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Abstract 

The analysis of high-quality genomic variant data may offer a more complete understanding of the human 

genome, enabling researchers to identify novel biomarkers, stratify patients based on disease risk factors, 

and decipher underlying biological pathways. Although the availability of genomic data has sharply 

increased in recent years, the accessibility of bioinformatic tools to aid in its preparation is still lacking. 

Limitations with processing genomic data primarily include its large volume, associated computational and 

storage costs, and difficulty in identifying targeted and relevant information. Here, we present VAREANT, 

an accessible and configurable bioinformatic tool to support the preparation of variant data into a usable 

analysis-ready format. Designed to simplify the data pre-processing workflow, VAREANT enables the 

curation of targeted variant datasets. VAREANT is comprised of three standalone modules: (1) Pre-

processing, (2) Variant Annotation, (3) Artificial Intelligence (AI) / Machine Learning (ML) Data Preparation. 

Pre-processing supports the fine-grained filtering of complex variant datasets to eliminate extraneous 

data. Variant Annotation allows for the addition of variant metadata from public annotation databases for 

subsequent analysis and interpretation. AI/ML Data Preparation supports the user in creating AI/ML-ready 

datasets suitable for immediate analysis with minimal pre-processing required. We have successfully 

tested and validated our tool on numerous variable-sized datasets and implemented VAREANT in two case 

studies involving patients with CVDs. Efficiently extracting relevant variants into an AI/ML ready format 

using tools like VAREANT has important scientific implications, such as producing targeted and high-quality 

datasets and helping reduce overall computational costs. 
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Introduction 

Advancements in genome sequencing technologies have resulted in an immense wealth of available 

genomic data. The analysis of genetic variations via genome-wide association studies (GWAS) can improve 

our understanding of disease prognosis, treatments, and etiology by helping to uncover disease-causing 

variants and complex gene-disease relationships [1]. Recent progress in artificial intelligence (AI) and 

machine learning (ML) techniques have demonstrated their efficacy for genomic predictive analysis [2]. 

The introduction of AI/ML prediction tools in the field of genomics has increased our understanding of 

disease etiology and shows potential for further uptake in clinical practice [3]. However, the rapid growth 

of genomic data presents many analytic obstacles. Most genomic data formats are not immediately 

suitable for AI/ML analyses, requiring extensive preprocessing. Although state-of-the-art bioinformatic 

tools have been created to individually support the various data transformation stages, there is a lack of 

tools to extract highly targeted genomic data suitable for immediate analysis. In addition, large volumes 

of heterogenous genetic information make data preparation difficult for targeted studies investigating only 

specific genes of interest. These datasets often include thousands of irrelevant data points resulting in 

wasteful processing and lengthy computation times [4]. Moreover, such workflows are often inaccessible 

to clinicians and translational researchers that lack the computational expertise [5, 6]. Ultimately, 

addressing these challenges will help render genomic analyses more accessible, affordable, and effective. 

Processing variant data is an arduous process with many stages: raw sequence files undergo many 

transformations such as quality checking, trimming, alignment to a reference genome, variant calling, 

filtering, annotation, analysis, and visualization. Many tools exist to streamline each of these stages, 

including Burrows-Wheeler Aligner (BWA) [7] for alignment, Genome Analysis Toolkit (GATK) [8] for variant 

calling, and SnpEff [9] or Ensembl Variant Effect Predictor (VEP) [10] for annotation. To support the variant 

calling workflow, we have recently developed a reliable Java-based Whole Genome/Exome (JWES) Data 

Processing Pipeline [11]. JWES centralizes these various tools into a single cohesive pipeline for processing 

variant files. Using BWA for alignment, GATK for variant calling, and SnpEff for annotation, JWES allows the 

user to easily prepare a Variant Call Format (VCF) dataset. The VCF format is an extensible data format to 

encode mutation data alongside corresponding annotations [12], and it is widely supported by many 

genomic tools. To help address these data processing challenges, we have developed VAriant REduction 

and ANnoTation (VAREANT), a configurable and accessible bioinformatic tool to support the curation of 

targeted variant and AI/ML-ready datasets. VAREANT is designed as a series of standalone modules to 

support the user with their various data preparation needs. It was validated in a case study with a selective 
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cohort of patients with cardiovascular diseases (CVDs) to extract relevant CVD-associated variants and 

annotations. With its utilization in data management pipelines, VAREANT can help simplify the data 

transformation workflow and produce effective datasets equipped for subsequent AI/ML analyses. 

