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Abstract 
 
Objective: To develop and validate the Transformer-based Risk assessment survival model 
(TRisk), a novel deep learning model, for prediction of 10-year risk of cardiovascular disease 
(CVD) in both the general population and individuals with diabetes. 
 
Design: Prospective open cohort study design. 
 
Setting: Primary and secondary care in England as provided by Clinical Practice Research 
Datalink (CPRD) Gold 
 
Participants: An open cohort of 3 million adults aged 25 to 84 years was identified using 
linked primary and secondary electronic health records from 291 and 98 general practices in 
England and were used for model development and validation, respectively (i.e., general 
population cohort). Additionally, a second cohort of patients with diabetes was extracted. At 
study entry, patients in both cohorts were free of CVD and not prescribed statins. 
 
Methods: TRisk utilised all diagnosis, medication, procedure, and clinical test data up to 
study entry in linked longitudinal primary and secondary care electronic health records for 
prediction of 10-year risk of CVD. Discrimination, calibration, and decision curve analyses 
were conducted to investigate predictive performance. The proposed model was also 
compared against QRISK3 and a deep learning derivation model of QRISK3 (DeepSurv). 
Additional analyses compared discriminatory performance in other age groups, by sex, and 
across categories of socioeconomic status. 
 
Main outcome measures Incident cardiovascular disease recorded in either linked general 
practice or hospital admission datasets provided by CPRD Gold. 
 
Results: TRisk demonstrated superior discrimination (C-index in the general population: 
0.910; 95% confidence interval [CI]: 0.906 to 0.913). TRisk’s performance was found to be 
less sensitive to population age range than the benchmark models and outperformed other 
models also in analyses stratified by age, sex or socioeconomic status. All models were 
overall well-calibrated. In decision curve analyses, TRisk demonstrated greater net benefit 
than benchmark models across the range of relevant thresholds. At both the recommended 
10% risk threshold and the 15% risk threshold, TRisk reduced both the total number of 
patients classified at high risk (by 22% and 35% respectively) and the number of false 
negatives as compared with currently recommended strategies. TRisk similarly outperformed 
other models in patients with diabetes. Compared with the widely recommended treat-all 
policy approach for patients with diabetes, TRisk at a 10% risk threshold would lead to 
deselection of 24% of individuals with a small fraction of false negatives (0.2% of cohort). 
 
Conclusion: TRisk enabled a more targeted selection of individuals at risk of CVD compared 
to benchmark statistical and deep learning models, in both the general population and patients 
with diabetes. Incorporation of TRisk into routine clinical care would allow a reduction in the 
number of treatment-eligible patients by approximately one-third while preventing at least as 
many events as with currently adopted approaches. 
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Introduction 
Blood pressure (BP) and LDL-cholesterol lowering are well-established and common 
strategies for preventing cardiovascular diseases (CVD). The results from randomised 
controlled trials have shown that relying on a single risk factor is inadequate for selecting 
individuals for treatment, as the relative risk reductions achieved by antihypertensives and 
statins remain largely consistent regardless of baseline BP, LDL-cholesterol, and other 
factors such as age, sex, and pre-existing vascular disease.1–4 Therefore, it is crucial to predict 
an individual's risk of CVD in order to identify those who will benefit the most from 
preventative treatment. Consequently, using multivariable CVD risk prediction tools has 
become a routine practice for clinical decision-making.5 This approach is strongly supported 
by randomised evidence of greater risk reductions for those with higher predicted CVD 
risk.2,6  
 
Methods for identifying high-risk individuals vary globally. However, in general, guidelines 
for primary prevention of CVD recommend the use of risk prediction models. For example, 
the UK NICE guideline recommend treatment for individuals with a predicted 10-year CVD 
risk of 10% or more, as estimated by QRISK2.5 The European guidelines adopt a similar 
approach based on the SCORE2 model.7 Guidelines also often classify specific patient groups 
automatically as high-risk, warranting treatment without formal risk assessment. This is 
common for secondary prevention in patients with a history of CVD or individuals with other 
“high-risk” conditions such as diabetes or chronic renal disease.7 While these approaches are 
more efficient and cost-effective compared to simpler clinical criteria (e.g., based on age or 
BP threshold), they are still relatively crude.8 For instance, applying the QRISK2 model to 
the UK population deems approximately one-third of adults aged 30-79 years eligible for 
antihypertensive therapy.9,10 The relatively low specificity of models at the recommended 
thresholds means that even without treatment, most individuals who were offered treatment 
would not experience an event. Similar challenges exist for individuals with diabetes or other 
high-risk conditions who have conventionally received a blanket recommendation for 
treatment.11 For example, it has been demonstrated that the risk of CVD in diabetic patients 
varies substantially due to differences in screening and diagnosis methods.12 Current policies 
recommending BP and LDL-cholesterol lowering treatment for all patients with diabetes fail 
to account for this variability in risk.  
 
