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Abstract 
Glioma represents the most common primary central nervous system (CNS) neoplasm in adults. 
IDH1 mutation is recognized as a hallmark alteration with important diagnostic and prognostic 
implications. There is considerable evidence for global DNA hypermethylation induced secondary to 
IDH mutation. However, there is limited understanding of the RNA methylation patterns and its role 
in glioma biology. In this study, we performed transcriptome wide profiling of N6-methyladenosine 
(m6A) modifications across IDH mutant (n = 8) and wild-type (n = 7) gliomas using Oxford Nanopore 
Technologies’ direct RNA sequencing platform. Our approach enabled high-depth coverage of native 
transcripts, revealing nearly twice as many full-length transcripts in IDH mutant gliomas compared to 
wild-type. Notable differences in alternative splicing were observed across glioma subtypes, with 
truncated and non-coding isoforms more prevalent in glioblastoma (GBM). We further identified 
significant changes in isoform usage within key metabolic (NAMPT, PKM) and immune (CD63, 
CD151, CD81) pathways. Chromosomal distribution of m6A sites showed a higher prevalence of m6A 
modifications in IDH mutant gliomas, with the most pronounced differences on chromosomes 19 and 
16. Further stratification by TERT, MGMT, and TP53 mutations revealed similar patterns of 
increased m6A site numbers in mutant groups, highlighting the importance of integrating epigenomic 
and epitranscriptomic data in glioma research. These findings highlight the role of m6A modifications 
in the metabolic reprogramming unique to IDH mutant gliomas, providing insights into potential 
mechanisms of tumorigenesis and therapeutic resistance. 
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Introduction 
Glioma represents the most common primary central nervous system (CNS) neoplasm in adults, with 
an average annual age-adjusted incidence rate (AAAIR) of 6 per 100,000 population1,2. IDH1 
mutation is recognized as a hallmark alteration prevalent in >80% of WHO grade II/III gliomas3, 
>70% of Secondary Glioblastoma (GBM)4, and <10% of Primary GBM5 (all previous IDH1 mutant 
GBM lesions are now classified as Grade 4, Astrocytoma). Furthermore, clinical studies have 
established this mutation as a key diagnostic and prognostic biomarker6. These findings have led to 
reclassification of gliomas (WHO 2021)7, underscoring the favorable prognosis and improved overall 
survival of the IDH mutant gliomas compared to the more aggressive clinical course seen in IDH1-
wild-type gliomas8,9. 
 
Isocitrate dehydrogenase (IDH) enzyme plays an essential role in several metabolic processes, 
including the Krebs cycle, glutamine metabolism, lipid synthesis, and redox reactions10. IDH1 and 
IDH2 localize to the mitochondrial matrix whereas IDH1 is located in the cytoplasm and 
peroxisomes10. The enzyme’s catalytic activity facilitates conversion of isocitrate into α-ketoglutarate 
(α-KG)10. Oncogenic IDH mutation, specifically IDH1.R132H (CGT>CAT at nucleotide position 395 in 
codon 132) alters the arginine residue, crucial for the catalytic activity11–13. The resulting mutant IDH 
enzyme exhibits decreased affinity for isocitrate, and an increased affinity for NADPH. This unique 
interplay leads to the conversion of α-KG into D-2-hydroxyglutarate (2HG), employing NADPH as a 
cofactor104. 
 
2HG, identified as an oncometabolite in IDH mutant gliomas has been described in relation to tumor 
cellularity, tumorigenesis, and overall survival14. At the molecular level, 2HG also exerts an 
epigenetic influence, regulating methylation of cytosine residues in DNA and lysine residues in 
histone proteins15. More recently, Elkashef et al described 2HG’s role in increasing global N6-
methyladenosine (m6A) RNA modifications through direct inhibition of fat mass and obesity 
associated protein (FTO) activity, a known m6A eraser16. This change in RNA methylation levels in 
turn promotes antitumor activity of acute myeloid leukemia cells driven by inhibition of downstream 
proliferation pathways16. While genomic hypermethylation has been well described in IDH mutant 
gliomas, there is a limited understanding of the RNA methylation and transcription patterns17. This 
could provide insights into the unique role of IDH mutation as a favorable prognostic factor in 
gliomas, a correlation not observed in other IDH mutant malignancies (melanoma, 
cholangiocarcinoma, cartilaginous tumors)17. 
 