Materials and methods 

VAREANT is split into three standalone modules: I) Preprocessing, II) Variant Annotation, and III) AI/ML 

Data Preparation. Each module may be used independently on custom datasets or chained together to 

robustly extract relevant variant data from a larger genomics dataset.  

Preprocessing 

To reduce overall costs associated with genomic data management and analysis, it is important to 

successfully identify and minimize any extraneous data. To support the curation of these targeted genomic 

datasets, VAREANT implements a highly efficient and customizable filtering methodology for selecting 

maximally relevant variants and metadata. Through the application of different filters, the user has 

nuanced control over which data points are retained, including genes, quality scores, pathogenicity scores, 

sample genotype data, annotations, allele frequencies, etc. Notably, VAREANT enables the selective 

extraction of both variants using rsIDs and genes by either gene symbols or Ensembl IDs [13]. This is 

particularly useful when the target gene set is known a priori, such as in many clinical studies. In addition 

to extracting gene-related data, specific variant metadata important for subsequent analysis may also be 

retrieved. Heavily annotated variant files may contain hundreds of features per variant, amassing to large 

volumes of potentially unused data. Filtering these extraneous annotations can lead to drastic reduction 

of file sizes. Variant files may also contain information about multiple sequenced samples, such as read 

depth, read quality, or haplotype phasing. For targeted analyses or case/control studies where only a 

subset of this data is required for investigation, VAREANT can efficiently extract this information. VAREANT 

was developed to be performant in different environments with variable resources, by efficiently taking 

full advantage of the available computing hardware. Larger files are split into smaller manageable chunks 

and processed efficiently on multiple central processing units (CPUs) in parallel. Moreover, by dynamically 

streaming chunks into memory, VAREANT can maintain a minimal memory footprint. We have open 

sourced our command line tool, written in Python, and made it publicly available on our GitHub. With its 

simple interface, it is accessible to researchers and clinicians lacking a computational background, 

requiring only a basic understanding of executing scripts. Details on installing and using VAREANT can be 

found in the Supplementary User Guide. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 26, 2024. ; https://doi.org/10.1101/2024.09.24.24314291doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.24.24314291
http://creativecommons.org/licenses/by-nc-nd/4.0/


Variant Annotation 

Variant annotation is the process of associating metadata from public databases with corresponding 

variant data. The choice of annotations can have a significant impact on the interpretation and conclusions 

of genomic analyses [14]. Although many other annotation tools exist, such as VEP or ANNOVAR, VAREANT 

employs SnpEff due to its simplicity, portability, and efficiency [9]. For annotation databases, VAREANT 

currently supports dbSNP, dbNSFP, and ClinVar to identify clinical significance and functional pathogenicity 

scores for known variants. dbSNP is a public and centralized repository of genetic variation constituting 

primarily of single nucleotide polymorphisms (SNPs), the most common type of genetic variation [15]. 

However, dbSNP makes no distinction between neutral and pathogenic variants. For this purpose, dbNSFP 

can be used to provide 36 different functional pathogenicity scores aiding in determining variant 

deleteriousness [16]. For example, SIFT and PolyPhen scores may be used to predict whether a mutation 

is likely to affect protein structure, or Combined Annotation-Dependent Depletion (CADD) [17] and Eigen 

scores [18] which integrate numerous functional annotations to generate a single ML-based deleterious 

metric. Effective pathogenicity scores are crucial for identifying variations of interest and discovering 

disease etiology. Lastly, ClinVar is a public archive of genetic variants and their significance in human 

disease [19] and can be used as a basis for investigating variant-disease associations. Using VAREANT, the 

user may optionally annotate their datasets with any of these public databases depending on the study-

specific needs. Since variant annotation is more time consuming for larger files, the user may pre-process 

their dataset using VAREANT before annotation to reduce the overall processing burden. Moreover, to 

support and enable scientists with their own custom annotation pipelines, the user can integrate 

VAREANT’s standalone modules independently with their own tools and annotation databases, widening 

the scope of use cases for VAREANT. 

