (Supp. Fig. 3c, 3d, 3e). A similar trend was observed at the single-cell level, 
where malignant cells from primary samples were mostly in a cell state defined by 
higher TNF-α signaling via NF-KB, whereas malignant cells from metastatic samples 
were enriched in either hypoxia or interferon-alpha response cell states.  

Given the importance of these pathways in regulating the immune response and altering 
the tumor microenvironment, we further investigated changes within non-malignant cells 
to assess potential deregulations in the immune microenvironment. 

 

Macrophage subtypes are polarized toward immunosuppression across 
metastatic breast cancer 

Myeloid cells play pivotal roles in the TME. We identified twenty-five distinct myeloid 
subclusters in both primary and metastatic cancer types. These include fifteen subtypes 
of macrophages, six subtypes of dendritic cells (DCs), three subtypes of monocytes, 
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and a single subtype of mast cells (Fig. 3a). Specific macrophage subtypes, including 
FOLR2-expressing macrophages, CX3CR-expressing macrophages, and FCN1-
expressing monocytes, were notably enriched in primary tumors (Fig. 3b, 3c). FOLR2-
positive macrophages in the tumor microenvironment have been observed to have 
increased communication with CD8+ T cells. This interaction is facilitated by the high 
expression of CXCL9 and CXCR3, which are closely associated with FOLR218,58. 
Importantly, elevated expression of CXCL9 and CX3CR and also elevated FOLR2+ 
macrophages in tumors has been correlated with a better prognosis in breast cancer 
patients16,18. Importantly, CX3CR-expressing macrophages play a pivotal role in 
immune activation and have emerged as a promising target for cancer therapies due to 
their regulatory role in immune responses58,59. FCN1-positive monocytes have been 
associated with increased inflammatory function in several other cancer types, 
indicating a potential role for FCN1-expressing monocytes in modulating immune 
responses in cancer contexts60. 

In the metastatic tumors, our study predominantly found an increase in macrophages 
expressing CCL2, MGP, SPP1, and MMP9. CCL2-expressing macrophages can 
potentially contribute to facilitating tumor cell invasion and metastasis20,61–63. This is 
supported by the role of the CCL2/CCR2 axis in TAM development, the direct impact of 
CCR2 signaling on tumor cell survival/growth and invasion/metastasis, and the 
association between high CCL2 expression and poor prognosis in cancer patients20. 
Macrophages expressing MGP have been found to contribute to upregulating pro-
tumorigenic factors associated with promoting immunoresistance64. SPP1+ tumor-
associated macrophages were associated with poor prognosis in various cancers, 
potentially by contributing to tumor invasion by degrading the basement membrane 
through MMP expression60. Additionally, MMP9 expressing TAMs have been found to 
significantly contribute to creating a favorable environment for cancer metastasis65. 
These macrophages have been linked to promoting aggressiveness and poor prognosis 
in various types of cancer60,65. 

Using pseudobulk differential gene expression analysis, we observed a distinct 
partitioning of marker enrichment across myeloid cell populations exemplified by a 
volcano plot representation of differentially expressed genes. Intriguingly, the top-
ranking genes associated with metastasis were predominantly linked to the interferon 
(IFN) response, underscoring the potential role of this pathway in the metastatic 
cascade. Indeed, chronic IFN signaling has been associated with an 
immunosuppressive immune contexture66. Conversely, the genes most prominently 
expressed in primary tumors were correlated with the TNF-α/NF-kB signaling pathway, 
suggesting a differential regulatory landscape between the primary and metastatic 
cellular contexts (Supp. Fig. 4a). 

To gain a better understanding of the biological characteristics of myeloid cells, we 
investigated hallmark pathway activities within these cells. Our analysis revealed a 
significant increase in TNF-α signaling through the NFkB pathway in myeloid cells from 
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primary tumors (Fig. 3d). In contrast, myeloid cells from metastatic tumors displayed 
pathways associated with oxidative phosphorylation, as well as responses to IFN-alpha 
and gamma. This suggests a diverse functional landscape across different myeloid cell 
states, which was also confirmed at the single-cell level (Fig. 3d, Supp. Fig. 4b). 

We also utilized the CancerSEA67 database to examine cancer-related pathway activity. 
Our findings revealed a notable increase in invasion and metastasis traits in metastatic 
breast cancer macrophages, which implies a more aggressive phenotype in these cells, 
potentially contributing to the dissemination of the disease. In contrast, primary breast 
cancer myeloid cells showed a general increase in inflammation characteristics, 
particularly in the macrophage subset. This might suggest an active immune response 
within the primary tumor microenvironment, which could potentially influence tumor 
progression and treatment outcomes (Fig. 3e, Supp. Fig. 4c). 

To delineate functional mechanisms in the immune microenvironment, we utilized 
CellChat68 to identify alterations in signaling interactions and cell-cell communications 
within the TME. Using CellChat, we focused on the top 15% predominant cell-cell 
interactions in both the primary and metastatic groups (Fig. 3f, 3g).  

When comparing primary and metastatic datasets, we noticed unique patterns of cell-
cell communication. In the primary dataset, there was a greater frequency of signaling 
from malignant cells, Treg cells, CD4+ T cells, and CD8+ T cells to macrophages, 
suggesting a strong interaction between these cell types in the primary tumor context. 
However, in the metastatic dataset, we observed a change in this communication 
pattern with an increase in signaling from macrophages to Treg cells and CD8+ T cells. 
This reversal in signaling direction suggests a potential change in the role of 
macrophages within the metastatic TME, possibly affecting the behavior of Treg and 
CD8+ T cells. These observations emphasize the dynamic nature of cell-cell interactions 
within the TME and the importance of understanding these changes in relation to tumor 
progression and metastasis. Collectively, these observed differences in 
myeloid/macrophage interactions point to a gain in the immunosuppressive TME within 
metastatic sites (Fig 3h). 

We observed an enrichment of ligands that could potentially mediate cellular interactions 
in both primary and metastatic cancers (Supp. Fig. 4d, 4e). We noted elevated pro-
inflammatory activity interactions, specifically with markers such as CXCL1, CXCL2, and 
CXCL8 in primary breast cancer. In the case of metastatic breast cancer, our study 
revealed aberrant interactions involving markers such as FN1, COL1A1, COL1A2, 
COL6A1, and THY1. These markers are integral to the formation and regulation of the 
ECM, a critical component of the tumor microenvironment. Aberrant interactions involving 
these proteins could lead to alterations in the ECM, potentially promoting cancer 
progression and metastasis69,70 (Supp. Fig. 4d, 4e). 

 

Aberrant lymphoid response within metastatic breast cancer TME 
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To expand upon our prior findings, which highlighted the interactions between immune 
cells and the TME, we aimed to identify possible alterations in lymphoid subtypes during 
breast cancer metastasis. We conducted an unsupervised clustering of lymphoid cells, 
resulting in the identification of twelve T cell, three B cell, and two NK cell subclusters 
(Fig. 4a) that clearly distinguished the subtypes in both primary and metastatic tumors.  

Although all T-cell subtypes were present in both primary and metastatic samples 
(Supp. Fig. 5a), the relative proportions of certain T-cell subtypes changed significantly 
from primary to metastatic tumors (Fig. 4b). Primary tumors generally displayed a higher 
proportion of pro-inflammatory T-cell subtypes, including CD4+ central memory T-cells 
that contribute to the rapid expansion of antigen-specific CD4+ T-cells and promote 
inflammation71. In contrast, metastatic samples exhibited mixed deregulation of T-cell 
subtypes, characterized by increases in CD8+ exhausted T-cells, CD4+ IFI6 T-cells, 
CD4+ Native T-cells, CD8+ MKI67+ T-cells, and FOXP3+ Tregs (Fig. 4b). The IFI6-
expressing activated T cell (Tact) subtype is associated with disease progression post-
chemotherapy in TNBC patients and correlates with a lower metastasis-free survival 
rate in breast cancer patients21. The upregulation of the IFI6 gene is linked to the control 
of mitochondrial ROS production, potentially contributing to unfavorable clinical 
outcomes in breast cancer patients21. These associations might also extend to the ER+ 
breast cancers in this study. 

In our study, proliferative MKI67+ T cells were present exclusively in metastatic ER-
positive patients. Studies in patients with triple-negative breast cancer (TNBC) with 
disease progression after chemotherapy have also shown proliferative MKI67+ T-cells 
(Tprf-MKI67)21. Additionally, MKI67 gene expression was significantly correlated with 
lymph node metastases, tumor invasion, and adverse survival outcomes in TNBC21. 