Emerging as a potentially promising solution, the Transformer, a deep learning (DL) model 
initially designed for natural language processing, has become a cornerstone of applied 
artificial intelligence (AI) research.13 By being able to efficiently analyse multimodal 
sequential data, Transformers have shown great promise in fields such as computer vision 
and clinical risk prediction.14 Given their potential, it is crucial to fully evaluate the utility of 
Transformers for clinical decision-making. To this end, we conducted a study to develop and 
validate the Transformer-based risk assessment model (TRisk) for 10-year prediction of CVD 
risk.   
 
Methods 
Study framework 
Our primary model, TRisk, was an adaptation of the Transformer-based DL model, 
Bidirectional EHR Transformer (BEHRT).14 BEHRT has demonstrated promising 
performance for a variety of risk prediction tasks including heart failure, stroke, and coronary 
heart disease.14–16 In this study, we extended and modified BEHRT from a binary outcome 
prediction model into a survival model to additionally account for censoring and refer to it as 
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TRisk.17 We compared TRisk with two expert-guided models as the best-in-class models for 
CVD risk prediction: the QRISK3 model 18  and a locally derived non-linear DL derivation of 
Cox proportional hazards (CPH) modelling called DeepSurv, a multi-layer perceptron (MLP) 
neural network model.19 All models were validated in a general population cohort (i.e., 
patients without CVD at baseline). 
 
Data source and validation strategy 
We used Clinical Practice Research Datalink (CPRD) as the study data source.1 CPRD 
includes detailed patients’ records such as demographics (age, sex, ethnicity), diagnoses, 
prescribed treatments, tests, and health related lifestyles collected from participating general 
practices (GPs) across UK, covering around 7% of the UK population. With linkage to 
Hospital Episode Statistics (HES) and Office for National Statistics for data about hospital 
admission and death registration, respectively, CPRD is one of the most comprehensive 
deidentified EHR datasets broadly representative of the UK population.20  
 
We included data from 389 contributing GPs that met acceptable standards of research 
quality. Prior to cohort selection, as our validation strategy, we randomly allocated three 
quarters (i.e., 298) of practices to the derivation dataset and the rest (i.e., 91) of the practices 
to the validation dataset (details in Supplementary Methods: Clarification on validation 
study).18  
 

Cohort selection 
We identified an open cohort for our analysis consisting of individuals without prior CVD 
(defined as any of coronary heart disease, stroke, and transient ischaemic attack), in whom 
treatment is recommended when their predicted risk of CVD is above a certain threshold.5,7 
We included individuals who had records between 1 January 1998 and 31 December 2015, 
were aged between 25 and 84 years old, and registered with GP for at least one year. 
Following previous CVD prediction works, the index date (baseline) was randomly selected 
from the patient medical history for each individual.21,22 This method for index date selection 
was implemented to ensure the model was trained and evaluated on a more representative 
spread of age and calendar year at baseline. By adopting this approach, we simulate the 
calculation of a patient's risk score at any point during the eligible period as opposed to fixing 
the index date as first date in eligible period, closely mirroring its real-world application in 
clinical settings.21  
 
We aimed to adhere closely to the criteria for selection of the cohort as reported for the 
QRISK3 study.18 Similar to the QRISK3 derivation study, patients with a prior history of 
CVD (as defined previously) and prescription of a statin were excluded from datasets. In 
addition to these filtering steps, we further excluded those without information on index of 
multiple deprivation (IMD), without linkage to HES, and patients for whom there were no 
available records at the index date. We excluded the latter group as conducting inference on 
patients without any data for input at the index date offers little clinical value. Patients were 
censored at the earliest of the last date in practice, last collection from practice, death, 
incident CVD, 10 years after the index date (i.e., truncation after 120-month mark), or the 
study end date (31 December 2015).  
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Outcome definition 
The outcome of interest was the 10-year risk of major CVD events. CVD was defined as a 
composite of coronary heart disease, ischaemic stroke, or transient ischaemic attack captured 
in both primary and secondary care diagnostic records. We adopted the CALIBER repository 
for all disease phenotyping.23 Specifically, CALIBER phenotyping dictionaries for ischaemic 
stroke, transient ischaemic attack, and coronary heart disease (including myocardial 
infarction) were used to identify the composite CVD outcome.23 
 

Model derivation 
TRisk incorporated all recorded information from the following modalities in both primary 
and secondary care (HES) records: 3,858 distinct diagnoses, 390 categories of medications, 
1,439 laboratory tests, and 679 procedures codes. As a Transformer model, TRisk considers a 
patient’s medical history up to baseline as a sequence which is typically of variable length. 
Each unit of information from the captured modalities is mapped to the patient’s age and the 
health service encounter, thus providing rich temporal annotations to the sequence of records 
(Figure S1). The information captured is as recorded in the structured EHR without any 
imputation of missing values. Free-text data and demographics such as sex or socioeconomic 
status were not incorporated in TRisk. As a data-driven model, TRisk was trained on raw or 
minimally processed EHR (Supplementary Methods: EHR pre-processing and modelling of 
TRisk; Table S1). 
 