AI/ML Data Preparation 

AI/ML techniques show promise in progressing modern genomic analysis and personalized treatment by 

aiding scientists in understanding the genetic basis of disease [2, 20]. However, extensive preprocessing is 

often required to prepare data in a format conducive to AI/ML analysis. Although the VCF format is 

effective at encoding variation data, it is not suitable for immediate use. To prepare variant files for 

subsequent AI/ML analysis, VAREANT supports the extraction and transformation of variant and sample 

data into a tabular AI/ML-ready structure. This tabular structure is preferred over other formats for AI/ML 

analysis. It enables the integration of clinical demographic information with genomic data and is well 

supported by various programming languages. In addition to a tabular format, we recognize that 
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bioinformaticians often have their own data management pipeline. To better support these custom 

workflows, the user may also extract data into a JWES-compatible relational database [11], enabling them 

to integrate their datasets with existing structured query language (SQL) data management solutions. This 

relational structure is more convenient for organizing variant annotations with sample data. VAREANT was 

written in the Python programming language and requires at least Python 3.6 to be installed on the system. 

It is compatible with all major operating systems including Windows, MacOS, and Linux. For annotation, 

VAREANT uses SnpEff which requires Java to be installed on system. For AI/ML data preparation, the user 

must also install the Pandas and NumPy python packages. We have open-sourced our tool to be accessible 

to the wider scientific community. Further installation and usage instructions can be found on our public 

GitHub as well as in our Supplementary User Guide. 

Results 

Data Collection 

VAREANT has been successfully tested and validated in-house on varied datasets and environments. We 

carefully crafted 97 datasets of varying sizes: 96 samples were sequenced from separate patients with 

different CVDs, and the final dataset was curated from the 96 samples to simulate a more variant-dense 

dataset. The 96 samples were aggregated from two peer-reviewed studies investigating impactful genes 

and their associations with CVD, including atrial fibrillation (AF) and heart failure (HF). The first cohort 

contained 61 patients [21], and the second contained the remaining 35 [22]. Combined, 61 patients were 

male and 35 were female, aged between 24 and 94. Age and gender information for each patient is 

enumerated in the Supplementary Materials. VAREANT was used to preprocess and annotate each of 

these datasets ranging from 0.5 gigabytes (GB) to 3.1 GB in size. To further validate VAREANT, we derived 

a literature-based set of CVD-associated genes and variants to cross-reference the extracted results. We 

recently conducted a thorough review of literature published between 2009 and 2022 focused on 

integrative genomic approaches, common and rare genetic variant analyses for CVDs, and multi-ethnic 

studies [23]. In that study, we identified a total of 214 variants from 190 genes associated with AF, and 28 

variants from 26 genes associated with HF. This gene set of 216 genes was used as the primary criterion 

for filtering and annotation with VAREANT. All filtered variants were manually reviewed to ensure 

consistency with the specified gene set. A list of variants from our criterion that were identified in our 

dataset may be found in the Supplementary Materials. The original 96 samples consisted of 396,788,923 

total variants, which was narrowed down by over a factor of 100 to 3,906,744 variants using VAREANT. 

Annotation on this targeted dataset was subsequently performed using dbSNP, dbNSFP, and ClinVar. dbSNP 
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(dated 04/23/2018) was used to identify each variant by their rsIDs, and dbNSFP (v4.1a) and ClinVar (dated 

07/08/2024) was used to determine pathogenicity and clinical significance of each variant. 

Case Study #1: Heart Failure 

From our processed dataset, we first identified the total number of variants on genes associated with HF. 