In primary tumors, there is a higher proportion of CD16-positive NK cells, whereas in 
metastatic breast cancer, there is a higher proportion of CD56-positive NK cells (Fig. 
4c). CD16-positive NK cells contribute to antibody-dependent cellular cytotoxicity 
(ADCC), a process where specialized immune cells, such as NK cells, recognize and kill 
cells coated with antibodies through interaction with CD16 receptors on their 
surface72,73. Additionally, our data revealed that primary tumors show significant 
enrichment in ADCC-related gene signatures compared to metastatic samples 
published previously74 (Supp. Fig. 5b).  

Regarding B-cell subtypes, we found a decrease in memory B cells and an increase in 
naive B-cells within the metastatic samples (Fig. 4d). This observation is consistent with 
the active recruitment of B cells to the TME without prior priming against malignant cells.  

 

Lymphoid metabolic reprogramming results in an immunosuppressive metastatic 
TME 
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To further probe lymphoid subtypes, we performed pathway enrichment and also 
interaction analysis to decipher phenotypic changes. When considering all types of 
lymphoid cells, T cells in primary tumors show a preference for glycolytic signaling, 
while T cells in metastatic tumors are more enriched for fatty acid metabolism, reactive 
oxygen species production, and oxidative phosphorylation (Fig. 4e). 

While our data shows higher hypoxic signaling in metastatic malignant cells, in primary 
samples, we rather observe this enrichment in the non-epithelial cell types. Indeed, we 
see a collective increase in hypoxic signaling, along with a decrease in oxidative 
phosphorylation in T cells from primary tumors compared to T cells from metastatic 
tumors (Fig. 4f, 4g). While low oxygen tension in T cells has been associated with 
inhibiting their function, recent studies also show that this characteristic can enhance 
aspects of the adaptive immune response75. Additionally, hypoxia during antigen 
recognition may differentially prime T cells, leading to improved antitumor activity76,77. 

Network analysis revealed a dramatic shift in lymphoid cell-related signaling in 
metastatic tumors (Fig. 4h, 4i). Malignant and lymphoid interactions in primary tumors 
were dominated by an immunostimulatory regime, which largely signaled CD8+ T 
effector cells, while metastatic interactions were dominated by substantive signaling into 
CD8+ T effector memory (TEM) cells. The loss of the CD8+ cytotoxic population with a 
concomitant increase in CD8+ TEM may indicate a chronic immunosuppressive TME 
where CD8+ TEMs recognize malignant cells yet cannot effectively mediate tumor 
clearance78,79. 

Our study observed varying levels of immune checkpoint inhibition across different cell 
types in both primary and metastatic breast cancers. Specifically, Tregs and Th1-like 
CXCL13+CD4+ T cells showed elevated expression of immune checkpoint transcripts. 
Also, metastatic lesions displayed a stronger immune checkpoint inhibition signal than 
primary tumors (Supp. Fig. 5c).  

Th1-like CXCL13+ CD4+ T cells are known to interact with Tregs and are involved in 
downregulating genes associated with TCR signaling, similar to Tregs80. We also found 
that both cell types were more prevalent in metastatic samples (Supp. Fig. 5a). Our 
findings suggest that ER+ metastatic breast cancer patients may benefit from immune 
checkpoint inhibitor therapy, which could potentially enhance antitumor immune 
responses. 

 

Stromal cell remodeling occurs in the TME in metastatic sites 

As key modulators of the stromal landscape of TMEs, we then focused on the 
characterization of fibroblasts. Unsupervised clustering of stromal cells revealed 
changes between primary and metastatic samples across one endothelial and 10 CAF 
subtypes (Fig. 5a) with a loss of both antigen-presenting (apCAF) and inflammatory 
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CAFs (iCAF) coupled with a gain of both matrix CAFs(mCAF) and pericytes (Fig. 5a, 5b, 
Supp. Fig. 6a) in metastatic tumors. 

While CAFs are usually considered to have an immunosuppressive role81, antigen-
presenting cancer-associated fibroblasts can enhance antigen presentation in the tumor 
microenvironment through MHC-II82. In primary breast cancer samples, there were 
higher levels of inflammatory CAFs, which were identified by high expression of 
cytokines such as CXCL12, CXCL14, and IL683. These cytokines are indicators of 
inflammation and suggest an increased pathway involving PDGF, STAT3, KRAS 
signaling, and complement activation83. 

In metastatic tumors, we observed an increase in matrix cancer-associated fibroblasts, 
which exhibited gene expression associated with invasion, such as matrix 
metalloproteinases (MMP), consistent with the alteration of the metastatic breast cancer 
TME83. Vascular pericytes are also found in a higher proportion in metastatic breast 
tumors and have previously been found to play a part in cancer invasion and metastasis 
through several pathways84. 

As seen with myeloid and lymphoid lineages, stromal cells similarly exhibited higher 
levels of hypoxic signaling within the primary TME (Fig. 5c), supporting the notion that 
hypoxic stress shifts from non-tumor cells to tumor cells in the metastatic sites. Our 
findings indicate that hypoxic signaling varies between these sites, reflecting differing 
responses to extracellular oxygen levels rather than uniformity across cell types85. 

Metastatic stromal cells displayed a notable increase in genes associated with 
angiogenesis and metastasis, indicating their potential involvement in promoting the 
growth and spread of tumors (Fig. 5c, 5d, 5e). In contrast, fibroblasts from primary TME 
showed an increase in inflammation and quiescence-related gene signatures.  

Additionally, primary breast cancer fibroblasts displayed distinct cellular states at a 
cellular level, with subtypes including iCAFs within the primary TME predominantly 
exhibiting a quiescent state (Fig. 5d, 5e). 

Next, we investigated the impact of transcription factors on fibroblasts. We observed 
high regulon activity of DLX5, a member of the MMP family86, especially in vascular 
cancer-associated fibroblasts (Pericytes and vascular CAFs) (Fig. 5f). Notably, we 
observed significantly higher DLX5 regulon activity in metastatic samples compared to 
primary tumors (Fig. 5g).  

We evaluated communication between stromal cells and other cell types using the 
CellChat framework (Fig. 5h). Specifically, we found that myeloid cells exhibited 
heightened intercellular communication with fibroblasts in primary tumors, which aligns 
with our analysis of communication between malignant and tumor cells.  Additionally, we 
discovered that fibroblasts established communication channels with other cell types 
and within themselves, particularly in the metastatic TME. 
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To gain a deeper understanding of the signaling pathways influencing cell-cell 
interactions in the TME, we conducted network analysis utilizing the MultiNicheNet87 

approach.  Our analysis revealed significant integrin and collagen-mediated interactions 
among stromal cells, as depicted in (Supp. Fig. 6b, 6c). Integrins are known to play a 
critical role in cell-cell and cell-extracellular matrix interactions, while collagen is a major 
component of the extracellular matrix88. The presence of these interactions underscores 
the importance of integrin and collagen-mediated signaling in the communication and 
behavior of stromal cells within the TME, particularly in metastatic tumors89. 

 

Discussion  

As primary breast cancers progress and transition to metastatic breast cancer, an 
imbalance of TME signaling occurs that ultimately leads to poorer outcomes90. 
Unraveling the interactions within the TME is an evolving need, where tools, including 
single-cell sequencing, can reveal complex interactions between cell types. Several 
recent studies have used sc-RNAseq to reveal changes among cellular players in TME, 
including in breast and pancreatic cancers12,91 with the breast cancer study being 
restricted to lymph node metastasis. In this study, we analyzed the cellular composition 
and signaling pathways in primary breast cancers in comparison to tumors occurring in 
the most prevalent metastatic sites, including lymph nodes, liver, bone, adrenal gland, 
and subcutaneous (Fig. 1a). Our differential gene expression analysis did not identify 
substantial differences between tumor metastatic sites. This could be due to the small 
sample size analyzed, as well as the possibility that metastasis-specific gene 
expression patterns have a high degree of conservation across the different sites. With 
our analysis, we shed light on the core cellular and functional differences between 
primary and metastatic breast cancer niches. 

While the main cell types were consistent between primary and metastatic samples, 
there were significant differences in the proportions of cellular subtypes within each 
group. The substantial cellular heterogeneity highlights the need for precise treatment 
approaches, with the differences between the subtypes potentially indicating therapeutic 
opportunities.  

