It is made available under a CC-BY-NC-ND 4.0 International license .

Title

VAREANT: a bioinformatics application for gene variant reduction and annotation

Running Title

VAREANT annotation tool

Authors

Rishabh Narayanan¹, William DeGroat¹, Elizabeth Peker¹, and Zeeshan Ahmed^{1, 2, *}

Affiliations

1. Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers, The State University of New Jersey, 112 Paterson St, New Brunswick, 08901, NJ, USA.

2. Department of Medicine, Robert Wood Johnson Medical School, Rutgers Health, 125 Paterson St, New Brunswick, NJ, 08901, USA.

***Corresponding author:** Zeeshan Ahmed, Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, 08901, NJ, USA. (zahmed@ifh.rutgers.edu).

It is made available under a CC-BY-NC-ND 4.0 International license .

Abstract

The analysis of high-quality genomic variant data may offer a more complete understanding of the human genome, enabling researchers to identify novel biomarkers, stratify patients based on disease risk factors, and decipher underlying biological pathways. Although the availability of genomic data has sharply increased in recent years, the accessibility of bioinformatic tools to aid in its preparation is still lacking. Limitations with processing genomic data primarily include its large volume, associated computational and storage costs, and difficulty in identifying targeted and relevant information. Here, we present VAREANT, an accessible and configurable bioinformatic tool to support the preparation of variant data into a usable analysis-ready format. Designed to simplify the data pre-processing workflow, VAREANT enables the curation of targeted variant datasets. VAREANT is comprised of three standalone modules: (1) Preprocessing, (2) Variant Annotation, (3) Artificial Intelligence (AI) / Machine Learning (ML) Data Preparation. Pre-processing supports the fine-grained filtering of complex variant datasets to eliminate extraneous data. Variant Annotation allows for the addition of variant metadata from public annotation databases for subsequent analysis and interpretation. AI/ML Data Preparation supports the user in creating AI/ML-ready datasets suitable for immediate analysis with minimal pre-processing required. We have successfully tested and validated our tool on numerous variable-sized datasets and implemented VAREANT in two case studies involving patients with CVDs. Efficiently extracting relevant variants into an AI/ML ready format using tools like VAREANT has important scientific implications, such as producing targeted and high-quality datasets and helping reduce overall computational costs.

Keywords:

Bioinformatics, Genomic, data, variant, annotation, interpretation

It is made available under a CC-BY-NC-ND 4.0 International license .

Introduction

Advancements in genome sequencing technologies have resulted in an immense wealth of available genomic data. The analysis of genetic variations via genome-wide association studies (GWAS) can improve our understanding of disease prognosis, treatments, and etiology by helping to uncover disease-causing variants and complex gene-disease relationships [1]. Recent progress in artificial intelligence (AI) and machine learning (ML) techniques have demonstrated their efficacy for genomic predictive analysis [2]. The introduction of AI/ML prediction tools in the field of genomics has increased our understanding of disease etiology and shows potential for further uptake in clinical practice [3]. However, the rapid growth of genomic data presents many analytic obstacles. Most genomic data formats are not immediately suitable for AI/ML analyses, requiring extensive preprocessing. Although state-of-the-art bioinformatic tools have been created to individually support the various data transformation stages, there is a lack of tools to extract highly targeted genomic data suitable for immediate analysis. In addition, large volumes of heterogenous genetic information make data preparation difficult for targeted studies investigating only specific genes of interest. These datasets often include thousands of irrelevant data points resulting in wasteful processing and lengthy computation times [4]. Moreover, such workflows are often inaccessible to clinicians and translational researchers that lack the computational expertise [5, 6]. Ultimately, addressing these challenges will help render genomic analyses more accessible, affordable, and effective.

Processing variant data is an arduous process with many stages: raw sequence files undergo many transformations such as quality checking, trimming, alignment to a reference genome, variant calling, filtering, annotation, analysis, and visualization. Many tools exist to streamline each of these stages, including Burrows-Wheeler Aligner (BWA) [7] for alignment, Genome Analysis Toolkit (GATK) [8] for variant calling, and SnpEff [9] or Ensembl Variant Effect Predictor (VEP) [10] for annotation. To support the variant calling workflow, we have recently developed a reliable Java-based Whole Genome/Exome (JWES) Data Processing Pipeline [11]. JWES centralizes these various tools into a single cohesive pipeline for processing variant files. Using BWA for alignment, GATK for variant calling, and SnpEff for annotation, JWES allows the user to easily prepare a Variant Call Format (VCF) dataset. The VCF format is an extensible data format to encode mutation data alongside corresponding annotations [12], and it is widely supported by many genomic tools. To help address these data processing challenges, we have developed <u>VAriant REduction</u> and <u>ANnoTation</u> (*VAREANT*), a configurable and accessible bioinformatic tool to support the curation of targeted variant and Al/ML-ready datasets. *VAREANT* is designed as a series of standalone modules to support the user with their various data preparation needs. It was validated in a case study with a selective

It is made available under a CC-BY-NC-ND 4.0 International license .

cohort of patients with cardiovascular diseases (CVDs) to extract relevant CVD-associated variants and annotations. With its utilization in data management pipelines, *VAREANT* can help simplify the data transformation workflow and produce effective datasets equipped for subsequent AI/ML analyses.

Materials and methods

VAREANT is split into three standalone modules: I) Preprocessing, II) Variant Annotation, and III) AI/ML Data Preparation. Each module may be used independently on custom datasets or chained together to robustly extract relevant variant data from a larger genomics dataset.

Preprocessing

To reduce overall costs associated with genomic data management and analysis, it is important to successfully identify and minimize any extraneous data. To support the curation of these targeted genomic datasets, VAREANT implements a highly efficient and customizable filtering methodology for selecting maximally relevant variants and metadata. Through the application of different filters, the user has nuanced control over which data points are retained, including genes, quality scores, pathogenicity scores, sample genotype data, annotations, allele frequencies, etc. Notably, VAREANT enables the selective extraction of both variants using rsIDs and genes by either gene symbols or Ensembl IDs [13]. This is particularly useful when the target gene set is known a priori, such as in many clinical studies. In addition to extracting gene-related data, specific variant metadata important for subsequent analysis may also be retrieved. Heavily annotated variant files may contain hundreds of features per variant, amassing to large volumes of potentially unused data. Filtering these extraneous annotations can lead to drastic reduction of file sizes. Variant files may also contain information about multiple sequenced samples, such as read depth, read quality, or haplotype phasing. For targeted analyses or case/control studies where only a subset of this data is required for investigation, VAREANT can efficiently extract this information. VAREANT was developed to be performant in different environments with variable resources, by efficiently taking full advantage of the available computing hardware. Larger files are split into smaller manageable chunks and processed efficiently on multiple central processing units (CPUs) in parallel. Moreover, by dynamically streaming chunks into memory, VAREANT can maintain a minimal memory footprint. We have open sourced our command line tool, written in Python, and made it publicly available on our GitHub. With its simple interface, it is accessible to researchers and clinicians lacking a computational background, requiring only a basic understanding of executing scripts. Details on installing and using VAREANT can be found in the Supplementary User Guide.