Specifically, 220,348 variants of the 3.9 million variants filtered by VAREANT belonged to HF-associated 

genes, according to our filtering criterion. We then explored the individual annotations to identify variants 

with known clinical significance and pathogenic effects. 12,373 of these variants reported clinical 

significance and pathogenicity annotations, most of which were marked benign or with uncertain 

significance. The remaining novel variants lacked any annotations. In total, 9 unique variants were 

successfully identified from ClinVar annotations as having some pathogenic association in a GWAS study 

or being a risk factor for disease. Specifically, deleterious variants were labelled as either ‘pathogenic,’ 

‘likely pathogenic,’ ‘risk factor,’ or ‘association,’ as described by ClinVar’s variant classification guidelines 

[19]. Specifically, rs1063192 was indicated to be likely pathogenic; rs977371848, rs12740374, 

rs947073006 were marked as having some association to GWAS a study; and rs1333049, rs10757274, 

rs1421085, rs4977574 were identified as being risk factors. From our original set of 28 HF-associated 

variants, 21 were present in our dataset and all were marked benign/likely benign. These variants are 

enumerated in the Supplementary Materials. 

To determine the significance of each variant in HF and CVDs in general, we reviewed authentic literature. 

We discovered that rs1063192 has been studied to have a positive association with myocardial infarction 

(MI) in Han Chinese male patients [7]; rs1421085 has associations with childhood and adult obesity [24, 

25]; rs1333049 has been studied to have associations with coronary artery disease (CAD) in Caucasian 

[26], Japanese [27], and Korean populations [27], and associations with MI in German populations [28]; 

rs4977574 shows change in African and Middle-Eastern populations for type 2 diabetes and CAD [29]; 

rs10757274 has been previously associated with MI in Italian [30], as well as CAD in Korean populations 

[31]; rs12740374 was studied to be highly associated with low-density lipoprotein cholesterol [32]. The 

remaining variants were not previously studied to have associations with HF. An aggregate of these 

variants, their prevalence in our dataset, and their clinical significance is enumerated in Table 2. 

Case Study #2: Atrial Fibrillation 

Of the over 3.9 million variants filtered using VAREANT, the remaining 3,686,396 belonged to genes 

associated with AF. 101,745 of these variants were annotated to have some clinical significance, and 7 

unique variants indicating some pathogenic clinical significance [19]. Namely, rs1449966934 was marked 
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pathogenic, and rs8041826, rs4722804, rs2282983, rs11153718, rs3901896, rs42034 were all identified as 

having some previously studied GWAS association. From our original set of 214 AF-associated variants, 

151 variants were present in our dataset, all of which were also annotated as benign/likely benign. These 

variants are enumerated in Table 2. To explore the relationship of the pathogenic variants with CVDs, we 

reviewed authentic literature for each variant. Notably, rs42034 was studied to have negative associations 

with Bechet’s disease (an inflammatory disease) in the Han Chinese population [33]. The other 6 variants 

were not previously explored in literature, but rs1449966934 was annotated to have associations with the 

congenital disorder glycosylation. Further study is required to identify any potential functional associations 

these variants may have with CVDs. 

Computational Validation 

Performance was extensively tested and benchmarked on different operating systems (MacOS, Linux, 

Windows), on different hardware configurations (4 CPUs and 8 GB memory, 12 CPUs and 32 GB memory), 

in high performance computing (HPC) and local desktop environments, and in single-processor and multi-

processor modes. The results of each configuration for the combined variant-dense dataset and for one of 

the 96 patient-specific datasets are listed in the Supplementary Materials. Notably, VAREANT successfully 

filtered out over 97% of the combined dataset (0.5 GB) and over 99.9% of the larger 2.6 GB patient-specific 

dataset within seconds. VAREANT also performs better on more powerful hardware, completing filtering 

nearly twice as fast on the larger dataset when using 12 CPUs over 4 CPUs. Moreover, on a single processor, 

limited memory does not appear to pose a noticeable bottleneck. The performance metrics also effectively 

delineate the impact that filtering with VAREANT has on subsequent annotation. Annotating the large 2.6 

GB dataset using dbSNP, dbNSFP, and ClinVar took over 3 hours on an M2 MacBook, which was reduced 

to merely 16 seconds after first filtering the dataset for relevant variants only. The smaller yet variant-

dense dataset also experienced significant improvements in annotation from nearly 15 minutes before 

filtering to only 44 seconds after filtering. Although these results are subject to the hardware resources 

and content of the dataset, we recommend running VAREANT in its multi-processor mode to take full 

advantage of provided hardware, and to filter before annotation to minimize computational times. This 

configuration is the default. 