We observed pronounced transcriptional dynamics within malignant cells, indicating 
significant diversity in gene expression between primary and metastatic tumors. Our 
analysis of CNVs revealed substantial inter-patient differences in CNV profiles within 
both primary and metastatic tumor cell populations, further supporting the presence of 
intertumoral heterogeneity. We identified specific chromosomal regions that were 
pronounced in metastatic samples, encompassing genes associated with the 
progression and aggressiveness of breast cancer25–32 (Supp. Fig. 2b). Consistent with 
previous studies92, metastatic tumor cells exhibited a higher average number of clones 
compared to primary tumor sites.  
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Additionally, our study examined the classification of malignant cells using Integrative 
Clusters (IntClust) derived from the METABRIC study52. We observed an enrichment of 
more aggressive IntClust types in metastatic breast cancer, including IntClust1, 2, and 
9.  These IntClust types have been associated with late-recurring ER-positive genomic 
subgroups, genomic alterations contributing to aggressive behavior, and amplification of 
the MYC oncogene, respectively. This enrichment further supports the notion that 
metastatic breast cancer displays a more aggressive tumor behavior compared to 
primary breast cancer. Interestingly, single-cell analysis indicated that the primary and 
metastatic breast cancers contain cells from multiple different IntClust types, with the 
designated IntClust likely representing the dominant cell type in the tumors. This also 
suggests that some aspects of the IntClust may be due to cell state differences rather 
than determined by the mutation status of the cell.  

While studying differences in activity of signaling pathways between the two disease 
states, we found elevated TNF-α via NFkB signaling pathway activities in primary breast 
cancer samples compared to metastatic samples. In contrast, metastatic samples 
showed higher JAK-STAT and IFN pathway activities. The activation of the TNF-α 
pathway in primary tumors may contribute to the recruitment of immune cells and the 
production of pro-inflammatory cytokines and chemokines93. Notably, the prominence of 
inflammatory signaling in primary tumors implies a potential role in initiating key 
processes conducive to tumor progression, including tumor cell invasion and 
migration94. Specifically, this aberrant signaling may serve as an early driver in the 
pathogenesis of primary tumors, setting the stage for subsequent metastatic 
dissemination95. The observed loss of NFkB signaling in metastatic malignant cells may 
contribute to the establishment of an immunosuppressive microenvironment permissive 
for growth in the metastatic niche96. 

Our findings highlight the heterogeneity of myeloid cells, particularly macrophages, in 
the TME and point to their role in tumor progression and metastasis. In primary tumors, 
we observed that the enrichments of specific macrophage and monocyte subtypes are 
linked to better prognosis in cancer. While FOLR2+ macrophages were found to 
communicate more effectively with CD8+ T cells16, CXCR3+ macrophages, on the other 
hand, play a pivotal role in immune activation and have emerged as a promising target 
in cancer therapies.  The diminished expression of CXCR3 in macrophages in 
metastatic breast cancer may be linked to changes in the immune microenvironment 
that support tumor survival in the metastatic niche59. FCN1+ monocytes have also been 
associated with increased inflammatory function in other cancer types, suggesting their 
potential role in modulating immune responses in cancer contexts60. 

Our study further revealed the presence of macrophages expressing CCL2, MGP, 
SPP1, and MMP9 in metastatic tumors. As described above, these TAMs have been 
associated with aspects of tumor metastasis and may prepare metastatic sites for 
malignant cell growth. 
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Our examination of marker enrichment and pathway activities within myeloid cells 
revealed clear differences between primary and metastatic tumors. Primary tumors 
showed heightened TNF-α signaling through the NFkB pathway, indicating an active 
immune response within the primary tumor microenvironment. On the other hand, 
metastatic myeloid cells exhibited pathways related to oxidative phosphorylation and 
responses to interferon-alpha and gamma. Acute Type I IFN signaling response is 
considered a key driver for inflammation97. Studies suggest that Type I IFN has a dual 
role in cancer and chronic inflammation. The Type I IFN response in the Tumor 
Microenvironment may promote pro-tumorigenic TAM infiltration in metastatic lesions98. 
However, chronic interferon stimulation has been proposed to be immunosuppressive66 
and may contribute to the immunosuppressive microenvironment observed in metastatic 
ER+ breast cancers in our study.  This diverse functional landscape across different 
myeloid cell states highlights the dynamic nature of the TME and its potential influence 
on tumor progression and treatment outcomes. 

Furthermore, our investigation of cell-cell interactions within the TME has uncovered 
significant changes in cellular interactions in metastatic tumors. In the case of 
metastatic breast cancer, cell-cell interactions predominantly revolved around the 
formation and regulation of the ECM, a pivotal component of the TME. This suggests a 
significant shift in the role of macrophages within the metastatic TME, potentially 
influencing the behavior of other immune cells. These findings underscore the vital 
significance of understanding the dynamic nature of cell-cell interactions and their 
impact on tumor progression and metastasis. 

Within the lymphoid context, primary tumors exhibited a higher proportion of pro-
inflammatory T-cell subtypes, while metastatic samples displayed mixed deregulation of 
T-cell subtypes, including increases in exhausted T cells, IFI6 T cells, naive T cells, 
MKI67+ T cells, and Tregs suggesting a shift towards a chronic immunosuppressive 
tumor microenvironment. 

Our study highlights the potential prognostic use of specific T cell subtypes in breast 
cancer. The presence of IFI6-expressing activated T cells was associated with disease 
progression post-chemotherapy and lower metastasis-free survival rates21. Additionally, 
the presence of proliferative MKI67+ T cells was exclusive to TNBC patients 
experiencing disease progression after chemotherapy, and their gene expression 
correlated with lymph node metastases, tumor invasion, and adverse survival 
outcomes. Our study suggests that similar processes may be involved in ER+ tumors. 

In terms of NK cells, CD16-positive NK cells, which play a role in ADCC, were more 
prevalent in primary breast cancer. However, in metastatic breast cancer, there was a 
higher proportion of CD56-positive NK cells. This shift may suggest a loss of NK cell 
ADCC ability during the metastatic transition, consistent with previous studies72,73. 

We observed a decrease in memory B cells and an increase in naive B cells within the 
metastatic samples. This shift suggests active recruitment of naive B cells to the 
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metastatic tumor microenvironment without prior priming against malignant cells. These 
findings provide further evidence of the complex interactions between lymphoid cells 
and the tumor microenvironment during breast cancer metastasis.  

The identification of specific T cell subtypes associated with disease progression and 
prognosis, as well as the dynamic changes in NK cell and B cell subtypes, provide 
valuable insights for the development of targeted therapies and immunotherapies in 
metastatic breast cancer. Further studies are warranted to elucidate the underlying 
mechanisms driving these alterations in lymphoid subtypes and their functional 
implications in the tumor microenvironment. We also investigated the metabolic 
reprogramming of lymphoid cells. We found that T cells in primary tumors showed a 
preference for glycolytic signaling, while T cells in metastatic tumors were more 
enriched for fatty acid metabolism, reactive oxygen species production, and oxidative 
phosphorylation.  This indicates a shift in metabolic pathways during breast cancer 
metastasis. While low oxygen tensions in the T cell microenvironment have been 
associated with inhibiting their function, recent studies suggest that this characteristic 
can enhance aspects of the adaptive immune response and improve antitumor activity. 
Network analysis demonstrated a dramatic shift in lymphoid cell-related signaling upon 
metastasis.  Primary breast cancer lymphoid interactions were dominated by an 
immunostimulatory regime, primarily signaling CD8+ T effector cells.  In contrast, 
metastatic interactions were dominated by substantive signaling into CD8+ T effector 
memory cells.  This suggests a chronic immunosuppressive TME in metastatic breast 
cancer, where CD8+ TEMs recognize malignant cells but cannot effectively mediate 
tumor clearance.  

Finally, our study revealed varying levels of immune checkpoint inhibition across 
different cell types in both primary and metastatic breast cancer. Tregs and Th1-like 
CXCL13+CD4+ T cells showed elevated expression of immune checkpoint mediators.  
Metastatic lesions displayed a stronger immune checkpoint inhibition signal than 
primary tumors.  These findings suggest that breast cancer patients with metastatic ER+ 
tumors may benefit from immune checkpoint inhibitor therapy, which could enhance 
antitumor immune responses99. 