Benchmark modelling 
For modelling, sex-specific QRISK3 equations were implemented using the source codes 
provided by ClinRisk Limited. Additionally, a non-linear DL derivation of QRISK3 was 
derived and validated on our general population cohort. Extraction and transformation of 
predictors for QRISK318 followed roughly the specifications of previously published work. 
Variables used in the QRISK3 model were also used for DeepSurv. As a MLP neural network 
model, DeepSurv includes the same fixed-length cross-sectional variables as in QRISK3 and 
is not designed to capture variable-length longitudinal variables as TRisk does.19 To address 
data missingness, imputation was separately carried out on derivation and validation datasets. 
More information on predictor extraction, imputation for benchmark modelling, and 
implementation can be found in Supplementary Methods: Predictor selection for benchmark 
models and Implementation details (Table S2).  
 

Performance analysis  
We analysed the performance of all models on the validation dataset using complementary 
approaches. Model discrimination was assessed by calculating the concordance index (C-
index) and area under the precision-recall curve (AUPRC). While C-index is a survival risk 
prediction metric that evaluates the model’s ability to rank order cases and non-cases without 
consideration of event rate, AUPRC is a prediction performance metric that implicitly takes 
into account event rate into its formulation; specifically, a model making random predictions 
would exhibit an AUPRC equal to the event rate and a C-index of 0.5. AUPRC summarizes 
the trade-off between positive predictive value and sensitivity for different thresholds proving 
especially useful in cases of imbalanced label prediction, such as incident CVD prediction. 
Consistency of predictions at the level of individuals was assessed with a scatterplot in order 
to investigate the agreement between the models. Decision curve analysis (accounting for 
censoring) was conducted to plot the trade-off between correctly captured CVD cases (true 
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positives) and incorrectly captured high-risk individuals without a CVD event (false positives 
or “false alarms”) across the spectrum of reasonable risk thresholds.24 We further analysed 
the impact of TRisk for preventative therapy recommendation by calculating the number of 
patients who would be classified as high risk, the number of true positives, and the number of 
false negatives at specific illustrative thresholds. Censoring was not accounted for in this 
analysis. While the selection of an optimal threshold for decision-making cannot be reduced 
to performance metrics only, a superior strategy would maximise capture of those who are in 
need of preventative therapy (i.e., minimising false negatives) whilst minimising false alarms. 
For all aforementioned analyses across all models, in order to derive patient-level risk, we 
estimated the survival function over the follow-up period with a specific focus on the risk 
estimates at the 10th year.18 While for some models (e.g., QRISK3), validation has been 
conducted separately on male and female patients, we have presented results utilising the 
aggregate set of predictions on all patients in the validation dataset. 
 
In accordance with the prior QRISK3 study, our main analyses were restricted to patients 
aged 25 to 84 years.18 However, in additional analyses, we assessed model discrimination in 
terms of C-index in the age range of 40 to 69 years and 40 to 84 years. Model discrimination 
was further assessed separately in men and women, and at different levels of socioeconomic 
deprivation denoted by quantiles of IMD. 

 
Furthermore, for additional comparison against TRisk, we derived and validated a sex-
agnostic CPH model with the same predictor set as the established, SCORE2 model.25 More 
details on predictor extraction, imputation, and implementation of this locally derived CPH 
model can be found in Supplementary Methods: Predictor selection for benchmark models 
and Implementation details. 
 
Lastly, we repeated all aforementioned analyses on patients with a diagnosis of diabetes prior 
to or on the index date (i.e., diabetes cohort) to assess the usefulness of TRisk in a ‘high-risk’ 
population. By utilising a transfer learning approach, the proposed TRisk model that was 
initially trained on the general population cohort was transferred, fine-tuned, and validated in 
patients with diabetes at baseline (Supplementary Methods: Modelling in diabetes cohort).26  
 
The approval for this work was given by the CPRD Independent Scientific Advisory 
Committee of UK (protocol number: 16_049R). 
 
Role of the funding source  
The funders of the study had no role in the study design, data collection, data analysis, data 
interpretation, writing of the report, or the decision to submit the report for this research.  
 