Discussion 

The curation of high-quality, relevant genomic datasets is necessary to facilitate genomic analysis that can 

transform our current understanding of gene-disease relationships and improve our ability to provide 

personalized treatment options for patients. Moreover, it may help minimize difficulties associated with 
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genomic data management, such as the high storage capacities needed to handle large volumes of data 

[5] and the time-consuming processing [6]. In this study, we aim to address some of these challenges by 

presenting VAREANT, a highly configurable and accessible bioinformatics tool to process large volumes of 

variant data into targeted datasets suitable for subsequent analysis. Here, we demonstrated the efficacy 

of VAREANT in a case study of 97 CVD variant files. Using a literature-based gene set, we successfully 

created a targeted dataset and identified numerous variants with associations with CVD diseases, such as 

CAD and MI. 

VAREANT was developed alongside a recent study we conducted wherein we applied AI/ML techniques to 

predict CVD in a patient population based on integrated RNA-Seq expression data and genomics variant 

data [34]. In that study, we faced significant obstacles in the processing and preparation of hundreds of 

GBs of genomics data in a format suitable for AI/ML analysis, prompting the need to curate a targeted, 

AI/ML-ready [35], CVD dataset. Although VAREANT was originally developed to support this specific study, 

we recognized the broader potential impact of such bioinformatic applications and developed it into a 

publicly available tool for the wider scientific community. Recently, we also developed and proposed 

IntelliGenes, a novel AI/ML framework for disease prediction and biomarker discovery in patients using 

multi-omics data [36, 37]. VAREANT is well suited to support the user with complex, multi-modal AI/ML 

analysis using tools like IntelliGenes. By chaining JWES, VAREANT, and IntelliGenes, the user can streamline 

the full genomic data transformation workflow. VAREANT may also be expanded to include more fine-

grained filtering options for better data extraction. Here, we demonstrate that accessible bioinformatic 

tools such as VAREANT, to aid in preparing large volumes of data, are critical and effective in predictive 

genomic analyses. 

List of Abbreviations 

Artificial Intelligence (AI) 

Atrial Fibrillation (AF) 

Burrows-Wheeler Aligner (BWA) 

Cardiovascular Disease (CVD) 

Central Processing Unit (CPU) 

Combined Annotation-Dependent Depletion (CADD) 

Coronary Artery Disease (CAD) 
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Ensembl Variant Effect Predictor (VEP) 

Genome Analysis Toolkit (GATK) 

Genome-Wide Assocation Studies (GWAS) 

Gigabytes (GB) 

Graphical User Interface (GUI) 

Heart Failure (HF) 

High Performance Computing (HPC) 

Java-based Whole Genome/Exome Data Processing Pipeline (JWES) 

Machine Learning (ML) 

Myocardial Infarction (MI) 

Single Nucleotide Polymorphism (SNP) 

Structured Query Language (SQL) 

Variant Call Format (VCF) 

VAriant REduction and ANnoTation (VAREANT) 
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Figure 

 

Figure 1. VAREANT pipeline overview (left) and data transformation workflow (right): 1) Pre-Processing 

supports user in curating targeted datasets, 2) Annotation supports user in easily annotating variants files, 

3) AI/ML Data Preparation supports user in extracting VCF files into a more usable AI/ML ready data 