It has been established that endothelial and fibroblast cells play crucial roles in the 
tumor microenvironment. In the context of the TME, fibroblasts, specifically cancer-
associated fibroblasts, have been recognized as key modulators of the stromal 
landscape.  They interact with tumor cells and other stromal components, influencing 
tumor progression, immune response, and therapy resistance. Building upon this 
knowledge, our study delved deeper into the characterization of fibroblasts within the 
TME, particularly during metastasis. We observed a loss of apCAF and iCAF, coupled 
with a gain of mCAF and pericytes in metastatic breast cancer.  While CAFs are 
generally considered to have an immunosuppressive role, apCAFs can enhance 
antigen presentation in the TME82. Notably, we observed higher levels of inflammatory 
CAFs, identified by high expression of cytokines associated with inflammation in primary 
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breast cancer samples, indicating their potential involvement in promoting an 
inflammatory environment conducive to tumor growth.  A subset of iCAFs in the primary 
samples showed an increase in quiescence-related gene signatures. The identification 
of these quiescent iCAFs suggests that these fibroblasts may have specific functions 
related to cellular dormancy and inflammation regulation within the primary TME100. In 
metastatic breast cancer samples, we observed an increase in matrix CAFs, which 
exhibited gene expression patterns associated with invasion, such as MMPs. This 
observation aligns with previous studies highlighting the role of fibroblasts in facilitating 
tumor invasion and metastasis.  Moreover, the increased presence of vascular pericytes 
in metastatic breast cancer further implicates their contribution to cancer progression 
through various pathways. 

We observed elevated hypoxic signaling in stromal cells within the primary TME, 
consistent with the increased hypoxia seen in myeloid and lymphoid lineages. Notably, 
hypoxic signaling levels varied across different cell types, underscoring the critical 
influence of oxygen availability in shaping the dynamics of the TME. This variation 
highlights the potential role of cell type-specific responses to hypoxia in driving tumor 
progression and adaptation. 

One of the key findings in our study was the high activity of the DLX5 regulon, 
particularly in vascular CAFs and pericytes. DLX5 is known to regulate the expression 
of MMPs, which are enzymes involved in degrading the extracellular matrix and 
facilitating tumor cell invasion. The upregulation of DLX5 in metastatic stromal cells 
indicates a potential mechanism by which these cells contribute to the growth and 
spread of tumors. Overall, the high DLX5 regulon activity observed in vascular CAFs 
and pericytes in metastatic samples suggests its potential as a therapeutic target86. The 
prominent presence of integrin and collagen-mediated interactions in the metastatic 
stroma highlights their importance in establishing metastasis (Supp. Fig. 6b, 6c).  

In conclusion, our study provides valuable insights into the characteristics and 
interactions of stromal cells within the TME.  The differential hypoxic signaling, gene 
expression profiles, cellular states, and intercellular communication observed among 
stromal cells contribute to our understanding of tumor progression and metastasis.  
These findings may have implications for the development of targeted therapies aimed 
at disrupting the tumor-stroma interactions in cancer treatment. 

 

Methods 

Sample collection and preparation 

This study was approved by the Oregon Health & Science University (OHSU) 
Institutional Review Board (IRB). All biospecimens were collected and analyzed under 
the OHSU IRB-approved CEDAR (IRB #20750) or MMTERT observational study (Mitri 
2018) (IRB #16113). 
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Participant eligibility was determined by the enrolling physician, and informed written 
consent was obtained from all subjects. All biopsy biospecimen used in this study were 
prospectively collected freshly for single-cell RNA sequencing library construction. 

Tissue dissociation 

Tumor tissues were disaggregated by gentleMACS kits (Miltenyi Biotec, #130-095-929) 
following the manufacturer’s protocol. The lysate was resuspended and filtered through 
a 70-µm cell strainer (130-098-462; Miltenyi Biotec Germany). Cells were collected by 
centrifuging (300 × g for 7 min at 4 °C) and resuspended at 700–1200 cells/µl. Live cells 
were isolated by EasySep Dead Cell Removal (Annexin V) Kit (STEMCELL 
Technologies, #17899).  

Single-cell RNA sequencing library construction 

Single-cell suspensions were processed according to the 10xGenomics scRNAseq 
sample preparation protocol (Chromium Next GEM Single Cell 3' Kit v3.1, 
10xGenomics). The entire mixed cell population was further analyzed without sorting or 
enrichment for specific cell subtypes. Cell suspensions were uploaded into the 
Chromium controller, capturing GEMs that encapsulated an estimated 5,000-10,000 
single cells per channel. Libraries were constructed from the amplified cDNA, and 
sequencing was performed on the Illumina NovaSeq 6000 platform. All steps were 
performed according to the manufacturer’s standard protocol. 

Processing and quality control of scRNA-seq data 

To ensure high-quality data, we implemented three quality control measures on the raw 
gene-cell-barcode matrix for each cell: the proportion of mitochondrial genes (≤20%), 
unique molecular identifiers (UMIs), and gene count (ranging from 400 to 100,000 and 
200 to 10,000, respectively) using Scanpy101. Doublets were identified and removed 
using the Scrublet102 package for each sample. Normalization of total counts per cell 
was performed using the normalize_total function in the Scanpy101 package in Python, 
followed by log-normalization with the log1p function. Clustering was conducted using 
the Leiden algorithm at a resolution of 1, as provided by Scanpy101. 

Alignment and raw expression matrix construction 

Raw sequencing data were aligned to GRCh38 genome reference using 10X software 
CellRanger (Version 6.1.2) with default parameters. 

RNA velocity analysis 

For RNA velocity analysis, the spliced and unspliced reads were counted using the 
velocyto.py103 package (v0.17.17) from aligned bam files generated by CellRanger. A 
separate loom file was generated and used to process each sample further. 

Annotation 
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Marker genes for each cluster were identified using a t-test implemented in Scanpy101. 
These marker genes were then used to annotate each cluster using publicly available 
databases such as CellMarker13 and PanglaoDB14 To determine the cell identities. 
These annotations were later refined using the CellTypist15 package and its annotate 
function. The model 'Immune_All_High.pkl' was specified, and majority voting was 
enabled. Through this process, seven major cell type clusters were annotated: epithelial 
cells, natural killer cells, myeloid cells, T cells, B cells, fibroblasts, and endothelial cells. 
To distinguish malignant cells, we calculated and identified large-scale chromosomal 
copy number variation (CNV) by inferCNV22 and CaSpER23 tools for each sample based 
on transcriptomes. T cells and myeloid cells were considered reference cells; epithelial 
cells that had differing CNV patterns and exhibited higher CNV scores were annotated 
as malignant cells. 

Datasets were merged across different samples using SCVI104 based integration, the 
top 4000 highly variable genes were used to train the VAE models, with each biopsy as 
a covariate key. After training the initial VAE model, the annotated cell types were used 
to build an extended model with scANVI105 for better integration. 

After integration, NK cells, myeloid cells, T cells, B cells, and fibroblasts were further 
classified using the following publicly available single-cell RNA seq datasets: NK cells 
(GSE212890)106, T, myeloid, and B cells (GSE169426)107, and fibroblasts (GSE103322, 
GSE132465, GSE154778, and GSE212966)83. This label transfer was performed using 
the scArches108 algorithm, following the best practices described previously109. 

Proportion Analysis 

A proportion analysis was conducted using the scProportionTest110 package to compare 
the fractions of cells within different cell populations. This involved performing a 
permutation test to calculate a p-value for each cluster and obtaining a confidence 
interval through bootstrapping. 

Constructing gene regulatory networks 

We used pySCENIC39 to construct gene regulatory networks. This involved employing 
the GRNboost2 method for network inference. We used the cisTarget function with the 
Human motif database v10 to enrich gene signatures and pruned based on cis-
regulatory cues using default settings. AUC scores were used to assess regulon 
enrichment across single cells, and the regulon specificity score was used to compute 
differential regulon activity. 

Copy number profile and subclone inference 

We used the SCEVAN37 to determine clonal structures from inferred copy-number 
alteration profiles. The multiSampleComparisonClonalCN pipeline was employed for 
intratumoral comparison among multiple samples, with T cells and myeloid cells 
considered as the reference cells. 
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Pathway analysis  

To assess the pathway activities, we employed decoupler-py111 and retrieved the gene 
sets from the Molecular Signatures Database (MSigDB)56, PROGENy55 database, and 
CancerSEA67 databases.  

For each single-cell, pathway activity was inferred using the decouple function with 
default parameters applied to gene sets that included weight information for each gene. 
In cases where gene sets did not have weight information, we employed the aucell 
function with default parameters, also within the decoupler-py111 package. 

Data visualization 

We used essential Scanpy101 functions to generate UMAPs, box plots, heatmaps, dot 
plots, and violin plots. Proportional change was analyzed and visualized by using 
scProportionTest110 and Pertpy112.  

For each condition under consideration, we generated pseudobulk profiles in 
accordance with the official vignette for pseudo-bulk functional analysis using the 
decoupler-py algorithm. The decoupler-py111 plot_barplot function was employed to 
illustrate the top absolute value activities for pathway activities in each condition. 
Additionally, we utilized the plot_targets function to compare primary and metastatic 
gene expression profiles, focusing on the target genes associated with each 
PROGENy55 pathway. 