Patient involvement 
Patients were not involved in the design and conduct of this research.  
 

Results 
2.97 million patients were included in the general population cohort (747,076 patients in 
validation) median follow-up of 2.5 (interquartile range [IQR]: [0.8, 5.9]) years. 4.6% of 
patients were diagnosed with CVD during follow-up (4.7% in derivation; 4.5% in validation) 
(Table 1). As expected, there was a noticeable variation in the distribution of regions 
between the derivation and validation datasets in the cohort. 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 26, 2024. ; https://doi.org/10.1101/2024.09.25.24314371doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.25.24314371
http://creativecommons.org/licenses/by/4.0/


 
Model performance analyses on validation data 
In terms of discrimination, TRisk demonstrated higher C-index and AUPRC as compared to 
QRISK3 and DeepSurv models (Table 2; Table S3). Assessing calibration, while QRISK3 
showed some deviation from perfect calibration, all models examined in this study generally 
exhibited acceptable calibration within the typically relevant threshold range (i.e., 0-20%) for 
decision making (Figure 1A; Figure S2). Comparison of the predictive distribution of the 
models (Figure 1B) showed that the benchmark models had a narrower distribution of 
predicted risk than TRisk. By contrast, TRisk showed a wider distribution with classification 
of higher fraction of patients to the very high and very low risk ranges. Comparing the 
consistency of individual-level predictions, with QRISK3 as reference model, we found that 
while benchmark models were largely ranking patients consistently among one other, there 
was poor correlation with TRisk, which was better at identifying true positive cases (Figure 
S3). 
 
In analyses investigating populations in different age bands, the gap in discrimination 
performance between TRisk and the benchmark models were found to become larger as the 
age range was narrowed (Table S4). TRisk had a higher discrimination across all age 
categories. Although TRisk did not include sex and IMD as predictors, its discriminatory 
performance in subgroups by sex and IMD was better than the benchmark models with no 
significant difference between stratifications (Tables S5, S6).  
 
Decision curve analysis demonstrated that across relevant thresholds for decision making, 
TRisk provided greater net benefit than benchmark models (Figure 2). In supplementary 
modelling analysis, we found that our locally derived CPH risk model with SCORE2 
predictors performed similarly to other benchmark models across all analyses (Figures S3-
S6; Tables S3-S6). 
 
In analysis of the diabetes cohort, 59,186 patients with diabetes (14,518 patients in 
validation) were identified. Over a median follow-up of 2.3 years (IQR: [0.9, 5.0]), 12.5% 
suffered a CVD event (12.8% in derivation; 11.7% in validation) (Table S7) Model 
performance metrics observed in the diabetes cohort were overall concordant with those in 
the general population cohort (Figures S7-S10; Tables S8-S11).  
 
The clinical impact analysis of risk assessment approaches at different risk thresholds 
standardised to a population of 1,000 patients is shown in Table 3 (select strategies in Figure 
S11; analysis on non-standardised cohorts in Supplementary Results). 
 
In the general population cohort, QRISK3 at the recommended 10% risk threshold 5,7 would 
classify 272 (for every 1,000 individuals) as eligible for treatment with 36 patients suffering 
an event (13% true positive) over the 10-year follow-up (Table 3; Figure S11A). The 
remaining 728 patients were ranked as low-risk of whom, 720 (99%) were true negatives. 
Operating at 15% threshold would restrict the cohort of eligible patients for preventative 
therapy to 187 patients, but simultaneously increase false negatives from 9 to 15 patients 
(66% increase).  
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In comparison, at the 10% threshold, the TRisk model enabled superior true positive (and 
minimal false negative) capture whilst decreasing the treatment eligible population by 56 
patients (21% reduction) compared with the recommended strategy (i.e., QRISK3 at 10%). 
Up to a threshold of 15% risk, the TRisk model effectively maintained true case capture with 
respect to the recommended strategy (i.e., same true positive/false negative counts) whilst 
reducing the number of those considered high-risk from 272 to 178 patients (35% reduction; 
Table 3; Figure S11B). At both 10% and 15% thresholds, TRisk improved upon the 
recommended strategy: in the former, by delivering superior true positive capture and in the 
latter, by enabling more selective capture of those considered high-risk without attrition in 
true positive/false negative capture with respect to recommended strategy. 
 
For the diabetes cohort, the TRisk approach similarly demonstrated better positive and 
negative capture as compared to conventional approaches (Table 3; Figure S11C). At the 
threshold of 10%, TRisk captured a more refined population of 757 patients with 114 patients 
as true positives (15% true positive). As compared to the conventional indiscriminate 
approach of recommending all patients with diabetes for treatment, TRisk would recommend 
243 fewer patients (24% reduction) with minimal false negative capture (2 per 1000 patients; 
0.2% of cohort).  
 