It is made available under a CC-BY-NC-ND 4.0 International license .

Variant Annotation

Variant annotation is the process of associating metadata from public databases with corresponding variant data. The choice of annotations can have a significant impact on the interpretation and conclusions of genomic analyses [14]. Although many other annotation tools exist, such as VEP or ANNOVAR, VAREANT employs SnpEff due to its simplicity, portability, and efficiency [9]. For annotation databases, VAREANT currently supports dbSNP, dbNSFP, and ClinVar to identify clinical significance and functional pathogenicity scores for known variants. dbSNP is a public and centralized repository of genetic variation constituting primarily of single nucleotide polymorphisms (SNPs), the most common type of genetic variation [15]. However, dbSNP makes no distinction between neutral and pathogenic variants. For this purpose, dbNSFP can be used to provide 36 different functional pathogenicity scores aiding in determining variant deleteriousness [16]. For example, SIFT and PolyPhen scores may be used to predict whether a mutation is likely to affect protein structure, or Combined Annotation-Dependent Depletion (CADD) [17] and Eigen scores [18] which integrate numerous functional annotations to generate a single ML-based deleterious metric. Effective pathogenicity scores are crucial for identifying variations of interest and discovering disease etiology. Lastly, ClinVar is a public archive of genetic variants and their significance in human disease [19] and can be used as a basis for investigating variant-disease associations. Using VAREANT, the user may optionally annotate their datasets with any of these public databases depending on the studyspecific needs. Since variant annotation is more time consuming for larger files, the user may pre-process their dataset using VAREANT before annotation to reduce the overall processing burden. Moreover, to support and enable scientists with their own custom annotation pipelines, the user can integrate VAREANT's standalone modules independently with their own tools and annotation databases, widening the scope of use cases for VAREANT.

AI/ML Data Preparation

AI/ML techniques show promise in progressing modern genomic analysis and personalized treatment by aiding scientists in understanding the genetic basis of disease [2, 20]. However, extensive preprocessing is often required to prepare data in a format conducive to AI/ML analysis. Although the VCF format is effective at encoding variation data, it is not suitable for immediate use. To prepare variant files for subsequent AI/ML analysis, *VAREANT* supports the extraction and transformation of variant and sample data into a tabular AI/ML-ready structure. This tabular structure is preferred over other formats for AI/ML analysis. It enables the integration of clinical demographic information with genomic data and is well supported by various programming languages. In addition to a tabular format, we recognize that

bioinformaticians often have their own data management pipeline. To better support these custom workflows, the user may also extract data into a JWES-compatible relational database [11], enabling them to integrate their datasets with existing structured query language (SQL) data management solutions. This relational structure is more convenient for organizing variant annotations with sample data. *VAREANT* was written in the Python programming language and requires at least Python 3.6 to be installed on the system. It is compatible with all major operating systems including Windows, MacOS, and Linux. For annotation, *VAREANT* uses SnpEff which requires Java to be installed on system. For AI/ML data preparation, the user must also install the Pandas and NumPy python packages. We have open-sourced our tool to be accessible to the wider scientific community. Further installation and usage instructions can be found on our public GitHub as well as in our Supplementary User Guide.

Results

Data Collection

VAREANT has been successfully tested and validated in-house on varied datasets and environments. We carefully crafted 97 datasets of varying sizes: 96 samples were sequenced from separate patients with different CVDs, and the final dataset was curated from the 96 samples to simulate a more variant-dense dataset. The 96 samples were aggregated from two peer-reviewed studies investigating impactful genes and their associations with CVD, including atrial fibrillation (AF) and heart failure (HF). The first cohort contained 61 patients [21], and the second contained the remaining 35 [22]. Combined, 61 patients were male and 35 were female, aged between 24 and 94. Age and gender information for each patient is enumerated in the Supplementary Materials. VAREANT was used to preprocess and annotate each of these datasets ranging from 0.5 gigabytes (GB) to 3.1 GB in size. To further validate VAREANT, we derived a literature-based set of CVD-associated genes and variants to cross-reference the extracted results. We recently conducted a thorough review of literature published between 2009 and 2022 focused on integrative genomic approaches, common and rare genetic variant analyses for CVDs, and multi-ethnic studies [23]. In that study, we identified a total of 214 variants from 190 genes associated with AF, and 28 variants from 26 genes associated with HF. This gene set of 216 genes was used as the primary criterion for filtering and annotation with VAREANT. All filtered variants were manually reviewed to ensure consistency with the specified gene set. A list of variants from our criterion that were identified in our dataset may be found in the Supplementary Materials. The original 96 samples consisted of 396,788,923 total variants, which was narrowed down by over a factor of 100 to 3,906,744 variants using VAREANT. Annotation on this targeted dataset was subsequently performed using dbSNP, dbNSFP, and ClinVar. dbSNP

It is made available under a CC-BY-NC-ND 4.0 International license .

(dated 04/23/2018) was used to identify each variant by their rsIDs, and dbNSFP (v4.1a) and ClinVar (dated 07/08/2024) was used to determine pathogenicity and clinical significance of each variant.

Case Study #1: Heart Failure

From our processed dataset, we first identified the total number of variants on genes associated with HF. Specifically, 220,348 variants of the 3.9 million variants filtered by *VAREANT* belonged to HF-associated genes, according to our filtering criterion. We then explored the individual annotations to identify variants with known clinical significance and pathogenic effects. 12,373 of these variants reported clinical significance and pathogenic effects. 12,373 of these variants reported clinical significance. The remaining novel variants lacked any annotations. In total, 9 unique variants were successfully identified from ClinVar annotations as having some pathogenic association in a GWAS study or being a risk factor for disease. Specifically, deleterious variants were labelled as either 'pathogenic,' 'likely pathogenic,' 'risk factor,' or 'association,' as described by ClinVar's variant classification guidelines [19]. Specifically, *rs1063192* was indicated to be likely pathogenic; *rs977371848*, *rs12740374*, *rs1421085*, *rs4977574* were identified as being risk factors. From our original set of 28 HF-associated variants, 21 were present in our dataset and all were marked benign/likely benign. These variants are enumerated in the Supplementary Materials.