Visualization of the dimension reduction of cellular states for pathway activities at the 
cellular level was performed using the SCpubr113 do_CellularStatesPlot. Gene 
signatures sourced from the Molecular Signatures Database (MSigDB)56 were utilized to 
create these visual representations. 

Differential abundance testing 

Graph-based differential abundance analysis was performed using the Milo114 
framework in Pertpy112 to compare the cellular composition between primary and 
metastatic samples. The analysis followed the tutorial provided in the Pertpy package 
and utilized integrated datasets for each major cell type. 

Cell-cell communication analysis 

We investigated cell-cell communication using the CellChat v268 tool to infer, visualize, 
and analyze cell-cell communication networks from scRNA-seq data. The analysis was 
conducted following the recommended pipeline provided by the CellChat authors68. 

Furthermore, we utilized the MultiNicheNet87 package to conduct cell interaction 
analysis, predicting ligand-receptor interactions between different cell types in both 
primary and metastatic tumor microenvironments. The analysis followed the guidelines 
outlined in the MultiNicheNet vignette. We visualized each group's top twenty-five 
ligand-receptor interactions using the make_circos_group_comparison function. 
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Survival Analysis 

Kaplan-Meier survival analysis was performed using publicly available RNA-Seq 
datasets in the KM plotter33, focusing specifically on ER+ tumors among 2,575 patients. 
We assessed the collective high or low expression of the following genes: ARNT, 
BIRC3, EIF2AK1, EIF2AK2, FANCA, HOXC11, KIAA1549, MSH2, MSH6, and MYCN. 

Methodology for IntClust Classification 

We utilized the Cluster Independent Annotation (CIA)53 tool to compute scores for each 
IntClust and to classify each cell accordingly. The top 200 differentially expressed genes 
(DEGs) for each IntClust, as identified in the METABRIC52 study, were utilized as input 
for the CIA tool. Specifically, we utilized the CIA_classify function to calculate scores 
based on the expression levels of the selected DEGs and assign each cell to the most 
probable IntClust. 

 

Data availability 

Raw single-cell RNA sequencing data for this study are available in the NCBI BioProject 
database under accession number PRJNA1140267. Processed single-cell RNA 
sequencing data and single-cell RNA seq objects can be found as follows: 
https://doi.org/10.5281/zenodo.13743373 
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signatures used in the analysis (Supplementary Table 3.xlsx) 

Supplementary Document 1: CNV alteration heatmaps for individual samples 
(Supplementary Document 1.pdf) 
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Further information and requests for resources and reagents should be directed to and 
will be fulfilled by the Lead Contact, Furkan Ozmen(ozmen@ohsu.edu). 
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Fig.1 Single-Cell Landscape of Primary and Metastatic ER+ Breast Cancer: 
Characterization and Cellular Subtype Differences 

a. Sample collection workflow and data analysis overview. (Created in BioRender. 
BioRender.com/y20n356) 

b. UMAP visualization of the unified cell map, consisting of 7 major cell types colored by 
clusters. 

c. UMAP visualization of the unified cell map, sub-segmenting by 54 minor cell types 
uniquely colored within the 7 major cell types. 

d. Dot plot representation of differentially expressed genes across the 7 major cell type 
clusters. 

e. Relative percentage of 54 minor cell types by metastatic status and corresponding 
cell number indicated by dot size. 

f. Significant changes in minor cell type proportions between primary and metastatic 
breast cancer 
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Fig.2 Genomic and Phenotypic Alterations in Malignant Cells of Primary vs. 
Metastatic Breast Cancer: Insights from CNV Analysis, Gene Regulatory 
Networks, and Integrative Clusters 

a. UMAP visualization of the number of differentially expressed genes within all major 
cell type clusters. 

b. Chromosomal CNV alternation score by metastatic status, with copy number gain 
and copy number loss indicated by red and blue, respectively. 

c. CNV score comparison between primary and metastatic breast cancer malignant 
cells. Significance indicated as (***, p < 0.001). 

d. ITGEX score comparison between primary and metastatic breast cancer malignant 
cells. Significance indicated as (***, p < 0.001). 

e. Regulon activity scores by metastatic status within malignant cells. 

f. Significant (Log2 FC) integrative cluster differences between primary and metastatic 
malignant cells (p-adj < 0.05). 

g. Differential progeny pathway activity scores within malignant cells across metastatic 
status. 

h. Cellular states plot showing hallmark gene signature activity for Interferon Alpha 
response versus TNF-α signaling via NFkB in malignant cell populations. 
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Fig.3 Distinct Myeloid Cell Populations and Their Roles in Primary and Metastatic 
Breast Cancer: Insights into Macrophage Polarization and Tumor 
Microenvironment Interactions 

a. UMAP visualizations of 7651 myeloid cells. Cells are colored by tissue class of origin 
(left) and grouped by one of 25 identified sub-types (right), including 6 Dendritic, 3 
Monocytic, 1 Mast, and 15 Macrophage lineages. 

b. Bar plots showing the proportions of cells from each tissue class of origin (P=Primary, 
M=Metastatic) for macrophage subtypes with a significant difference in proportion. 
(permutation test, p<0.05, log2FC > 2) 

c. The beeswarm plot illustrates the differential abundance analysis of myeloid cell 
subtypes, revealing distinct variations in cell abundance across neighborhoods, 
stratified by tissue classes of origin in primary and metastatic breast cancer. 

d. Differential Hallmark gene signature pathway activity scores within malignant cells 
across metastatic status. 

e. Cellular states plot showing CANCERSEA gene signature activity for Inflammation 
versus Invasion in myeloid cell populations. 

f. Circle plot displaying the top 15% of primary tumor microenvironment cell-cell 
interactions. Arrow colors indicate sender and thickness represents interaction strength. 

g. Circle plot displaying the top 15% of metastatic tumor microenvironment cell-cell 
interactions. Arrow colors indicate sender and thickness represents interaction strength. 

h. Comparative circle plot visualizing differential cell-cell communication between 
primary and metastatic tumor microenvironments, where red edges indicate increased 
interactions in metastatic tumors and blue edges denote increased interactions in 
primary tumors 
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Fig.4 Lymphoid Cell Landscape and Functional Shifts in Primary vs. Metastatic 
Breast Cancer Tumors" 

a. UMAP visualizations of 19104 lymphoid cells. Cells are colored by tissue class of 
origin on the left and grouped by one of 17 identified subtypes on the right, including 3 B 
cell subtypes, 2 NK cell subtypes, and 12 T cell subtypes. 

b. Bar plots showing the proportions of cells from each tissue class of origin (P=Primary, 
M=Metastatic) for T cell subtypes with a significant difference in proportion. (permutation 
test, p<0.05, log2FC > 2) 

c. The beeswarm plot illustrating the differential abundance analysis of NK cells, 
uncovering variations in cell abundance across neighborhoods, with a focus on specific 
NK cell subtypes, categorized by tissue classes of origin in primary and metastatic 
breast cancer. 

d. Bar plots showing the proportions of cells from each tissue class of origin (P=Primary, 
M=Metastatic) for B cell subtypes with a significant difference in proportion. 
(permutation test, p<0.05, log2FC > 2) 

e. Differential Hallmark gene signature pathway activity scores within T cells across 
metastatic status. 

f. Hypoxia score comparison between primary and metastatic breast cancer T cells. 
Significance indicated as (***, p < 0.001). 

g. OXPHOS score comparison between primary and metastatic breast cancer T cells. 
Significance indicated as (***, p < 0.001). 

h. Circle plot showing the top 10% of predominant cell-cell interactions in the primary 
tumor microenvironment, with arrow colors indicating the source (sender) of the 
interaction, and arrow thickness representing the strength of interaction. 

i. Circle plot showing the top 10% of predominant cell-cell interactions in the metastatic 
tumor microenvironment, with arrow colors indicating the source (sender) of the 
interaction, and arrow thickness representing the strength of interaction. 
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Fig.5 Stromal Cell Remodeling and Fibroblast Subtype Dynamics in Metastatic vs. 
Primary Breast Cancer TME 

a. UMAP visualizations of 17339 stromal cells. Cells are colored by tissue class of origin 
on the left and grouped by one of 11 identified subtypes on the right, including 10 
Fibroblast and an endothelial cell subtype. 

b. Bar plots showing the proportions of cells from each tissue class of origin (P=Primary, 
M=Metastatic) for Fibroblast cell subtypes with a significant difference in proportion. 
(permutation test, p<0.05, log2FC > 2) 

c. Differential CANCERSEA gene signature pathway activity scores within fibroblast 
cells across metastatic status. 

d. Cellular states plot to show CANCERSEA gene signature activity for Angiogenesis, 
Metastasis, Inflammation, and Quiescence across the metastatic status within fibroblast 
cells. 

e. Cellular states plot to show CANCERSEA gene signature activity for Angiogenesis, 
Metastasis, Inflammation, and Quiescence across the multiple fibroblast subtypes. 

f. DLX5 Regulon Activity score comparison between primary and metastatic breast 
cancer stromal cells. Significance indicated as (***, p < 0.001). 

g. DLX5 Regulon Activity score comparison between primary and metastatic breast 
cancer stromal cells. Significance indicated as (***, p < 0.001). 

h. Heatmap comparing the differential number of interactions and interaction strength 
between primary and metastatic tumor microenvironments. The top-colored bar plot 
indicates incoming signaling, while the right-colored bar plot represents outgoing 
signaling for each cell type. Red indicates increased signaling in metastatic tumors, 
whereas blue represents increased signaling in primary tumors. Bar height reflects the 
magnitude of change in interaction number or strength between the two conditions. 