There are over 163 characterized RNA modifications, with methylation of adenosine at position N6, 
(m6A) identified as one of the most prevalent modification in different types of RNAs (mRNA, tRNA, 
rRNA, circRNA, miRNA, lncRNA)18,19. Three distinct groups of binding proteins, widely known as 
“m6A regulators” induce change in  m6A RNA expression: readers; detect base alteration, writers; 
catalyze or deposit, and erasers; remove the alteration20,21. 
 
Here, we investigated the methylome and transcriptome of gliomas stratified by IDH status (mutant 
vs. wild-type). Our workflow utilizes the direct RNA sequencing platform of Oxford Nanopore 
Technologies (ONT) to detect and map m6A sites at single nucleotide resolution in tumor tissue 
derived RNA. 
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Results 
 
Overview of the experimental workflow and quality control metrics. 
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The experimental workflow (Fig. 1a) was designed to allow RNA sequencing of tumor tissue derived 
RNA using the Nanopore Direct RNA Sequencing platform (see Methods). Total, full length RNA 
was extracted from flash-frozen tumor tissue and subjected to demethylation (along with mock 
treatment) using recombinant m6A demethylase (ALKBH5). ALKBH5 treated and untreated full-
length RNA was repurified and poly(A) enriched, prior to library preparation (Fig. 1a, see Methods). 
Following optimization of the sequencing approach, the protocol was implemented in tumor tissue 
across the study cohort (N = 15) comprising IDH1 mutant (n = 8, P1-P8) and IDH1 wild-type (n = 7, 
P9-P15) gliomas (Fig. 1a, Supplementary Figure 2a). 
 
Removal of m6A from tumor RNA was confirmed using an antibody-based quantitative ELISA 
(Supplementary Figure 1a). In total RNA, ALKBH5 untreated sample had a 3.5 fold higher 
(Student’s one-tailed t-test, p = 0.0001,***) mean m6A abundance than the demethylated (ALKBH5 
treated) sample (mock: 0.136 ± 0.004%, ALKBH5 KD: 0.045 ± 0.003%, Supplementary Figure 1a, 
left panel). The quantitative confirmation of m6A demethylation treatment was also extended to 
poly(A) enriched RNA (Supplementary Figure 1a, right panel). Consistent with previous 
observations, results demonstrated a 1.4 fold higher (Student’s one-tailed t-test, p = 0.0471,*) mean 
m6A abundance in ALKBH5 untreated (0.03 ± 0.003%) RNA as compared to treated RNA (0.02 ± 
0.004%) (Supplementary Figure 1a, right panel). 
 
Initial data processing consisted of rigorous testing to compare the sequencing output from ALKBH5 
treated and untreated RNA. Overall, in ALKBH5 untreated RNA, the number of quality score (Q-
score) filtered reads varied from a minimum of 39,039 reads to a maximum 1,126,075 reads (Mean ± 
SEM; 316,595 ± 70,188) (Supplementary Figure 2c, bottom panel). In ALKBH5 treated RNA, the 
number of Q-score filtered reads varied from a minimum of 29,076 reads to a maximum of 698,444 
reads (Mean ± SEM; 264,185 ± 51,526) (Supplementary Figure 2c, top panel). The difference (Δ = 
52,410) noted in the average number of reads between the treated vs. untreated RNA was not 
statistically significant (p = 0.2859, Student’s two-tailed paired t-test) (Supplementary Figure 2c). In 
the ALKBH5 treated (Fig. 1b, left panel) RNA samples, on average 84.8% reads were mapped 
(70.6-91.0%). Similar mapping rate was observed for the paired untreated (Fig. 1b, right panel) 
samples (Mean ± SEM; 83.6% ± 1.5%). Overall, IDH1 status was not associated with any significant 
effect on the distribution of mapped reads in ALKBH5 treated (mut vs wt; 84.96 vs 84.58, p = 0.9062) 
and untreated RNA (mut vs wt; 84.84 vs 82.18, p = 0.3307) (Fig. 1b). Comparison of the detected 
genes across treated and untreated RNA yielded a 99% (70,773) shared signature (Fig. 1c, top 
panel). 
 
Average quality scores were compared in paired treated and untreated RNA across the study cohort 
(Fig. 1c, bottom panel). Finally, combining all samples (n = 15) we compared the per sequence 
quality (log transformed read length vs. average read quality) in ALKBH5 treated (Fig. 1d, left 
panel) and untreated (Fig. 1d, right panel) RNA. The kernel density estimation plots yielded similar 
distribution with majority reads having a Q score of ≥ 10. Additionally, log transformed read lengths 
were plotted for treated and untreated RNA (Fig. 1e). 
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Finally, mean read depth coverage was quantified in ALKBH5 treated and untreated samples across 
the different transcript regions (5’UTR, CDS, 3’UTR) (Supplementary Figure 2b). The CDS region 
demonstrated the highest mean read depth coverage for both sample types in  IDH1 mutant and 
wild-type groups (Supplementary Figure 2b). The 3’UTR region had lower read depth coverage 
compared to the CDS region, but higher mean read depth than the 5’UTR region (Supplementary 
Figure 2b). 
 