To determine the significance of each variant in HF and CVDs in general, we reviewed authentic literature. We discovered that *rs1063192* has been studied to have a positive association with myocardial infarction (MI) in Han Chinese male patients [7]; *rs1421085* has associations with childhood and adult obesity [24, 25]; *rs1333049* has been studied to have associations with coronary artery disease (CAD) in Caucasian [26], Japanese [27], and Korean populations [27], and associations with MI in German populations [28]; *rs4977574* shows change in African and Middle-Eastern populations for type 2 diabetes and CAD [29]; *rs10757274* has been previously associated with MI in Italian [30], as well as CAD in Korean populations [31]; *rs12740374* was studied to be highly associated with low-density lipoprotein cholesterol [32]. The remaining variants were not previously studied to have associations with HF. An aggregate of these variants, their prevalence in our dataset, and their clinical significance is enumerated in Table 2.

Case Study #2: Atrial Fibrillation

Of the over 3.9 million variants filtered using *VAREANT*, the remaining 3,686,396 belonged to genes associated with AF. 101,745 of these variants were annotated to have some clinical significance, and 7 unique variants indicating some pathogenic clinical significance [19]. Namely, *rs1449966934* was marked

It is made available under a CC-BY-NC-ND 4.0 International license .

pathogenic, and *rs8041826, rs4722804, rs2282983, rs11153718, rs3901896, rs42034* were all identified as having some previously studied GWAS association. From our original set of 214 AF-associated variants, 151 variants were present in our dataset, all of which were also annotated as benign/likely benign. These variants are enumerated in Table 2. To explore the relationship of the pathogenic variants with CVDs, we reviewed authentic literature for each variant. Notably, *rs42034* was studied to have negative associations with Bechet's disease (an inflammatory disease) in the Han Chinese population [33]. The other 6 variants were not previously explored in literature, but *rs1449966934* was annotated to have associations with the congenital disorder glycosylation. Further study is required to identify any potential functional associations these variants may have with CVDs.

Computational Validation

Performance was extensively tested and benchmarked on different operating systems (MacOS, Linux, Windows), on different hardware configurations (4 CPUs and 8 GB memory, 12 CPUs and 32 GB memory), in high performance computing (HPC) and local desktop environments, and in single-processor and multiprocessor modes. The results of each configuration for the combined variant-dense dataset and for one of the 96 patient-specific datasets are listed in the Supplementary Materials. Notably, VAREANT successfully filtered out over 97% of the combined dataset (0.5 GB) and over 99.9% of the larger 2.6 GB patient-specific dataset within seconds. VAREANT also performs better on more powerful hardware, completing filtering nearly twice as fast on the larger dataset when using 12 CPUs over 4 CPUs. Moreover, on a single processor, limited memory does not appear to pose a noticeable bottleneck. The performance metrics also effectively delineate the impact that filtering with VAREANT has on subsequent annotation. Annotating the large 2.6 GB dataset using dbSNP, dbNSFP, and ClinVar took over 3 hours on an M2 MacBook, which was reduced to merely 16 seconds after first filtering the dataset for relevant variants only. The smaller yet variantdense dataset also experienced significant improvements in annotation from nearly 15 minutes before filtering to only 44 seconds after filtering. Although these results are subject to the hardware resources and content of the dataset, we recommend running VAREANT in its multi-processor mode to take full advantage of provided hardware, and to filter before annotation to minimize computational times. This configuration is the default.

Discussion

The curation of high-quality, relevant genomic datasets is necessary to facilitate genomic analysis that can transform our current understanding of gene-disease relationships and improve our ability to provide personalized treatment options for patients. Moreover, it may help minimize difficulties associated with

It is made available under a CC-BY-NC-ND 4.0 International license .

genomic data management, such as the high storage capacities needed to handle large volumes of data [5] and the time-consuming processing [6]. In this study, we aim to address some of these challenges by presenting *VAREANT*, a highly configurable and accessible bioinformatics tool to process large volumes of variant data into targeted datasets suitable for subsequent analysis. Here, we demonstrated the efficacy of *VAREANT* in a case study of 97 CVD variant files. Using a literature-based gene set, we successfully created a targeted dataset and identified numerous variants with associations with CVD diseases, such as CAD and MI.

VAREANT was developed alongside a recent study we conducted wherein we applied AI/ML techniques to predict CVD in a patient population based on integrated RNA-Seq expression data and genomics variant data [34]. In that study, we faced significant obstacles in the processing and preparation of hundreds of GBs of genomics data in a format suitable for AI/ML analysis, prompting the need to curate a targeted, AI/ML-ready [35], CVD dataset. Although *VAREANT* was originally developed to support this specific study, we recognized the broader potential impact of such bioinformatic applications and developed it into a publicly available tool for the wider scientific community. Recently, we also developed and proposed *IntelliGenes*, a novel AI/ML framework for disease prediction and biomarker discovery in patients using multi-omics data [36, 37]. *VAREANT* is well suited to support the user with complex, multi-modal AI/ML analysis using tools like *IntelliGenes*. By chaining JWES, *VAREANT*, and *IntelliGenes*, the user can streamline the full genomic data transformation workflow. *VAREANT* may also be expanded to include more fine-grained filtering options for better data extraction. Here, we demonstrate that accessible bioinformatic tools such as *VAREANT*, to aid in preparing large volumes of data, are critical and effective in predictive genomic analyses.

List of Abbreviations

Artificial Intelligence (AI) Atrial Fibrillation (AF) Burrows-Wheeler Aligner (BWA) Cardiovascular Disease (CVD) Central Processing Unit (CPU) Combined Annotation-Dependent Depletion (CADD) Coronary Artery Disease (CAD)

It is made available under a CC-BY-NC-ND 4.0 International license .

Ensembl Variant Effect Predictor (VEP) Genome Analysis Toolkit (GATK) Genome-Wide Assocation Studies (GWAS) Gigabytes (GB) Graphical User Interface (GUI) Heart Failure (HF) High Performance Computing (HPC) Java-based Whole Genome/Exome Data Processing Pipeline (JWES) Machine Learning (ML) Myocardial Infarction (MI) Single Nucleotide Polymorphism (SNP) Structured Query Language (SQL) Variant Call Format (VCF)

References

1. Uffelmann, E., Huang, Q. Q., Munung, N. S., de Vries, J., Okada, Y., Martin, A. R., Martin, H. C., Lappalainen, T., & Posthuma, D. (2021). Genome-wide association studies. Nature News. https://doi.org/10.1038/s43586-021-00056-9

2. Ahmed, Z., Mohamed, K., Zeeshan, S., & Dong, X. (2020). Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine. Database: the journal of biological databases and curation, 2020, baaa010. https://doi.org/10.1093/database/baaa010

3 Lin, Q., Tam, P. K., & Tang, C. S. (2023). Artificial intelligence-based approaches for the detection and prioritization of genomic mutations in congenital surgical diseases. Frontiers in pediatrics, 11, 1203289. https://doi.org/10.3389/fped.2023.1203289

4. Schadt E., et al. (2010). Computational solutions to large-scale data management and analysis. Nat Rev Genet 11, 647–657 (2010). https://doi.org/10.1038/nrg2857

It is made available under a CC-BY-NC-ND 4.0 International license .