 

 

 

 

 

 

 

 

Supplementary Figures 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 26, 2024. ; https://doi.org/10.1101/2024.09.25.24314388doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.25.24314388
http://creativecommons.org/licenses/by-nc/4.0/


 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 26, 2024. ; https://doi.org/10.1101/2024.09.25.24314388doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.25.24314388
http://creativecommons.org/licenses/by-nc/4.0/


Supp Fig.1 

a. Stacked barplot showing the proportion of seven major cell types across individual 
samples. 

b. Boxplots illustrating changes in the proportions of seven major cell types between 
primary and metastatic breast cancer samples. (permutation test, p<0.05, log2FC > 2) 

c. Dot plot illustrating the percentage of each cell subtype from primary versus 
metastatic tumors, highlighting each cell subtype's distribution and comparative 
abundance across the two conditions. 
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Supp Fig.2 

a. Heatmap showing CNV profiles for malignant cells in individual primary and 
metastatic tumor samples, with T cells as a reference. 

b. Heatmap depicting CNV profiles from all tumor subpopulations per patient, 
comparing the top 25 copy number alterations across chromosomal arms between 
primary and metastatic breast cancer subclones. 
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Supp Fig.3 

a. Kaplan-Meier survival curves for estrogen receptor-positive tumors among 2,575 
patients, comparing survival outcomes associated with high versus low expression of 
the genes ARNT, BIRC3, EIF2AK1, EIF2AK2, FANCA, HOXC11, KIAA1549, MSH2, 
MSH6, and MYCN. 

b. Stacked bar plot showing the proportion of Integrative Clusters (IntClust) across 
individual samples, based on classification using the top 200 differentially expressed 
genes from the METABRIC study. 

c. Cellular states plot to show Hallmark gene signature activity for Hypoxia, Interferon 
Gamma Response, Interferon Alpha Response, and TNF-α Signaling via NFkB across 
the metastatic status within malignant cells. 

d. Plot of the top 25 target genes affected by TNF-α pathway activity, highlighting their 
weight and statistical significance in primary versus metastatic malignant cells based on 
PROGENY pathway activity. 

e. Plot of the top 25 target genes affected by JAK-STAT pathway activity, highlighting 
their weight and statistical significance in primary versus metastatic malignant cells 
based on PROGENY pathway activity. 
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Supp Fig.4 

a. Volcano plot illustrating the differential expression of genes in myeloid cells when 
comparing primary versus metastatic tumors. 

b. Cellular states plot showing Hallmark gene signature activity for Interferon Alpha 
Response versus TNF-α Signaling via NFkB in myeloid cell populations. 

c. Differential CANCERSEA gene signature pathway activity scores within myeloid cells 
across metastatic status. 

d. Word cloud plot illustrating the enriched ligands in primary breast tumor 
microenvironment compared to metastatic cancer 

e. Word cloud plot illustrating the enriched ligands in metastatic breast tumor 
microenvironment compared to primary breast cancer 
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Supp Fig.5 

a. Stacked bar plot showing the proportion of T cell subtypes across the metastatic 
status. 

b. Antibody-dependent cellular cytotoxicity gene signature comparison between primary 
and metastatic breast cancer NK cells. Significance indicated as (***, p < 0.001). 

c. Immune checkpoint inhibition levels compared across different cell types in primary 
and metastatic breast cancers 
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Supp Fig.6 

a. Stacked bar plot showing the proportion of stromal cell subtypes across the 
metastatic status. 

b. Visualization of the top 25 ligand-receptor interactions between different cell types in 
the primary tumor microenvironment, as analyzed using the MultiNicheNet. 

c. Visualization of the top 25 ligand-receptor interactions between different cell types in 
the metastatic tumor microenvironment, as analyzed using the MultiNicheNet. 

d. Comparative circle plot visualizing differential cell-cell communication between 
primary and metastatic tumor microenvironments, where red edges indicate increased 
interactions in metastatic tumors and blue edges denote increased interactions in 
primary tumors 
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a. Sample collection workflow and data analysis overview. (Created in BioRender. BioRender.com/y20n356) b. UMAP visualization of the unified cell map, consisting of 7
major cell types colored by clusters. c. UMAP visualization of the unified cell map, sub-segmenting by 54 minor cell types uniquely colored within the 7 major cell types. d. 
Dot plot representation of differentially expressed genes across the 7 major cell type clusters. e. Relative percentage of 54 minor cell types by metastatic status and
corresponding cell number indicated by dot size. f. Significant changes in minor cell type proportions between primary and metastatic breast cancer

Fig.1 Single-Cell Landscape of Primary and Metastatic ER+ Breast Cancer: Characterization and Cellular Subtype Differences
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Fig.1 Single-Cell Landscape of Primary and Metastatic ER+ Breast Cancer: 
Characterization and Cellular Subtype Differences 

a. Sample collection workflow and data analysis overview. (Created in BioRender. 
BioRender.com/y20n356) 

b. UMAP visualization of the unified cell map, consisting of 7 major cell types colored by 
clusters. 

c. UMAP visualization of the unified cell map, sub-segmenting by 54 minor cell types 
uniquely colored within the 7 major cell types. 

d. Dot plot representation of differentially expressed genes across the 7 major cell type 
clusters. 

e. Relative percentage of 54 minor cell types by metastatic status and corresponding 
cell number indicated by dot size. 

f. Significant changes in minor cell type proportions between primary and metastatic 
breast cancer 
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a. UMAP visualization of the number of differentially expressed genes within all major cell type clusters. b. Chromosomal CNV alternation score by metastatic status, with 
copy number gain and copy number loss indicated by red and blue, respectively. c. CNV score comparison between primary and metastatic breast cancer malignant 
cells. Significance indicated as (***, p < 0.001). d. ITGEX score comparison between primary and metastatic breast cancer malignant cells. Significance indicated as (***, 
p < 0.001). e. Regulon activity scores by metastatic status within malignant cells. f. Significant (Log2 FC) integrative cluster differences between primary and metastatic 
malignant cells (p-adj < 0.05). g. Differential progeny pathway activity scores within malignant cells across metastatic status. h. Cellular states plot showing hallmark gene 
signature activity for Interferon Alpha response versus TNFa signaling via NFKB in malignant cell populations.