Recently, revised UK guidelines have recommended utilising QRISK3 as a risk assessment 
strategy for even those with diabetes (Table 3; Figure S11D).5 Our impact analysis yielded 
that QRISK3 at the recommended 10% threshold selected 866 patients for preventative 
therapy, with 114 true positive cases (13% true positives) with natural degradation in true 
positive capture at higher thresholds. In comparison, TRisk at the same threshold would 
recommend 109 fewer patients (13% reduction) whilst gaining one true positive patient 
capture (Table 3; Figure S11E).  
 

Discussion 
Our study shows that TRisk, a novel Transformer-based survival model, significantly 
outperformed widely recommended benchmark models in identifying individuals at risk of 
CVD. TRisk was also less dependent on age than our benchmark models. Due to its higher 
discriminatory performance, TRisk enabled a potential upwards shift in the commonly 
recommended risk thresholds for more targeted selection of individuals for treatment. 
Application of TRisk would lead to selection of about one-third and one-fourth fewer 
individuals in general and diabetes populations respectively than application of existing 
policies without any material trade-offs.  
 
Risk-based selection of individuals for CVD preventative therapy is widely used in clinical 
practice.5 However, existing approaches result in a large number of individuals being eligible 
for treatment, even though many of them will not experience an event.10 Indeed, in a survey 
of general physicians in the Netherlands, a key barrier to uptake of CVD risk prediction 
models was their potential for over-treatment.27 In line with this, we found QRISK3 to 
classify over a quarter of the adult population as eligible for treatment in the general 
population10; however, seven out of eight individuals predicted to have a preventable CVD 
event did not experience such an event. We found that increasing the risk threshold for such 
models would not overcome their prediction inefficiency; while the proportion of true 
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positives would increase, number of false negatives would also increase, due to their 
relatively low sensitivity.  
 
TRisk has the potential to lead to substantial efficiency gains without a trade-off in increasing 
false negative capture. At the traditional 10% risk threshold but also a higher 15% threshold, 
it reduced both the overall number of patients classified as high risk and the number of 
patients classified as being at low risk who subsequently experienced an event (i.e., false 
negatives). Significant performance improvements were also found for risk stratification in 
patients with diabetes. While the guidelines have typically recommended preventative 
therapy for all patients with diabetes, our analyses demonstrated that application of TRisk 
will enable a 24% reduction in the number of patients assigned to treatment without 
increasing false negatives, if treatment efficiency is a priority. 
 
More recently, in light of evidence highlighting QRISK3’s modest but acceptable 
performance in those with type 2 diabetes, the UK NICE guidelines have shifted to a risk 
assessment strategy utilising QRISK3 at 10% for preventative treatment recommendation. 
Similar policies might also get adopted by other nations and societies, in order to reduce the 
number of treatment-eligible patients and make preventive treatments more acceptable to 
patients and doctors. In this study, we found that, replacing QRISK3 with TRisk would rank 
13% fewer patients as above the 10% risk threshold whilst capturing more true positives.11  
 
Naturally, while low costs and high safety of preventive therapy have encouraged more 
liberal treatment recommendation policies, there have been calls for better matching of 
individuals to treatments.28 TRisk offers one tangible solution to this challenge today. 
Deployment and use of TRisk could help offer medical treatment to truly high-risk 
individuals, whilst directing others to non-pharmacological forms of therapy (diet alterations, 
exercise, etc.). In the UK context, it would translate into offering treatment to 35% fewer 
patients while still preventing at least as many events as the QRISK3 model. However, this is 
not to say that preventive treatments are to be withheld from lower risk individuals. In 
settings, where treatment costs are low (and harms not excessive), a higher fraction of the 
population could be offered treatment. Our study show that even in such scenarios, TRisk is 
more effective and efficient in targeting individuals. Importantly, this optimised patient 
classification is achieved with the use of readily available information in patient records 
without the need for collection of additional information, for instance with imaging or 
biomarkers. 
 
A key concern with AI in medicine has been its potential to bias against particular patient 
groups.29 In this study, we found no such evidence for TRisk at least in major patient 
subgroups. In analyses stratified by sex and socioeconomic status, TRisk showed higher 
discriminatory performance and lower variation than all benchmark models even though 
these features were not explicitly included in the TRisk. Of note, we found that TRisk was 
less reliant on age than the benchmark models. As the age range was narrowed, the 
performance gap between TRisk and benchmark models widened. Age is typically a proxy of 
unmeasured or poorly measured risk factors and by utilising the rich latent features captured 
from temporal, minimally processed EHR, the reliance on age as a proxy diminishes. By 
contrast, the discriminatory performance of all benchmark modelling approaches diminished 
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substantially when the same age groups were applied to them.18,25 Indeed, within the same 
age groups, the performance of these traditional models was very similar. 
 