5. Stephens, Z. D., Lee, S. Y., Faghri, F., Campbell, R. H., Zhai, C., Efron, M. J., Iyer, R., Schatz, M. C., Sinha, S., & Robinson, G. E. (2015). Big Data: Astronomical or Genomical?. PLoS biology, 13(7), e1002195. https://doi.org/10.1371/journal.pbio.1002195

6. Alvarez, R. V., Mariño-Ramírez, L., & Landsman, D. (2021). Transcriptome annotation in the cloud: complexity, best practices, and cost. GigaScience, 10(2), giaa163. https://doi.org/10.1093/gigascience/giaa163

7. Yang, X. C., Zhang, Q., Chen, M. L., Li, Q., Yang, Z. S., Li, L., Cao, F. F., Chen, X. D., Liu, W. J., Jin, L., & Wang, X. F. (2009). MTAP and CDKN2B genes are associated with myocardial infarction in Chinese Hans. Clinical biochemistry, 42(10-11), 1071–1075. https://doi.org/10.1016/j.clinbiochem.2009.02.021

8. McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., & DePristo, M. A. (2010). The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome research, 20(9), 1297–1303. https://doi.org/10.1101/gr.107524.110

9. Cingolani, P., Platts, A., Wang, leL., Coon, M., Nguyen, T., Wang, L., Land, S. J., Lu, X., & Ruden, D. M. (2012). A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly, 6(2), 80–92. https://doi.org/10.4161/fly.19695

10. McLaren, W., Gil, L., Hunt, S. E., Riat, H. S., Ritchie, G. R., Thormann, A., Flicek, P., & Cunningham, F. (2016). The Ensembl Variant Effect Predictor. Genome biology, 17(1), 122. https://doi.org/10.1186/s13059-016-0974-4

11. Ahmed, Z., Renart, E. G., Mishra, D., & Zeeshan, S. (2021). JWES: a new pipeline for whole genome/exome sequence data processing, management, and gene-variant discovery, annotation, prediction, and genotyping. FEBS open bio, 11(9), 2441–2452. https://doi.org/10.1002/2211-5463.13261

12. Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., Handsaker, R. E., Lunter, G., Marth, G. T., Sherry, S. T., McVean, G., Durbin, R., & 1000 Genomes Project Analysis Group (2011). The variant call format and VCFtools. Bioinformatics (Oxford, England), 27(15), 2156–2158. https://doi.org/10.1093/bioinformatics/btr330

13. Martin, F. J., Amode, M. R., Aneja, A., Austine-Orimoloye, O., Azov, A. G., Barnes, I., Becker, A., Bennett, R., Berry, A., Bhai, J., Bhurji, S. K., Bignell, A., Boddu, S., Branco Lins, P. R., Brooks, L., Ramaraju, S. B.,

It is made available under a CC-BY-NC-ND 4.0 International license .

Charkhchi, M., Cockburn, A., Da Rin Fiorretto, L., Davidson, C., ... Flicek, P. (2023). Ensembl 2023. Nucleic acids research, 51(D1), D933–D941. https://doi.org/10.1093/nar/gkac958

14. McCarthy, D. J., Humburg, P., Kanapin, A., Rivas, M. A., Gaulton, K., Cazier, J. B., & Donnelly, P. (2014). Choice of transcripts and software has a large effect on variant annotation. Genome medicine, 6(3), 26. https://doi.org/10.1186/gm543

15. Sherry, S. T., Ward, M. H., Kholodov, M., Baker, J., Phan, L., Smigielski, E. M., & Sirotkin, K. (2001). dbSNP: the NCBI database of genetic variation. Nucleic acids research, 29(1), 308–311. https://doi.org/10.1093/nar/29.1.308

16. Liu, X., Li, C., Mou, C., Dong, Y., & Tu, Y. (2020). dbNSFP v4: a comprehensive database of transcriptspecific functional predictions and annotations for human nonsynonymous and splice-site SNVs. Genome medicine, 12(1), 103. https://doi.org/10.1186/s13073-020-00803-9

17. Rentzsch, P., Witten, D., Cooper, G. M., Shendure, J., & Kircher, M. (2019). CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic acids research, 47(D1), D886–D894. https://doi.org/10.1093/nar/gky1016

18. Ionita-Laza, I., McCallum, K., Xu, B., & Buxbaum, J. D. (2016). A spectral approach integrating functional genomic annotations for coding and noncoding variants. Nature genetics, 48(2), 214–220. https://doi.org/10.1038/ng.3477

Landrum, M. J., Lee, J. M., Benson, M., Brown, G. R., Chao, C., Chitipiralla, S., Gu, B., Hart, J., Hoffman, D., Jang, W., Karapetyan, K., Katz, K., Liu, C., Maddipatla, Z., Malheiro, A., McDaniel, K., Ovetsky, M., Riley, G., Zhou, G., Holmes, J. B., ... Maglott, D. R. (2018). ClinVar: improving access to variant interpretations and supporting evidence. Nucleic acids research, 46(D1), D1062–D1067. https://doi.org/10.1093/nar/gkx1153

20. Ahmed Z. (2022). Precision medicine with multi-omics strategies, deep phenotyping, and predictive analysis. Progress in molecular biology and translational science, 190(1), 101–125. https://doi.org/10.1016/bs.pmbts.2022.02.002

21. Mhatre, I., Abdelhalim, H., Degroat, W., Ashok, S., Liang, B. T., & Ahmed, Z. (2023). Functional mutation, splice, distribution, and divergence analysis of impactful genes associated with heart failure and other cardiovascular diseases. Scientific reports, 13(1), 16769. https://doi.org/10.1038/s41598-023-44127-1

22. Venkat, V., Abdelhalim, H., DeGroat, W., Zeeshan, S., & Ahmed, Z. (2023). Investigating genes associated with heart failure, atrial fibrillation, and other cardiovascular diseases, and predicting disease using

It is made available under a CC-BY-NC-ND 4.0 International license .

machine learning techniques for translational research and precision medicine. Genomics, 115(2), 110584. https://doi.org/10.1016/j.ygeno.2023.110584