 
 
 
 
RNA Biotype Distribution and Full-Length Transcript Prevalence Analysis. 
 

 
 
 
Following quality control testing we quantified the RNA biotypes in the study cohort stratified by IDH1 
status and clonal subtype (Fig. 2a-c) and expressed as fractional abundance. As previously 
reported, protein coding RNA was the most prevalent biotype (84.16% - 94.51%) across all individual 
samples (n = 15, Fig. 2a). Successful poly(A)+ isolation was confirmed with less than 0.4% 
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ribosomal RNA detected (Fig. 2b). A closer look at the non-protein coding biotypes across the 
patients (Fig. 2b) demonstrated variation in the mitochondrial RNA (Mt RNA) prevalence. To 
investigate this further, we grouped the patients into the distinct clonal subtypes: astrocytoma (n = 
6), oligodendroglioma (n = 2), and glioblastoma (GBM; n = 7) (Fig. 2c). Highest prevalence of Mt 
RNA was observed in Astrocytomas (8.76%) followed by GBM (6.26%) and Oligodendrogliomas 
(5.95%) (Fig. 2c). Interestingly, the IDH wild-type group (GBM) had the lowest prevalence of lncRNA 
(1.72%). On the other hand, both astrocytomas and oligodendrogliomas had very similar but higher 
abundance of detected lncRNA (astrocytoma: 2.21%, oligodendroglioma: 2.62%) (Fig. 2c). 
 
Nanopore RNA sequencing platform offers a unique opportunity for full-length RNA transcripts 
discovery and quantification. We explored full-length transcripts across different conditions using 
Bambu22 (see Methods) (Fig. 2d-i). A comparison of ALKBH5 treated compared to untreated 
samples (Fig. 2d) isolated a higher prevalence of shorter (< 500 bp) transcripts in the treated RNA 
(40.63% vs. 35.89% in untreated). Similar difference was also observed in the transcripts ranging 
from 1,001-5,000 bp in length with more enrichment in untreated (22.7%) vs. treated RNA (19.05%) 
(Fig. 2d). Further stratification of ALKBH5 treated (Fig. 2f) and untreated (Fig. 2e) samples by IDH1 
status also highlighted differences in the distribution of RNA length. Interestingly, a shift was seen in 
the IDH wild-type treated RNA with higher (42.50%) prevalence of shorter (< 500 bp) transcripts than 
the mutant group (38.99%) (Fig. 2f). However, this difference was not seen in the untreated RNA 
(Fig. 2e). 
 
Next, we directly compared the treated and untreated RNA across the clonal subtypes (Fig. 2g-i). 
Interestingly, in astrocytomas the overall distribution was very similar across both conditions with 
76.7% transcripts ≤ 1,000 bp in untreated RNA and 77.4% transcripts ≤ 1,000 bp in treated RNA 
(Fig. 2g). However, larger differences were noted in oligodendroglioma and GBM groups. 
Specifically, ALKBH5 treated RNA in oligodendroglioma lead to enrichment (85.3%) of shorter (≤ 
1,000 bp) full-length transcripts when compared to untreated RNA (80.0%) (Fig. 2h). Similar trend 
was also reported in the GBM group with 82.7% transcripts ≤ 1,000 bp in the treated RNA vs. 77.0% 
in untreated RNA. 
 
The overall analysis of RNA biotypes and full-length transcripts distribution demonstrated differences 
across the IDH clonal subtypes with variation in prevalence of Mt RNA and enrichment of shorter 
transcripts across treated and untreated RNA. 
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Global gene expression analysis and identification of characteristic markers. 
 

 
 
 
We performed a comparative gene expression (Fig. 3a, c, e) and differential expression (Fig. 3b, d, 
f) analysis across three distinct comparison groups: (i) IDH1 mutant vs. wild-type (Fig. 3a-b), (ii) 
Astrocytoma vs. GBM (Fig. 3c-d), and (iii) GBM vs. Oligodendroglioma (Fig. 3e-f). Gene expression 
analysis was performed using variance stabilized transformed (VST) normalized gene expression 
(see Methods), while DESeq2 was utilized for differential expression analysis (see Methods). 
 