How are Transformer-based models like TRisk able to make predictions, outperforming 
expert-driven models? The input space of TRisk includes all recorded diagnoses, 
medications, laboratory measurements, and procedures in a patient's primary care or hospital 
records. TRisk captures the presence or absence of such information in their temporal context 
to predict the next event. The multiple layers of abstraction of such information limits a 
simplistic identification of individual predictors that are likely to ‘independently’ apply to all 
patients and across all times. However, previous explainability analysis has shown that EHR 
Transformers can implicitly capture patient sex despite not including it as a variable and even 
identify epidemiologically known risk factors while capturing associations that are less well-
known or typically not considered.14,15 For instance, iron deficiency anaemia or use of 
treatments for chronic obstructive pulmonary disease are not typically considered as risk 
factors for heart failure but were identified by the model.15 It was also able to detect 
associations that varied over time. For instance, association of drugs used for the treatment of 
glaucoma with heart failure showed a gradual quantitative and qualitative shift over years, 
which corresponded to a change in glaucoma treatment from beta-blockers to prostaglandin 
analogues over time.15 It seems likely that by adding more data modalities such as omics 
(which TRisk can accommodate), we will see further improvements in predictions, 
particularly in special patient subgroups.  
 
In terms of benchmark modelling, in our implementation of QRISK3, we found that despite 
some differences in methodologies, our findings of QRISK3 performance were broadly in 
line with those from the derivation study.18 Notably, unlike the derivation study, we did not 
have access to Townsend scores for modelling, excluded patients who did not have any 
records, implemented the random sampling method for selection of baseline in eligible 
period, and used codes published by the CALIBER group to identify the CVD outcome.23 
Due to potentially these differences, we observed both, higher incident CVD event rate of 
4.6% and mean age of 47 years with respect to figures from the original study.18 
Nevertheless, discrimination (C-index: ~0.83) findings were consistent with those reported in 
the original validation study and other independent analyses (approximately 0.84-0.88).18,21,30 
Although we found slight deviation from perfect calibration, our implementation of QRISK3 
was generally found to be acceptably calibrated in the range of interest (i.e., up to 20% 
decision boundary). In gist, we found that our implementation of QRISK3 performed 
similarly to previously published reports. 
 
Indeed, while such models such as QRISK3 or the SCORE class of models have 
demonstrated strong discrimination performance in primary prevention population studies, 
the same models for patients with pre-existing conditions such as diabetes are less explored 
and tend to face performance degradation.31 Found in published evidence and in our 
independent analyses, the performance attenuation might be due to the differing relationship 
of established risk factors with each other in addition to metabolic specific risk factors and 
the outcomes that is not entirely consistent with the knowledge in the general population.31,32 
Utilising TRisk as a conduit for knowledge transfer across cohorts resulted in strong 
predictive performance for the diabetes cohort. Specifically, the superior performance was 
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made possible by initially learning risk patterns from a more homogeneous and significantly 
larger general population cohort. The relationships and weights obtained from this initial 
learning phase are then applied to the smaller and more complex subgroup of diabetic 
patients and fine-tuned, rather than training the model from randomly initialized weights.26  
 
This approach not only improves risk assessment performance within a specific subgroup but 
also moves towards a unified data-driven model for predicting CVD risk, eliminating the 
need for separate models in different patient subgroups. The successful transfer of knowledge 
from the general population to subgroups in the case of cardiovascular risk prediction 
suggests that the potential of such “group to subgroup” knowledge transfer should be further 
explored in various clinical contexts.26  
 
Strengths and limitations 
In this study, we have conducted comprehensive multi-dimensional comparisons of model 
types (statistical and DL) applied to two different target groups (general risk and high risk) by 
using multiple metrics of evaluation: discrimination, calibration, net benefit, and impact 
analyses at different risk thresholds.  
 
There are some notable aspects of our study that illuminate important focus areas for future 
research. Indeed, the exclusion of statin users at baseline has been shown to increase bias in 
prediction as patients may start statins soon after baseline.33 Hence, while it is appreciated 
that exclusion of statins might lead to underestimation of risk, in this work, we intended to 
conduct prediction in  cohort free of statin-use as conducted by the QRISK3 derivation study. 
Future research should investigate approaches that can potentially account for “treatment 
drop-in.”   
 