23. Patel, K. K., Venkatesan, C., Abdelhalim, H., Zeeshan, S., Arima, Y., Linna-Kuosmanen, S., & Ahmed, Z. (2023). Genomic approaches to identify and investigate genes associated with atrial fibrillation and heart failure susceptibility. Human genomics, 17(1), 47. https://doi.org/10.1186/s40246-023-00498-0

24. Dina, C., Meyre, D., Gallina, S., Durand, E., Körner, A., Jacobson, P., Carlsson, L. M., Kiess, W., Vatin, V., Lecoeur, C., Delplanque, J., Vaillant, E., Pattou, F., Ruiz, J., Weill, J., Levy-Marchal, C., Horber, F., Potoczna, N., Hercberg, S., Le Stunff, C., ... Froguel, P. (2007). Variation in FTO contributes to childhood obesity and severe adult obesity. Nature genetics, 39(6), 724–726. https://doi.org/10.1038/ng2048

25. Price, R. A., Li, W. D., & Zhao, H. (2008). FTO gene SNPs associated with extreme obesity in cases, controls and extremely discordant sister pairs. BMC medical genetics, 9, 4. https://doi.org/10.1186/1471-2350-9-4

26. Wellcome Trust Case Control Consortium (2007). Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature, 447(7145), 661–678. https://doi.org/10.1038/nature05911

27. Hinohara, K., Nakajima, T., Takahashi, M., Hohda, S., Sasaoka, T., Nakahara, K. I., Chida, K., Sawabe, M., Arimura, T., Sato, A., Lee, B. S., Ban, J. M., Yasunami, M., Park, J. E., Izumi, T., & Kimura, A. (2008). Replication of the association between a chromosome 9p21 polymorphism and coronary artery disease in Japanese and Korean populations. Journal of human genetics, 53(4), 357–359. https://doi.org/10.1007/s10038-008-0248-4

Samani, N. J., Erdmann, J., Hall, A. S., Hengstenberg, C., Mangino, M., Mayer, B., Dixon, R. J., Meitinger, T., Braund, P., Wichmann, H. E., Barrett, J. H., König, I. R., Stevens, S. E., Szymczak, S., Tregouet, D. A., Iles, M. M., Pahlke, F., Pollard, H., Lieb, W., Cambien, F., ... WTCCC and the Cardiogenics Consortium (2007). Genomewide association analysis of coronary artery disease. The New England journal of medicine, 357(5), 443–453. https://doi.org/10.1056/NEJMoa072366

29. Silander, K., Tang, H., Myles, S., Jakkula, E., Timpson, N. J., Cavalli-Sforza, L., & Peltonen, L. (2009). Worldwide patterns of haplotype diversity at 9p21.3, a locus associated with type 2 diabetes and coronary heart disease. Genome medicine, 1(5), 51. https://doi.org/10.1186/gm51

30. Shen, G. Q., Rao, S., Martinelli, N., Li, L., Olivieri, O., Corrocher, R., Abdullah, K. G., Hazen, S. L., Smith, J., Barnard, J., Plow, E. F., Girelli, D., & Wang, Q. K. (2008). Association between four SNPs on chromosome

It is made available under a CC-BY-NC-ND 4.0 International license .

9p21 and myocardial infarction is replicated in an Italian population. Journal of human genetics, 53(2), 144–150. https://doi.org/10.1007/s10038-007-0230-6

31. Shen, G. Q., Li, L., Rao, S., Abdullah, K. G., Ban, J. M., Lee, B. S., Park, J. E., & Wang, Q. K. (2008). Four SNPs on chromosome 9p21 in a South Korean population implicate a genetic locus that confers high cross-race risk for development of coronary artery disease. Arteriosclerosis, thrombosis, and vascular biology, 28(2), 360–365. https://doi.org/10.1161/ATVBAHA.107.157248

32. Musunuru, K., Strong, A., Frank-Kamenetsky, M., Lee, N. E., Ahfeldt, T., Sachs, K. V., Li, X., Li, H., Kuperwasser, N., Ruda, V. M., Pirruccello, J. P., Muchmore, B., Prokunina-Olsson, L., Hall, J. L., Schadt, E. E., Morales, C. R., Lund-Katz, S., Phillips, M. C., Wong, J., Cantley, W., ... Rader, D. J. (2010). From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature, 466(7307), 714–719. https://doi.org/10.1038/nature09266

33. Cai, S., Zhang, J., Zhou, C., Shi, W., Gao, Y., Chang, R., Tan, H., Wang, Q., Ye, X., Cao, Q., Zhou, Q., Yang, P., & Hu, J. (2022). Association of CDK6 gene polymorphisms with Behcet's disease in a Han Chinese population. Experimental eye research, 223, 109203. https://doi.org/10.1016/j.exer.2022.109203

34. DeGroat, W., Abdelhalim, H., Peker, E., Sheth, N., Narayanan, R., Zeeshan, S., ... Ahmed, Z. (2024). Multimodal AI/ML for discovering novel biomarkers and predicting disease using multi-omics profiles of patients with cardiovascular diseases. bioRxiv, 2024.08.07.607041. https://doi.org/10.1101/2024.08.07.607041

35. Ahmed, Z., Wan, S., Zhang, F., & Zhong, W. (2024). Artificial intelligence for omics data analysis. BMC Methods, 1, 4. https://doi.org/10.1186/s44330-024-00004-5

36. DeGroat, W., Mendhe, D., Bhusari, A., Abdelhalim, H., Zeeshan, S., & Ahmed, Z. (2023). IntelliGenes: a novel machine learning pipeline for biomarker discovery and predictive analysis using multi-genomic profiles.
Bioinformatics (Oxford, England), 39(12), btad755.
https://doi.org/10.1093/bioinformatics/btad755

37. Narayanan, R., DeGroat, W., Mendhe, D., Abdelhalim, H., & Ahmed, Z. (2024). IntelliGenes: Interactive and user-friendly multimodal AI/ML application for biomarker discovery and predictive medicine. Biology methods & protocols, 9(1), bpae040. https://doi.org/10.1093/biomethods/bpae040

It is made available under a CC-BY-NC-ND 4.0 International license .

Acknowledgments

We appreciate great support by the Department of Medicine, Robert Wood John-son Medical School; Rutgers Institute for Health, Health Care Policy, and Aging Research; and Rutgers Health, at Rutgers, The State University of New Jersey.

Author contributions

ZA proposed and led this study. RN developed VAREANT. WD supported its design and implementation. EP supported project management activities and post-computational analysis. RN also prepared the supplementary material. RN and WD tested and validated VAREANT. RN drafted the manuscript. All authors have reviewed and approved it for publication.

Biographical Note

RN and EP are the Research Assistants, and WD is the Senior Research Assistant at the Ahmed lab, Rutgers IFH/RWJMS.