Clear clustering of samples was observed across all three comparisons (Fig. 3a, c, e) with distinct 
expression patterns in gene subsets. In astrocytoma vs. GBM comparison we observed more 
heterogeneous expression patterns with more variation seen in individual patients (Fig. 3b). 
Statistically significant upregulated and downregulated genes were identified for each comparison 
(Fig. 3b, d, f): (i) IDH1 mutant vs. wild-type (Fig. 3b; 131 up- and 68 down- regulated), (ii) 
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Astrocytoma vs. GBM (Fig. 3d; 90 up- and 43 down- regulated), (iii) GBM vs. Oligodendroglioma 
(Fig. 3f; 5 up- and 43 down- regulated). 
 
 
 
 
 
 
 
 
 
 
RNA transcript isoform diversity and alternative splicing across IDH mutant and wild-
type gliomas. 
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Changes in the proportion of each isoform with varying biotypes can contribute to gene expression.  
We examined this in our study cohort by using a multifaceted approach encompassing gene 
expression, differential isoform expression (DIE), and differential isoform usage (DIU) analysis 
(IsoformSwitchAnalyzeR, see Methods). We found 32 isoforms encoded by 20 genes with 
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differential usage between the clinical groups. IDH1 status itself did not yield any significant 
switches. However, clonal subtype analysis identified a total of 25 statistically significant isoform 
switches: astrocytoma vs. GBM (n = 23), and astrocytoma vs. oligodendroglioma (n = 2). 
 
Based on the downstream functional role, we further characterized the genes into distinct categories 
(Fig. 2a-p): autophagy and cell fate (NAMPT, SPTAN1, LGALS8), protein synthesis and trafficking 
(EIF1, OAZ1, EIF3L), immune cell and inflammation (CD81, CD63, CD74, CD151), lipid and 
cholesterol metabolism (FUNDC2, TECR, PKM, ACTB), signaling and intercellular communication 
(PHB2, GNB2). 
 
In the autophagy and cell fate group, increased usage of protein coding isoform (NAMPT-201) and 
corresponding high NAMPT expression was noted in GBM (Fig. 2a). SPTAN1 was more highly 
expressed in astrocytoma (Fig. 2e). Low expression in GBM was associated with decreased usage 
of protein coding SPTAN-201 and increased usage of non-protein coding (retained intron) SPTAN-
211 (Fig. 2e). Similar gene expression of LGALS8 but increased usage of the protein-coding isoform 
was observed in GBM compared to astrocytoma (Fig. 2i). 
 
Majority of the immune cell and inflammatory markers (CD63, CD74, CD151) were shown to be 
upregulated in GBM (Fig. 2f, j, n) with CD81 expressed at similar levels across the clonal subtypes 
(Fig. 2b). Isoform switching in this functional group was most notably observed in the protein coding 
isoforms. Specifically, shorter protein coding isoforms (CD81-205, CD63-214, CD151-213) 
demonstrated increased usage in GBM compared to decreased usage of longer isoforms (CD81-
201, CD63-201) (Fig. 2b, f, j, n). 
 
In protein synthesis and trafficking group even though EIF1 was similarly expressed in astrocytoma 
vs GBM, increased usage of non coding and decreased usage of protein coding isoforms was seen 
in GBM (Fig. 2m). Similarly, EIF3L was expressed at similar levels (Fig. 2p) in astrocytoma and 
oligodendroglioma with increased usage of protein coding EIF3L-215 in the oligodendroglioma group 
(Fig. 2p). However, Another gene, OAZ1 was seen to be highly expressed in GBM with significantly 
decreased usage of non-coding OAZ1-203 (1 exon, 2,832 bp) and increased usage of non-coding 
OAZ1-210 (3 exons, 1,357 bp) (Fig. 2l). 
 
From the genes in the lipid and cholesterol metabolism category, PKM (Fig. 2o) and ACTB (Fig. 2d) 
expression was higher in GBM, whereas similar expression was observed for TECR (Fig. 2k) and 
FUNDC2 (Fig. 2g). Higher expression of PKM in GBM was associated with increased usage of non-
coding PKM-211 and decreased usage of protein coding PKM-202 (Fig. 2o). Similar trend was also 
noted for FUNDC2, with increased usage of non-coding FUNDC2-207 and decreased usage of 
protein coding FUNDC2-201 (Fig. 2o). Interestingly, for TECR (Fig. 2k) and ACTB (Fig. 2d), 
preferential increased usage of protein coding isoforms with fewer exons (TECR-207; 12 exons, 
ACTB-213; 5 exons) was seen in GBM compared to protein coding isoforms with greater number of 
exons (TECR-201; 13 exons, ACTB-217; 6 exons) (Fig. 2d, k). 
 