Fig.2 Genomic and Phenotypic Alterations in Malignant Cells of Primary vs. Metastatic Breast Cancer: Insights from CNV Analysis, Gene Regulatory Networks, 
and Integrative Clusters
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Fig.2 Genomic and Phenotypic Alterations in Malignant Cells of Primary vs. 
Metastatic Breast Cancer: Insights from CNV Analysis, Gene Regulatory 
Networks, and Integrative Clusters 

a. UMAP visualization of the number of differentially expressed genes within all major 
cell type clusters. 

b. Chromosomal CNV alternation score by metastatic status, with copy number gain 
and copy number loss indicated by red and blue, respectively. 

c. CNV score comparison between primary and metastatic breast cancer malignant 
cells. Significance indicated as (***, p < 0.001). 

d. ITGEX score comparison between primary and metastatic breast cancer malignant 
cells. Significance indicated as (***, p < 0.001). 

e. Regulon activity scores by metastatic status within malignant cells. 

f. Significant (Log2 FC) integrative cluster differences between primary and metastatic 
malignant cells (p-adj < 0.05). 

g. Differential progeny pathway activity scores within malignant cells across metastatic 
status. 

h. Cellular states plot showing hallmark gene signature activity for Interferon Alpha 
response versus TNF-α signaling via NFkB in malignant cell populations. 
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a. UMAP visualizations of 7651 myeloid cells. Cells are colored by tissue class of origin (left) and grouped by one of 25 identified sub-types (right), including 6 Dendritic, 3 Monocytic, 1 Mast, and 15 
Macrophage lineages. b. Bar plots showing the proportions of cells from each tissue class of origin (P=Primary, M=Metastatic) for macrophage subtypes with a significant difference in proportion. 
(permutation test, p<0.05, log2FC > 2) c. The beeswarm plot illustrates the differential abundance analysis of myeloid cell subtypes, revealing distinct variations in cell abundance across 
neighborhoods, stratified by tissue classes of origin in primary and metastatic breast cancer. d. Differential Hallmark gene signature pathway activity scores within malignant cells across metastatic 
status. e. Cellular states plot showing CANCERSEA gene signature activity for Inflammation versus Invasion in myeloid cell populations. f. Circle plot displaying the top 15% of primary tumor 
microenvironment cell-cell interactions. Arrow colors indicate sender and thickness represents interaction strength. g. Circle plot displaying the top 15% of metastatic tumor microenvironment cell-cell 
interactions. Arrow colors indicate sender and thickness represents interaction strength. h. Comparative circle plot visualizing differential cell-cell communication between primary and metastatic 
tumor microenvironments, where red edges indicate increased interactions in metastatic tumors and blue edges denote increased interactions in primary tumors

Fig.3 Distinct Myeloid Cell Populations and Their Roles in Primary and Metastatic Breast Cancer: Insights into Macrophage Polarization and Tumor 
Microenvironment Interactions
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Fig.3 Distinct Myeloid Cell Populations and Their Roles in Primary and Metastatic 
Breast Cancer: Insights into Macrophage Polarization and Tumor 
Microenvironment Interactions 

a. UMAP visualizations of 7651 myeloid cells. Cells are colored by tissue class of origin 
(left) and grouped by one of 25 identified sub-types (right), including 6 Dendritic, 3 
Monocytic, 1 Mast, and 15 Macrophage lineages. 

b. Bar plots showing the proportions of cells from each tissue class of origin (P=Primary, 
M=Metastatic) for macrophage subtypes with a significant difference in proportion. 
(permutation test, p<0.05, log2FC > 2) 

c. The beeswarm plot illustrates the differential abundance analysis of myeloid cell 
subtypes, revealing distinct variations in cell abundance across neighborhoods, 
stratified by tissue classes of origin in primary and metastatic breast cancer. 

d. Differential Hallmark gene signature pathway activity scores within malignant cells 
across metastatic status. 

e. Cellular states plot showing CANCERSEA gene signature activity for Inflammation 
versus Invasion in myeloid cell populations. 

f. Circle plot displaying the top 15% of primary tumor microenvironment cell-cell 
interactions. Arrow colors indicate sender and thickness represents interaction strength. 

g. Circle plot displaying the top 15% of metastatic tumor microenvironment cell-cell 
interactions. Arrow colors indicate sender and thickness represents interaction strength. 

h. Comparative circle plot visualizing differential cell-cell communication between 
primary and metastatic tumor microenvironments, where red edges indicate increased 
interactions in metastatic tumors and blue edges denote increased interactions in 
primary tumors 
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a. UMAP visualizations of 19104 lymphoid cells. Cells are colored by tissue class of origin on the left and grouped by one of 17 identified subtypes on the right, including 3 B cell subtypes, 2 NK cell 
subtypes, and 12 T cell subtypes. b. Bar plots showing the proportions of cells from each tissue class of origin (P=Primary, M=Metastatic) for T cell subtypes with a significant difference in proportion. 
(permutation test, p<0.05, log2FC > 2) c. The beeswarm plot illustrating the differential abundance analysis of NK cells, uncovering variations in cell abundance across neighborhoods, with a focus 
on specific NK cell subtypes, categorized by tissue classes of origin in primary and metastatic breast cancer. d. Bar plots showing the proportions of cells from each tissue class of origin (P=Primary, 
M=Metastatic) for B cell subtypes with a significant difference in proportion. (permutation test, p<0.05, log2FC > 2) e. Differential Hallmark gene signature pathway activity scores within T cells 
across metastatic status. f. Hypoxia score comparison between primary and metastatic breast cancer T cells. Significance indicated as (***, p < 0.001). g. OXPHOS score comparison between 
primary and metastatic breast cancer T cells. Significance indicated as (***, p < 0.001). h. Circle plot showing the top 10% of predominant cell-cell interactions in the primary tumor 
microenvironment, with arrow colors indicating the source (sender) of the interaction, and arrow thickness representing the strength of interaction. i. Circle plot showing the top 10% of predominant 
cell-cell interactions in the metastatic tumor microenvironment, with arrow colors indicating the source (sender) of the interaction, and arrow thickness representing the strength of interaction.

Fig.4 Lymphoid Cell Landscape and Functional Shifts in Primary vs. Metastatic Breast Cancer Tumors

h i
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Fig.4 Lymphoid Cell Landscape and Functional Shifts in Primary vs. Metastatic 
Breast Cancer Tumors" 

a. UMAP visualizations of 19104 lymphoid cells. Cells are colored by tissue class of 
origin on the left and grouped by one of 17 identified subtypes on the right, including 3 B 
cell subtypes, 2 NK cell subtypes, and 12 T cell subtypes. 

b. Bar plots showing the proportions of cells from each tissue class of origin (P=Primary, 
M=Metastatic) for T cell subtypes with a significant difference in proportion. (permutation 
test, p<0.05, log2FC > 2) 

c. The beeswarm plot illustrating the differential abundance analysis of NK cells, 
uncovering variations in cell abundance across neighborhoods, with a focus on specific 
NK cell subtypes, categorized by tissue classes of origin in primary and metastatic 
breast cancer. 

d. Bar plots showing the proportions of cells from each tissue class of origin (P=Primary, 
M=Metastatic) for B cell subtypes with a significant difference in proportion. 
(permutation test, p<0.05, log2FC > 2) 

e. Differential Hallmark gene signature pathway activity scores within T cells across 
metastatic status. 

f. Hypoxia score comparison between primary and metastatic breast cancer T cells. 
Significance indicated as (***, p < 0.001). 

g. OXPHOS score comparison between primary and metastatic breast cancer T cells. 
Significance indicated as (***, p < 0.001). 

h. Circle plot showing the top 10% of predominant cell-cell interactions in the primary 
tumor microenvironment, with arrow colors indicating the source (sender) of the 
interaction, and arrow thickness representing the strength of interaction. 

i. Circle plot showing the top 10% of predominant cell-cell interactions in the metastatic 
tumor microenvironment, with arrow colors indicating the source (sender) of the 
interaction, and arrow thickness representing the strength of interaction. 
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a. UMAP visualizations of 17339 stromal cells. Cells are colored by tissue class of origin on the left and grouped by one of 11 identified subtypes on the right, including 10 Fibroblast and an 
endothelial cell subtype. b. Bar plots showing the proportions of cells from each tissue class of origin (P=Primary, M=Metastatic) for Fibroblast cell subtypes with a significant difference in proportion. 
(permutation test, p<0.05, log2FC > 2) c. Differential CANCERSEA gene signature pathway activity scores within fibroblast cells across metastatic status. d. Cellular states plot to show 
CANCERSEA gene signature activity for Angiogenesis, Metastasis, Inflammation, and Quiescence across the metastatic status within fibroblast cells. e. Cellular states plot to show CANCERSEA 
gene signature activity for Angiogenesis, Metastasis, Inflammation, and Quiescence across the multiple fibroblast subtypes. f. DLX5 Regulon Activity score comparison between primary and 
metastatic breast cancer stromal cells. Significance indicated as (***, p < 0.001). g. DLX5 Regulon Activity score comparison between primary and metastatic breast cancer stromal cells. 
Significance indicated as (***, p < 0.001). h. Heatmap comparing the differential number of interactions and interaction strength between primary and metastatic tumor microenvironments. The top-
colored bar plot indicates incoming signaling, while the right-colored bar plot represents outgoing signaling for each cell type. Red indicates increased signaling in metastatic tumors, whereas blue 
represents increased signaling in primary tumors. Bar height reflects the magnitude of change in interaction number or strength between the two conditions.