ZA is the Assistant Professor at the Department of Medicine / Division of Cardiovascular Diseases and Hypertension, Rutgers Robert Wood Johnson Medical School, and Rutgers Health. ZA is a Core Faculty Member at the Rutgers Institute for Health, Health Care Policy and Aging Research, at Rutgers, The State Universi-ty of New Jersey. Furthermore, ZA is the Adjunct Assistant Professor at the Department of Genetics and Genome Sciences, School of Medicine, UConn Health, CT.

Conflict of Interest

None declared.

Funding

No funding received.

Data availability

The source code of VAREANT is available on GitHub < https://github.com/drzeeshanahmed/Gene_VAREANT >

Supplementary materials

Supplementary Material 1: VAREANT User Guide.

Supplementary Material 2: Patient Demographic Data and Performance Metrics

It is made available under a CC-BY-NC-ND 4.0 International license .

Figure

Figure 1. *VAREANT* pipeline overview (left) and data transformation workflow (right): 1) Pre-Processing supports user in curating targeted datasets, 2) Annotation supports user in easily annotating variants files, 3) AI/ML Data Preparation supports user in extracting VCF files into a more usable AI/ML ready data format.

It is made available under a CC-BY-NC-ND 4.0 International license .

Tables

#	Gene Variants (RS Numbers)		Disease
1	AGBL4 rs11590635		AF
2	АКАРб	rs2145587; rs11156751	AF
3	ANXA4	rs3771537	AF
4	ARHGAP10	rs10213171	AF
5	ARHGAP26	rs6580277	AF
6	ASAH1	rs7508	AF
7	ATXN1	rs73366713	AF
8	BEST3	rs35349325	AF
9	C10orf11	rs11001667; rs10458660	AF
10	C10orf76	rs1044258	AF
11	C9orf3	rs4385527; rs10821415	AF
12	C9orf3(FBP1)	rs10821415	AF
13	C9orf3(FBP2)	rs10821415	AF
14	CAMK2D	rs55754224; rs6829664	AF
15	CAND2	rs6810325; rs4642101; rs7650482	AF
16	CASQ2	rs4484922; rs4073778	
17	CASZ1	rs880315; rs284277	
18	CAV1	rs11773845; rs3807989	
19	CDK6	rs11773884; rs56201652	AF

It is made available under a CC-BY-NC-ND 4.0 International license .

AF

20

CDKN1A

20	CDKN1A	r\$3176326	AF
21	CEP68	rs2540949	AF
22	CFL2	rs73241997	AF
23	COG5	rs62483627	AF
24	CREB5	rs6462078; rs6462079	AF
25	CUL4A	rs35569628	AF
26	CUX2	rs6490029	AF
27	CYTH1	rs12604076	AF
28	DGKB	rs55734480	AF
29	DNAH10	rs12298484	AF
30	DPF3	rs74884082	AF
31	ЕРНАЗ	rs7632427; rs6771054	AF
32	ERBB4	rs35544454	AF
33	FAM13B	rs2967791	AF
34	FBN2	rs2012809	AF
35	FBRSL1	rs6560886	AF
36	FBXO32	rs62521286	AF
37	FRMD4B	rs17005647	AF
38	GMCL1	rs3771537	AF
39	GNB4	rs4855075; rs7612445	AF
40	GOPC	rs210632	AF

41	GOSR2	rs76774446	AF
42	GTF2I	rs74910854; rs35005436	AF AF
43	GYPC	rs28387148	
44	HAND2	rs10520260	AF
45	HCN4	rs7164883	AF
46	HIP1R	rs10773657	AF
47	IGF1R	rs12908437; rs4965430	AF
48	KCND3	rs12044963; rs1545300	AF
49	KCNH2	rs7789146	AF
50	KCNJ5	rs76097649; rs75190942	AF
51	KCNN2	rs716845; rs337711; rs337705	AF
52	KDM1B	rs34969716	AF
53	KIF3C	rs6546620; rs7578393	AF
54	KLHL3	rs2967791	AF
55	LHX3	rs2274115	AF
56	LINC00964	rs35006907	AF
57	LRIG1	rs2306272; rs34080181	AF
58	МАРТ	rs242557	AF
59	MBD5	rs12992412	AF
60	MEX3C	rs8088085	AF
61	MIR30B	rs7460121	AF

62	MTSS1	rs35006907; rs35006907	AF
63	MYH7	rs28631169; rs422068	AF
64	MYO18B	rs133902	AF
65	MYOCD	rs72811294	AF
66	MYOZ1	rs10824026	AF
67	NACA	rs7978685; rs2860482	AF
68	NAV2	rs1822273; rs10741807	AF
69	NKX2-5	rs6882776	AF
70	NME5	rs2040862	AF
71	NR3C1	rs6580277	AF
72	NUCKS1	rs4951261; rs4951258	AF
73	OPN1SW	rs55985730	AF
74	PAK2	rs9872035	AF
75	PCM1	rs7508	AF
76	PHLDB2	rs17490701; rs10804493	AF
77	РКР2	rs12809354	AF
78	PLN	rs4946333; rs89107	AF
79	POLR2A	rs9899183	AF
80	PPFIA4	rs10753933; rs17461925	AF
81	PPP2R3A	rs1278493	AF
82	PSMB7	rs10760361	AF