In terms of transportability of TRisk, further evaluation of TRisk’s adaptability across various 
data landscapes, additional patient subgroups, and clinical outcomes is necessary. Future 
research should actively explore TRisk in other UK EHR data settings (e.g., using data from 
other UK EHR systems) and other international data settings as well. Nevertheless, a few 
features of the study are of note and provide some preliminary assurances on wider 
generalisability.34 Although TRisk was validated on one of the representative UK EHR 
datasets (akin to other widely accepted benchmark approaches such as QRISK318), it was 
deliberately engineered to be transferable across various data settings. Specifically, TRisk 
was designed to theoretically operate on routinely collected data standardised through 
established clinical dictionaries and mapping libraries (e.g., SNOMED CT) which streamline 
the translation of disease, medication, procedure, and other clinical codes across different 
healthcare systems. While this fundamental design feature enhances TRisk’s chances of 
adaptability, downstream studies in various EHR data settings are necessary to fully evaluate 
the transportability of the proposed model.  
 
Lastly, as another angle of transportability and validation, TRisk should also be evaluated on 
other outcomes in addition to CVD. Certainly, previous research has demonstrated that 
TRisk’s foundational BEHRT model surpasses several other approaches in multi-outcome 
prediction of over 300 clinical outcomes, hence providing initial evidence that TRisk can 
serve as a multipurpose risk assessment tool.14 Complementarily to this body of evidence, 
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several research groups have independently applied BEHRT and variations in other EHR 
systems across the USA (e.g., New York, Florida, California) for a host of clinical outcome 
prediction tasks (e.g., emergency admission, COVID-19 related outcomes) across diverse 
patients groups – ultimately, providing strong, promising evidence that underscores the 
potential wide-ranging adaptability of the TRisk approach.35–37 TRisk depends on access to 
the entire EHR of an individual and cannot be reduced to a simple scoring algorithm. While 
this adds further complexity to implementation of such models into practice compared with 
simpler regression models, there are effective tools that have been robustly tested to facilitate 
the transition of AI from development to deployment in settings with limited computational 
capacities.38 Indeed, future efforts could explore leveraging TRisk as a first-line screening 
tool for population-level risk assessment alerting GPs of potential at-risk patients that require 
further clinical attention. 
 
Conclusion 
TRisk, a novel Transformer-based survival model, outperformed standard models and 
recommendations for selection of individuals at high risk of CVD. Implementation of TRisk 
into routine practice could improve allocative efficiency by reducing the number of patients 
offered treatment by about one-third and one-fourth fewer individuals in general and diabetes 
populations respectively as compared with status-quo recommendation strategies.  
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Tables 
Table 1. Population characteristics for derivation and validation datasets of general population cohort. 

 
Derivation 
(n=2,224,701) 

Validation 
(n=747,076) 