format. 
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Tables  

# Gene Variants (RS Numbers) Disease 

1 AGBL4 rs11590635 AF 

2 AKAP6 rs2145587; rs11156751 AF 

3 ANXA4 rs3771537 AF 

4 ARHGAP10 rs10213171 AF 

5 ARHGAP26 rs6580277 AF 

6 ASAH1 rs7508 AF 

7 ATXN1 rs73366713 AF 

8 BEST3 rs35349325 AF 

9 C10orf11 rs11001667; rs10458660 AF 

10 C10orf76 rs1044258 AF 

11 C9orf3 rs4385527; rs10821415 AF 

12 C9orf3(FBP1) rs10821415 AF 

13 C9orf3(FBP2) rs10821415 AF 

14 CAMK2D rs55754224; rs6829664 AF 

15 CAND2 rs6810325; rs4642101; rs7650482 AF 

16 CASQ2 rs4484922; rs4073778 AF 

17 CASZ1 rs880315; rs284277 AF 

18 CAV1 rs11773845; rs3807989 AF 

19 CDK6 rs11773884; rs56201652 AF 
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20 CDKN1A rs3176326 AF 

21 CEP68 rs2540949 AF 

22 CFL2 rs73241997 AF 

23 COG5 rs62483627 AF 

24 CREB5 rs6462078; rs6462079 AF 

25 CUL4A rs35569628 AF 

26 CUX2 rs6490029 AF 

27 CYTH1 rs12604076 AF 

28 DGKB rs55734480 AF 

29 DNAH10 rs12298484 AF 

30 DPF3 rs74884082 AF 

31 EPHA3 rs7632427; rs6771054 AF 

32 ERBB4 rs35544454 AF 

33 FAM13B rs2967791 AF 

34 FBN2 rs2012809 AF 

35 FBRSL1 rs6560886 AF 

36 FBXO32 rs62521286 AF 

37 FRMD4B rs17005647 AF 

38 GMCL1 rs3771537 AF 

39 GNB4 rs4855075; rs7612445 AF 

40 GOPC rs210632 AF 
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41 GOSR2 rs76774446 AF 

42 GTF2I rs74910854; rs35005436 AF 

43 GYPC rs28387148 AF 

44 HAND2 rs10520260 AF 

45 HCN4 rs7164883 AF 

46 HIP1R rs10773657 AF 

47 IGF1R rs12908437; rs4965430 AF 

48 KCND3 rs12044963; rs1545300 AF 

49 KCNH2 rs7789146 AF 

50 KCNJ5 rs76097649; rs75190942 AF 

51 KCNN2 rs716845; rs337711; rs337705 AF 

52 KDM1B rs34969716 AF 

53 KIF3C rs6546620; rs7578393 AF 

54 KLHL3 rs2967791 AF 

55 LHX3 rs2274115 AF 

56 LINC00964 rs35006907 AF 

57 LRIG1 rs2306272; rs34080181 AF 

58 MAPT rs242557 AF 

59 MBD5 rs12992412 AF 

60 MEX3C rs8088085 AF 

61 MIR30B rs7460121 AF 
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62 MTSS1 rs35006907; rs35006907 AF 

63 MYH7 rs28631169; rs422068 AF 

64 MYO18B rs133902 AF 

65 MYOCD rs72811294 AF 

66 MYOZ1 rs10824026 AF 

67 NACA rs7978685; rs2860482 AF 

68 NAV2 rs1822273; rs10741807 AF 

69 NKX2-5 rs6882776 AF 

70 NME5 rs2040862 AF 

71 NR3C1 rs6580277 AF 

72 NUCKS1 rs4951261; rs4951258 AF 

73 OPN1SW rs55985730 AF 

74 PAK2 rs9872035 AF 

75 PCM1 rs7508 AF 

76 PHLDB2 rs17490701; rs10804493 AF 

77 PKP2 rs12809354 AF 

78 PLN rs4946333; rs89107 AF 

79 POLR2A rs9899183 AF 

80 PPFIA4 rs10753933; rs17461925 AF 

81 PPP2R3A rs1278493 AF 

82 PSMB7 rs10760361 AF 
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83 PTK2 rs6993266; rs6994744 AF 

84 RBM20 rs10749053 AF 

85 REEP3 rs7919685; rs12245149 AF 

86 RPS2 rs2286466 AF 

87 SCMH1 rs2885697 AF 

88 SCN10A rs6790396; rs6800541 AF 

89 SH3PXD2A rs2047036 AF 

90 SIRT1 rs7096385 AF 

91 SLC27A6 rs2012809 AF 

92 SLC35F1 rs17079881; rs4946333; rs89107; rs3951016 AF 

93 SLC9B1 rs3960788; rs10006327 AF 

94 SLIT3 rs12188351 AF 

95 SMAD7 rs9953366 AF 

96 SNRNP27 rs10165883; rs6747542 AF 

97 SNX6 rs73241997 AF 

98 SPATS2L rs295114; rs3820888 AF 

99 SSPN rs113819537; rs17380837 AF 

100 SUN1 rs11768850 AF 

101 SYNE2 rs2738413; rs1152591 AF 