84RBM20rs10749053AF85REP3rs719685; rs12245149AF86R52rs286667AF87SCMH1rs285697AF88SCN10Ars6790396; rs6800541AF89STAPXD2Ars7047036AF90SRT1rs709383; rs690541AF91SC27A6rs709385; rs690541AF92SC3F1rs709385; rs690541AF93SC47A6rs709383; rs69107; rs3951016AF94SL73Ars1015883; rs694633; rs89107; rs3951016AF95SC481rs107981; rs494633; rs89107; rs3951016AF94SL73Ars118351AF95SMAD7rs1015883; rs6747542AF96SNRNP27rs1015883; rs6747542AF97SNA6rs295114; rs382088AF98SPNrs11381537; rs1730837AF99SPNrs1176850AF910SNN2rs11381537; rs1730837AF911SNN2rs11381537; rs1730837AF912SNN2rs1176850AF913SNN2rs1176850AF914SNN2rs1176850AF915SNN2rs1176850AF916SNN2rs1176850AF917SNN2rs1176850AF918SNN2rs1131537; rs130824026AF919SNN2rs1176850AF910SNN2rs11768202AF <t< th=""><th>83</th><th>РТК2</th><th>rs6993266; rs6994744</th><th>AF</th></t<>	83	РТК2	rs6993266; rs6994744	AF
85REP3rs7919685; rs12245149AF86RS2rs228646AF87SCMH1rs285697AF88SCN10Ars6790396; rs6800541AF89SH3PXD2Ars2047036AF90SRT1rs709635AF91SC27A6rs1079881; rs494633; rs89107; rs3951016AF92SC3511rs1079881; rs494633; rs89107; rs3951016AF93SLG9B1rs1079881; rs494633; rs89107; rs3951016AF94SLT3rs1218851AF95SMAD7rs1218851AF96SNRNP27rs1015883; rs6747542AF97SNA6rs295114; rs382088AF98SATS2Lrs113819537; rs1738037AF99SNN1rs11768850AF910SNN2rs11768850AF911SNN2rs23413; rs152591AF912SNN2rs23413; rs152591AF913TSArs60215; rs1002026AF	84	RBM20	rs10749053	AF
86RPS2rs2286466AF87SCMH1rs2885697AF88SCN10Ars6790396; rs6800541AF89SM3PXD2Ars2047036AF90SIRT1rs7096385AF91SLC27A6rs2012809AF92SLC35F1rs17079881; rs4946333; rs89107; rs3951016AF93SLC9B1rs17079881; rs4946333; rs89107; rs3951016AF94SLT3rs1208283; rs60727AF95SMAD7rs953366AF96SNRNP27rs1015583; rs6747542AF97SNX6rs722114; rs3820888AF98SPNrs113819537; rs17380837AF99SPNrs11768850AF100SUN12rs1768850AF101SVNP21rs6212594; rs10824026AF102TNS5rs68307; rs10507248AF	85	REEP3	rs7919685; rs12245149	AF
87SCMH1rs288567AF88SCN10Ars6700396; rs6800541AF89SH3PXD2Ars2047036AF90SRT1rs7096385AF91SLC27A6rs2012809AF92SLG3F1rs1079881; rs494633; rs89107; rs3951016AF93SLC981rs1079881; rs494633; rs89107; rs3951016AF94SLT3rs1218851AF95SMAD7rs1218851AF96SNNP27rs1015883; rs6747542AF97SNK6rs295114; rs3820888AF98SPATS2Lrs1318557; rs17380837AF91SUN1rs176850AF92SVNP2rs1318557; rs17380837AF93SNP2rs273413; rs1152591AF94SUNP2rs621294; rs10824026AF95SNP2rs621294; rs10824026AF	86	RPS2	rs2286466	AF
88SCN10Ars6790396; rs6800541AF89SH3PXD2Ars2047036AF90SIRT1rs7096385AF91SLC27A6rs2012809AF92SLC35F1rs17079881; rs4946333; rs89107; rs3951016AF93SLC981rs3960788; rs10006327AF94SLIT3rs12188351AF95SMAD7rs9953366AF96SNRNP27rs10165883; rs6747542AF97SNX6rs73241977AF98SPATS2Lrs131819537; rs17380837AF91SUN1rs11768850AF91SVN2rs1176850AF92SPNrs1176850AF93SUN1S11768830; rs17308037AF94SUN1rs176850AF95SPNrs11319537; rs17308037AF96SUN1S11768850AF97SUN1S11768850AF98SPNS11319537; rs17308037AF99SUN1S11768850AF91SUN1S11768850AF92SUN1S11768850AF93SUN1S11768850AF94SUN1S11768850AF95SUN1S11768850AF96SUN1S11768850AF97SUN1S11768850AF98SUN1S11768850AF99SUN1S11768850AF90SUN1S11768	87	SCMH1	rs2885697	AF
89SH3PXD2Ars2047036AF90SIRT1rs7096385AF91SLC27A6rs2012809AF92SLC35F1rs17079881; rs4946333; rs89107; rs3951016AF93SLC9B1rs3960788; rs1006327AF94SLT3rs12188351AF95SMAD7rs953366AF96NX6rs7324197AF97SNRNP27rs1165883; rs6747542AF98SPATS2Lrs13819537; rs17380837AF99SPNrs113819537; rs17380837AF100SVN1rs273413; rs1152591AF101SVNP2Lrs6021259; rs10824026AF102TNSrs6021259; rs10824026AF	88	SCN10A	rs6790396; rs6800541	AF
90SIRT1rs7096385AF91SLC27A6rs2012809AF92SLC3F1rs17079831; rs4946333; rs89107; rs3951016AF93SLC9B1rs3960788; rs10006327AF94SLT3rs12188351AF95SMAD7rs993366AF96SNRNP27rs1016583; rs6747542AF97SNX6rs73241997AF98SPNS2rs131819537; rs17380837AF99SPNrs113819537; rs17380837AF91SUN1rs176850AF92SVNP2rs2738413; rs1152591AF93SNNP02Lrs6212594; rs10824026AF94Tx5rs83079; rs10507248AF	89	SH3PXD2A	rs2047036	AF
91SLC27A6rs2012809AF92SLC35F1rs17079881; rs4946333; rs89107; rs39510160AF93SLC9B1rs3960788; rs10006327AF94SLT3rs12188351AF95SMAD7rs953366AF96SNRNP27rs10165883; rs6747542AF97SNX6rs73241997AF98SPNrs113819537; rs17380837AF99SUN1rs113819537; rs17380337AF100SUN1rs176850AF101SNNP21rs2738413; rs1152591AF102SNNP02Lrs60212594; rs10824026AF103TBX5rs83079; rs10507248AF	90	SIRT1	rs7096385	AF
92SLC3SF1rs17079881; rs4946333; rs89107; rs3951016AF93SLC9B1rs3960788; rs10006327AF94SLIT3rs12188351AF95SMAD7rs9953366AF96SNRNP27rs10165883; rs6747542AF97SNX6rs73241997AF98SPAT52Lrs295114; rs3820888AF99SSPNrs113819537; rs17380837AF100SUN1rs1176850AF101SYNE2rs2738413; rs1152591AF102SYNP02Lrs60212594; rs10824026AF103TBX5rs83079; rs10507248AF	91	SLC27A6	rs2012809	AF
93SLC9B1rs3960788; rs10006327AF94SLIT3rs1218351AF95SMAD7rs953366AF96SNRNP27rs10165883; rs6747542AF97SNX6rs73241997AF98SPATS2Lrs295114; rs3820888AF90SSPNrs113819537; rs1730837AF100SUN1rs176850AF101SYNE2rs273413; rs1152591AF102SYNP02Lrs60212594; rs10824026AF103TBX5rs83079; rs10507248AF	92	SLC35F1	rs17079881; rs4946333; rs89107; rs3951016	AF
94SLIT3rs12188351AF95SMAD7rs9953366AF96SNRNP27rs10165883; rs6747542AF97SNX6rs73241997AF98SPATS2Lrs295114; rs3820888AF99SSPNrs113819537; rs17380837AF100SUN1rs11768850AF101SYNE2rs2738413; rs1152591AF102SYNP02Lrs60212594; rs10824026AF103TBX5rs883079; rs10507248AF	93	SLC9B1	rs3960788; rs10006327	AF
95 SMAD7 rs9953366 AF 96 SNRNP27 rs10165883; rs6747542 AF 97 SNX6 rs73241997 AF 98 SPATS2L rs295114; rs3820888 AF 99 SSPN rs113819537; rs17380837 AF 100 SUN1 rs11768850 AF 101 SYNE2 rs2738413; rs1152591 AF 102 SYNPO2L rs60212594; rs10824026 AF 103 TBX5 rs883079; rs10507248 AF	94	SLIT3	rs12188351	AF
96SNRNP27rs10165883; rs6747542AF97SNX6rs73241997AF98SPATS2Lrs295114; rs3820888AF99SSPNrs113819537; rs17380837AF100SUN1rs11768850AF101SYNE2rs2738413; rs1152591AF102SYNPO2Lrs60212594; rs10824026AF103TBX5rs83079; rs10507248AF	95	SMAD7	rs9953366	AF
97SNX6rs73241997AF98SPATS2Lrs295114; rs3820888AF99SSPNrs113819537; rs17380837AF100SUN1rs11768850AF101SYNE2rs2738413; rs1152591AF102SYNPO2Lrs60212594; rs10824026AF103TBX5rs883079; rs10507248AF	96	SNRNP27	rs10165883; rs6747542	AF
98SPATS2Lrs295114; rs3820888AF99SSPNrs113819537; rs17380837AF100SUN1rs11768850AF101SYNE2rs2738413; rs1152591AF102SYNPO2Lrs60212594; rs10824026AF103TBX5rs883079; rs10507248AF	97	SNX6	rs73241997	AF
99 SSPN rs113819537; rs17380837 AF 100 SUN1 rs11768850 AF 101 SYNE2 rs2738413; rs1152591 AF 102 SYNPO2L rs60212594; rs10824026 AF 103 TBX5 rs883079; rs10507248 AF	98	SPATS2L	rs295114; rs3820888	AF
100 SUN1 rs11768850 AF 101 SYNE2 rs2738413; rs1152591 AF 102 SYNPO2L rs60212594; rs10824026 AF 103 TBX5 rs883079; rs10507248 AF	99	SSPN	rs113819537; rs17380837	AF
101 SYNE2 rs2738413; rs1152591 AF 102 SYNPO2L rs60212594; rs10824026 AF 103 TBX5 rs883079; rs10507248 AF	100	SUN1	rs11768850	AF
102 SYNPO2L rs60212594; rs10824026 AF 103 TBX5 rs883079; rs10507248 AF	101	SYNE2	rs2738413; rs1152591	AF
103 TBX5 rs883079; rs10507248 AF	102	SYNPO2L	rs60212594; rs10824026	AF
	103	ТВХ5	rs883079; rs10507248	AF