CVD cases (%) 104,058 (4.68) 33,248 (4.45) 
Women (%) 1,202,114 (54.03) 402,962 (53.94) 
Mean age in years (SD) 48 (16) 47 (16) 
Ethnicity 
    Unknown (%) 1,481,771 (66.61) 498,763 (66.76) 
    White (%) 691,797 (31.1) 231,088 (30.93) 
    Other Asian (%) 5,399 (0.24) 1,804 (0.24) 
    Pakistani (%) 5,673 (0.26) 1,358 (0.18) 
    Indian (%) 9,707 (0.44) 2,528 (0.34) 
    Other (%) 9,324 (0.42) 3,492 (0.47) 
    Caribbean (%) 4,187 (0.19) 2,154 (0.29) 
    Mixed (%) 3,615 (0.16) 1,396 (0.19) 
    Bangladeshi (%) 1,707 (0.08) 449 (0.06) 
    Chinese (%) 2,352 (0.11) 805 (0.11) 
    Other Black (%) 2,715 (0.12) 1,021 (0.14) 
    Black African (%) 6,454 (0.29) 2,218 (0.30) 
Index of multiple deprivation (IMD) 
    IMD 1 (%) 526,997 (23.69) 168,810 (22.60) 
    IMD 2 (%) 500,928 (22.52) 155,571 (20.82) 
    IMD 3 (%) 454,225 (20.42) 167,026 (22.36) 
    IMD 4 (%) 396,469 (17.82) 147,640 (19.76) 
    IMD 5 (%) 346,082 (15.56) 108,029 (14.46) 
Region 
    North East (%) 31,767 (1.43) 26,764 (3.58) 
    North West (%) 331,324 (14.89) 68,397 (9.16) 
    Yorkshire and the Humber (%) 78,998 (3.55) 42,732 (5.72) 
    East Midlands (%) 60,070 (2.70) 37,876 (5.07) 
    West Midlands (%) 247,430 (11.12) 92,491 (12.38) 
    East of England (%) 271,342 (12.2) 84,811 (11.35) 
    South West (%) 239,212 (10.75) 123,501 (16.53) 
    South Central (%) 322,056 (14.48) 55,236 (7.39) 
    London (%) 363,896 (16.36) 115,077 (15.4) 
    South East Coast (%) 278,606 (12.52) 100,191 (13.41) 
Mean systolic blood pressure†, mmHg (SD) 129.13 (14.04) 128.77 (14.07) 
Mean body mass index†, kg/m2 (SD) 27.0 (3.89) 26.93 (3.90) 
Mean high density lipoprotein†, mmol/L (SD) 1.39 (0.66) 1.34 (0.70) 
Mean total cholesterol†, mmol/L (SD)† 4.93 (3.15) 5.08 (3.96) 
Smoking status† (number of cigarettes per day) 
    Non-smoker (%) 1,145,267 (51.48) 388,858 (52.05) 
    Ex-smoker (%) 580,394 (26.09) 187,931 (25.16) 
    Light (<10 cigarettes/day) (%) 145,747 (6.55) 51,860 (6.94) 
    Moderate (10-20 cigarettes/day) (%) 211,134 (9.49) 71394 (9.56) 
    Heavy (>20 cigarettes/day) (%) 142,159 (6.39) 47,033 (6.30) 
Comorbidities at baseline 
    Diabetes (%) 44,668 (2.01) 14,518 (1.94) 
    Rheumatoid arthritis (%) 10,838 (0.49) 3,602 (0.48) 
    Atrial fibrillation (%) 26,889 (1.21) 8,565 (1.15) 
    CKD (%) 7,351 (0.33) 2,470 (0.33) 
    Migraine (%) 78,559 (3.53) 26,263 (3.52) 
    Lupus erythematosus (%) 1,755 (0.08) 557 (0.07) 
    Mental illness (%) 17,007 (0.76) 6,223 (0.83) 
    HIV/AIDS (%) 4,139 (0.19) 1,484 (0.20) 
    Erectile dysfunction (%) 44,744 (2.01) 15,386 (2.06) 
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Medication use at baseline 
    Antihypertensives (%) 99,411 (4.47) 31,039 (4.15) 
    Antipsychotics (%) 4,222 (0.19) 1,374 (0.18) 
    Corticosteroids (%) 29,362 (1.32) 9,207 (1.23) 
 SD: standard deviation; %: percentage; CVD: cardiovascular disease; IMD: Index of multiple deprivation; CKD: chronic 
kidney disease; †: missing observations: smoking status (48% missing in general population cohort), systolic blood pressure 
(39%), standard deviation of systolic blood pressure (64%), body mass index (59%), total cholesterol (73%), and high-
density lipoprotein cholesterol (81%). 
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Table 2. Discrimination performance of models in general population cohort 
Model Concordance-index (95% CI) 

QRISK3 0.831 (0.826, 0.835) 
DeepSurv 0.846 (0.841, 0.850) 

TRisk 0.910 (0.906, 0.913) 
CI: confidence interval 
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Table 3. Comparison of the clinical impact of models on selected outcomes at different risk thresholds, 
standardised to 1,000 patients in general population and diabetes cohorts. 

Cohort Strategy (model) 

Number of 
people 

classified as 
high risk 

Number of 
events in 
people at 
high risk 

Number of 
events in 
people at 
low risk 

General 
population 

Treat all 1000 45 0 
QRISK3 at 10% threshold (recommended)  272 36 9 
TRisk at 10% threshold  216 39 5 
QRISK3 at 15% threshold  187 29 15 
TRisk at 15% threshold 178 37 8 
QRISK3 at 20% threshold  131 24 21 
TRisk at 20% threshold 152 35 10 
Treat none 0 0 45 

Diabetes 

Treat all (recommended) 1000 117 0 
QRISK3 at 10% threshold 866 114 3 
TRisk at 10% threshold  757 115 2 
QRISK3 at 15% threshold  764 110 7 
TRisk at 15% threshold  682 112 5 
QRISK3 at 20% threshold  649 103 14 
TRisk at 20% threshold  615 109 8 
Treat none 0 0 117 
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Figures 
 
 
 

 
Figure 1. Calibration plots and distribution of predicted risk of models. Smoothed calibration lines 
and tenth of predicted risk decile calibration plots (A) and distribution of predicted risk (B) are 
presented for models implemented on general population cohort.  
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Figure 2.  Decision curve analysis for analysed models. Decision curve analysis (including censored 
observations) has been conducted for models in general population cohort. 10% decision threshold 
used by various clinical guidelines for preventative treatment recommendation in general population 
is illustrated with dotted red line. Threshold probability is shown on the x-axis and the net benefit, a 
function of threshold probability, is shown on the y-axis and is the difference between the proportion 
of true positives and false positives weighted by odds of the respective decision threshold. 
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