Fig.5 Stromal Cell Remodeling and Fibroblast Subtype Dynamics in Metastatic vs. Primary Breast Cancer TME
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Fig.5 Stromal Cell Remodeling and Fibroblast Subtype Dynamics in Metastatic vs. 
Primary Breast Cancer TME 

a. UMAP visualizations of 17339 stromal cells. Cells are colored by tissue class of origin
on the left and grouped by one of 11 identified subtypes on the right, including 10
Fibroblast and an endothelial cell subtype.

b. Bar plots showing the proportions of cells from each tissue class of origin (P=Primary,
M=Metastatic) for Fibroblast cell subtypes with a significant difference in proportion.
(permutation test, p<0.05, log2FC > 2)

c. Differential CANCERSEA gene signature pathway activity scores within fibroblast
cells across metastatic status.

d. Cellular states plot to show CANCERSEA gene signature activity for Angiogenesis,
Metastasis, Inflammation, and Quiescence across the metastatic status within fibroblast
cells.

e. Cellular states plot to show CANCERSEA gene signature activity for Angiogenesis,
Metastasis, Inflammation, and Quiescence across the multiple fibroblast subtypes.

f. DLX5 Regulon Activity score comparison between primary and metastatic breast
cancer stromal cells. Significance indicated as (***, p < 0.001).

g. DLX5 Regulon Activity score comparison between primary and metastatic breast
cancer stromal cells. Significance indicated as (***, p < 0.001).

h. Heatmap comparing the differential number of interactions and interaction strength
between primary and metastatic tumor microenvironments. The top-colored bar plot
indicates incoming signaling, while the right-colored bar plot represents outgoing
signaling for each cell type. Red indicates increased signaling in metastatic tumors,
whereas blue represents increased signaling in primary tumors. Bar height reflects the
magnitude of change in interaction number or strength between the two conditions.
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a. Stacked barplot showing the proportion of seven major cell types across individual samples. b. Boxplots illustrating changes in the proportions of seven major cell 
types between primary and metastatic breast cancer samples. (permutation test, p<0.05, log2FC > 2) c. Dot plot illustrating the percentage of each cell subtype from 
primary versus metastatic tumors, highlighting each cell subtype's distribution and comparative abundance across the two conditions.

Supp Fig.1
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Supp Fig.1 

a. Stacked barplot showing the proportion of seven major cell types across individual 
samples. 

b. Boxplots illustrating changes in the proportions of seven major cell types between 
primary and metastatic breast cancer samples. (permutation test, p<0.05, log2FC > 2) 

c. Dot plot illustrating the percentage of each cell subtype from primary versus 
metastatic tumors, highlighting each cell subtype's distribution and comparative 
abundance across the two conditions. 
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a. Heatmap showing CNV profiles for malignant cells in individual primary and metastatic tumor samples, with T cells as a reference. b. Heatmap depicting CNV profiles 
from all tumor subpopulations per patient, comparing the top 25 copy number alterations across chromosomal arms between primary and metastatic breast cancer 
subclones.

Supp Fig.2
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Supp Fig.2 

a. Heatmap showing CNV profiles for malignant cells in individual primary and 
metastatic tumor samples, with T cells as a reference. 

b. Heatmap depicting CNV profiles from all tumor subpopulations per patient, 
comparing the top 25 copy number alterations across chromosomal arms between 
primary and metastatic breast cancer subclones. 
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a. Kaplan-Meier survival curves for estrogen receptor-positive tumors among 2,575 patients, comparing survival outcomes associated with high versus low expression of 
the genes ARNT, BIRC3, EIF2AK1, EIF2AK2, FANCA, HOXC11, KIAA1549, MSH2, MSH6, and MYCN. b. Stacked bar plot showing the proportion of Integrative Clusters 
(IntClust) across individual samples, based on classification using the top 200 differentially expressed genes from the METABRIC study. c. Cellular states plot to show 
Hallmark gene signature activity for Hypoxia, Interferon Gamma Response, Interferon Alpha Response, and TNFA Signaling via NFKB across the metastatic status within 
malignant cells. d. Plot of the top 25 target genes affected by TNFA pathway activity, highlighting their weight and statistical significance in primary versus metastatic 
malignant cells based on PROGENY pathway activity. e. Plot of the top 25 target genes affected by JAK-STAT pathway activity, highlighting their weight and statistical 
significance in primary versus metastatic malignant cells based on PROGENY pathway activity.

Supp Fig.3
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Supp Fig.3 

a. Kaplan-Meier survival curves for estrogen receptor-positive tumors among 2,575 
patients, comparing survival outcomes associated with high versus low expression of 
the genes ARNT, BIRC3, EIF2AK1, EIF2AK2, FANCA, HOXC11, KIAA1549, MSH2, 
MSH6, and MYCN. 

b. Stacked bar plot showing the proportion of Integrative Clusters (IntClust) across 
individual samples, based on classification using the top 200 differentially expressed 
genes from the METABRIC study. 

c. Cellular states plot to show Hallmark gene signature activity for Hypoxia, Interferon 
Gamma Response, Interferon Alpha Response, and TNF-α Signaling via NFkB across 
the metastatic status within malignant cells. 

d. Plot of the top 25 target genes affected by TNF-α pathway activity, highlighting their 
weight and statistical significance in primary versus metastatic malignant cells based on 
PROGENY pathway activity. 

e. Plot of the top 25 target genes affected by JAK-STAT pathway activity, highlighting 
their weight and statistical significance in primary versus metastatic malignant cells 
based on PROGENY pathway activity. 
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a. Volcano plot illustrating the differential expression of genes in myeloid cells when comparing primary versus metastatic tumors. b. Cellular states plot showing 
Hallmark gene signature activity for Interferon Alpha Response versus TNFA Signaling via NFKB in myeloid cell populations. c. Differential CANCERSEA gene signature 
pathway activity scores within myeloid cells across metastatic status. d. Word cloud plot illustrating the enriched ligands in primary breast tumor microenvironment 
compared to metastatic cancer e. Word cloud plot illustrating the enriched ligands in metastatic breast tumor microenvironment compared to primary breast cancer

Supp Fig.4
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Supp Fig.4 

a. Volcano plot illustrating the differential expression of genes in myeloid cells when 
comparing primary versus metastatic tumors. 

b. Cellular states plot showing Hallmark gene signature activity for Interferon Alpha 
Response versus TNF-α Signaling via NFkB in myeloid cell populations. 

c. Differential CANCERSEA gene signature pathway activity scores within myeloid cells 
across metastatic status. 

d. Word cloud plot illustrating the enriched ligands in primary breast tumor 
microenvironment compared to metastatic cancer 

e. Word cloud plot illustrating the enriched ligands in metastatic breast tumor 
microenvironment compared to primary breast cancer 
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a. Stacked bar plot showing the proportion of T cell subtypes across the metastatic status. b. Antibody-dependent cellular cytotoxicity gene signature comparison 
between primary and metastatic breast cancer NK cells. Significance indicated as (***, p < 0.001). c. Immune checkpoint inhibition levels compared across different cell 
types in primary and metastatic breast cancers

Supp Fig.5
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Supp Fig.5 

a. Stacked bar plot showing the proportion of T cell subtypes across the metastatic 
status. 

b. Antibody-dependent cellular cytotoxicity gene signature comparison between primary 
and metastatic breast cancer NK cells. Significance indicated as (***, p < 0.001). 

c. Immune checkpoint inhibition levels compared across different cell types in primary 
and metastatic breast cancers 
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a. Stacked bar plot showing the proportion of stromal cell subtypes across the metastatic status. b. Visualization of the top 25 ligand-receptor interactions between 
different cell types in the primary tumor microenvironment, as analyzed using the MultiNicheNet. c. Visualization of the top 25 ligand-receptor interactions between 
different cell types in the metastatic tumor microenvironment, as analyzed using the MultiNicheNet. d. Comparative circle plot visualizing differential cell-cell 
communication between primary and metastatic tumor microenvironments, where red edges indicate increased interactions in metastatic tumors and blue edges denote 
increased interactions in primary tumors

Supp Fig.6

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 26, 2024. ; https://doi.org/10.1101/2024.09.25.24314388doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.25.24314388
http://creativecommons.org/licenses/by-nc/4.0/


Supp Fig.6 

a. Stacked bar plot showing the proportion of stromal cell subtypes across the 
metastatic status. 

b. Visualization of the top 25 ligand-receptor interactions between different cell types in 
the primary tumor microenvironment, as analyzed using the MultiNicheNet. 

c. Visualization of the top 25 ligand-receptor interactions between different cell types in 
the metastatic tumor microenvironment, as analyzed using the MultiNicheNet. 

d. Comparative circle plot visualizing differential cell-cell communication between 
primary and metastatic tumor microenvironments, where red edges indicate increased 
interactions in metastatic tumors and blue edges denote increased interactions in 
primary tumors 
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