104	TEX41	rs67969609	AF
105	THRB	rs73032363; rs73041705	AF
106	TNFSF12	rs9899183	AF
107	TTN	rs35504893; rs2288327	AF
108	TTN-AS1	rs2288327	AF
109	TUBA8	rs465276; rs464901	AF
110	USP3	rs62011291	AF
111	UST	rs117984853	AF
112	WDR1	rs3822259	AF
113	WNT8A	rs2967791; rs2040862	AF
114	XPO1	rs6742276	AF
115	ХРО7	rs7846485; rs7834729	AF
116	XXYLT1	rs60902112	AF
117	ZFHX3	rs2359171; rs2106261	AF
118	ZNF462	rs4743034	AF
119	ZPBP2	rs11658278	AF
120	AGAP5	rs4746140	HF
121	ATXN2	rs4766578	HF
122	BAG3	rs17617337; rs2234962	HF
123	CDKN1A	rs4135240	HF
124	CDKN2B-AS1	rs1556516	HF

It is made available under a CC-BY-NC-ND 4.0 International license .

medRxiv preprint doi: https://doi.org/10.1101/2024.09.24.24314291; this version posted September 26, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY-NC-ND 4.0 International license .

125	CELSR2	rs660240	HF
126	KLHL3	rs11745324	HF
127	LINC00964	rs35006907	HF
128	LPA	rs55730499; rs140570886	HF
129	MAP7D1	rs272825; rs272832	HF
130	MTSS1	rs35006907; rs34866937; rs35006907	HF
131	NMB	rs2175567; rs17598603	HF
132	SCN5A	rs1805126	HF
133	SH2B3	rs7310615	HF
134	SURF1	rs600038	HF
135	SYNPOL2L	rs4746140	HF
136	TTN	rs2042995; rs2255167	HF

Table 1. Gene-Variants Associated with AF/HF. This table includes genes, variant (RS Numbers), and Disease information. Genes associated with Atrial Fibrillation (AF) are colored orange, and those associated with Heart Failure (HF) are colored blue.

Gene	Variant (RS Number)	Frequency (in 96 sample cohort)	Clinical Significance based on ClinVar	Disease Names based on ClinVar
COG5	rs1449966934	1	Pathogenic	COG5 Congenital Disorder of Glycosylation
CDKN2B- AS1	rs1063192	76	Likely Pathogenic	Malignant tumor of breast, Three Vessel Coronary Disease
	rs1333049	70	Risk Factor	Three Vessel Coronary Disease
	rs4977574	70	Risk Factor	Three Vessel Coronary Disease
	rs10757274	71	Risk Factor	Three Vessel Coronary Disease
FTO	rs1421085	70	Risk Factor	Obesity (BMIQ14) Susceptibility
ABO	rs947073006	90	Association	ABO Blood Group System
	rs977371848	90	Association	ABO Blood Group System
	rs992108547	90	Association	ABO Blood Group System
ARNT2	rs3901896	55	Association	Pulmonary Disease Susceptibility
	rs8041826	31	Association	Pulmonary Disease Susceptibility
CDK6	rs42034	40	Association	Bechet Disease
	rs2282983	65	Association	Bechet Disease
CELSR2	rs12740374	32	Association	LDL Cholesterol

It is made available under a CC-BY-NC-ND 4.0 International license .

CREB5	rs4722804	30	Association	Vascular Endothelial Growth Factor Inhibitor Response
SLC35F1	rs11153718	34	Association	Vascular Endothelial Growth Factor Inhibitor Response

Table 2. Disease-Associated Variants Identified by ClinVar. This table enumerates genes, RS Number, frequency in cohort, pathogenic scoring based on ClinVar, and associated diseases for 16 variants. These variants were identified by ClinVar as having some known association to diseases.