102 SYNPO2L rs60212594; rs10824026 AF 

103 TBX5 rs883079; rs10507248 AF 
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104 TEX41 rs67969609 AF 

105 THRB rs73032363; rs73041705 AF 

106 TNFSF12 rs9899183 AF 

107 TTN rs35504893; rs2288327 AF 

108 TTN-AS1 rs2288327 AF 

109 TUBA8 rs465276; rs464901 AF 

110 USP3 rs62011291 AF 

111 UST rs117984853 AF 

112 WDR1 rs3822259 AF 

113 WNT8A rs2967791; rs2040862 AF 

114 XPO1 rs6742276 AF 

115 XPO7 rs7846485; rs7834729 AF 

116 XXYLT1 rs60902112 AF 

117 ZFHX3 rs2359171; rs2106261 AF 

118 ZNF462 rs4743034 AF 

119 ZPBP2 rs11658278 AF 

120 AGAP5 rs4746140 HF 

121 ATXN2 rs4766578 HF 

122 BAG3 rs17617337; rs2234962 HF 

123 CDKN1A rs4135240 HF 

124 CDKN2B-AS1 rs1556516 HF 
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125 CELSR2 rs660240 HF 

126 KLHL3 rs11745324 HF 

127 LINC00964 rs35006907 HF 

128 LPA rs55730499; rs140570886 HF 

129 MAP7D1 rs272825; rs272832 HF 

130 MTSS1 rs35006907; rs34866937; rs35006907 HF 

131 NMB rs2175567; rs17598603 HF 

132 SCN5A rs1805126 HF 

133 SH2B3 rs7310615 HF 

134 SURF1 rs600038 HF 

135 SYNPOL2L rs4746140 HF 

136 TTN rs2042995; rs2255167 HF 

 

Table 1. Gene-Variants Associated with AF/HF. This table includes genes, variant (RS Numbers), and 

Disease information. Genes associated with Atrial Fibrillation (AF) are colored orange, and those 

associated with Heart Failure (HF) are colored blue. 
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Gene Variant (RS 

Number) 

Frequency (in 96 

sample cohort) 

Clinical Significance 

based on ClinVar 

Disease Names based on 

ClinVar 

COG5 rs1449966934 1 Pathogenic COG5 Congenital Disorder of 

Glycosylation 

CDKN2B-

AS1 

rs1063192 76 Likely Pathogenic Malignant tumor of breast, 

Three Vessel Coronary 

Disease 

 rs1333049 70 Risk Factor Three Vessel Coronary 

Disease 

 rs4977574 70 Risk Factor Three Vessel Coronary 

Disease 

 rs10757274 71 Risk Factor Three Vessel Coronary 

Disease 

FTO rs1421085 70 Risk Factor Obesity (BMIQ14) 

Susceptibility 

ABO rs947073006 90 Association ABO Blood Group System 

 rs977371848 90 Association ABO Blood Group System 

 rs992108547 90 Association ABO Blood Group System 

ARNT2 rs3901896 55 Association Pulmonary Disease 

Susceptibility 

 rs8041826 31 Association Pulmonary Disease 

Susceptibility 

CDK6 rs42034 40 Association Bechet Disease 

 rs2282983 65 Association Bechet Disease 

CELSR2 rs12740374 32 Association LDL Cholesterol 
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CREB5 rs4722804 30 Association Vascular Endothelial Growth 

Factor Inhibitor Response 

SLC35F1 rs11153718 34 Association Vascular Endothelial Growth 

Factor Inhibitor Response 

Table 2. Disease-Associated Variants Identified by ClinVar. This table enumerates genes, RS Number, 

frequency in cohort, pathogenic scoring based on ClinVar, and associated diseases for 16 variants. These 

variants were identified by ClinVar as having some known association to diseases. 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 26, 2024. ; https://doi.org/10.1101/2024.09.24.24314291doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.24.24314291
http://creativecommons.org/licenses/by-nc-nd/4.0/