Low PHB2 expression in GBM was associated with decreased usage of protein coding PHB2-203 
and increased usage of non-coding PHB2-205 isoforms (Fig. 2o). Conversely, high expression of 
GNB2 in GNB2 was associated with decreased usage of longer protein coding GNB2-201 (1,664 bp) 
and increased usage of shorter protein coding (GNB2-202; 1,524 bp) and non-coding (GNB2-211; 
1,702 bp) isoforms (Fig. 2h). 
 
Given the variation in isoform switching driven by either the isoform biotype and/or transcript 
structure (length, exon density) we quantified the statistical significance of observed differences in 
the form of consequence plots (see Methods) (Fig. 2q-r). The most remarkable features common to 
isoforms with increased usage in GBM include: (i) shorter 3’UTR length, (ii) non-coding biotype, (iii) 
complete open reading frame (ORF) loss, (iv) domain loss, (v) exon loss, and (vi) intrinsically 
disordered region (IDR) loss (Fig. 2q-r). 
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Profiling m6A distribution and functional ecosystem in IDH mutant gliomas. 

 
In our analysis of glioma tumor tissue, we 
identified a significant number of m6A motifs 
(probability score ≥ 0.9), categorized into 
DRACH (D = A/G/U, R = A/G, A = m6A, C = C) 
motifs (Fig. 5a). No differences were observed 
in the nucleotide composition and probability 
distribution of the DRACH motifs stratified by 
IDH1 status (IDH1 mutant; Fig. 5a, left panel, 
IDH1 wild-type; Fig. 5a, right panel). Overall, 
the DRACH motif, characterized by the 
sequence DRA*CH (where * denotes m6A site), 
demonstrated a high probability of occurrence 
for the nucleotides ‘G’ at positions 1 and 2, ‘A’ 
at positions 3 and 5, and ‘C’ at position 4 (Fig. 
5a). This motif is consistent with the canonical 
DRACH sequence known to be enriched in 
m6A sites. 
 
Quantification of the overall number of m6A 
sites detected across the clinical groups 
demonstrated an overlap of only 29% (n = 
1,759) between IDH1 mutant and wild-type 
groups (Fig. 5b, left panel). More than 50% (n 
= 3,304) of the m6A sites detected were found 
to be unique to the IDH1 mutant group (Fig. 
5b, left panel). A comparative distribution 
analysis across the distinct clonal subtypes 
(Fig. 5b, right panel) also further highlighted 
the enrichment of m6A sites in 
oligodendroglioma (65%, n = 3,410 sites) 
followed by astrocytoma (8%, n = 396 sites), 
and GBM (3%, n = 166 sites) (Fig. 5b, right 
panel). 
 
Next, we investigated the prevalence of m6A 
sites across various RNA biotypes (Fig. 5c) in 
the IDH1 mutant (Fig. 5c, left panel) and IDH1 
wild-type (Fig. 5c, right panel) study 
population. The highest prevalence of m6A 
modifications was observed in protein coding 
mRNA (IDH1 mutant: 77.1%, IDH1 wild-type: 
76.17%) followed by retained intron (IDH1 
mutant: 10.25%, IDH1 wild-type: 11.36%) and 
nonsense mediated decay (NMD) biotypes 
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(IDH1 mutant: 7.70%, IDH1 wild-type: 8.6%) (Fig. 5c). Larger differences were observed in the 
prevalence of m6A sites across ‘other’ RNA biotypes between IDH1 mutant (2.10%) vs wild-type 
(1.05%) group: (i) higher prevalence of m6A modified lncRNA in IDH1 mutant group (1.82% vs. 
0.83%), (ii) higher prevalence of unannotated (novel) transcripts in IDH1 mutant group (0.05% vs. 
0.0%), (iii) higher prevalence of m6A modified pseudogenes in IDH1 mutant group (0.16% vs. 
0.07%), (iv) higher prevalence of m6A modified Mt rRNA in IDH1 wild-type group (0.06% vs. 0.05%) 
(Fig. 5c). 
 
A comparative analysis of m6A transcriptome distribution demonstrated distinct patterns across the 
RNA biotypes (Fig. 5d). The analysis was performed with patients stratified by IDH1 status (mutant 
vs. wild-type). Protein coding RNA groups exhibited a bimodal distribution, with peaks at the CDS 
(near the stop codon) and 3’UTR region (Fig. 5d). A bimodal distribution was also observed in the 
retained intron group, with a higher concentration of m6A sites in 5’UTR. and 3’UTR regions. 
Nonsense mediated decay (NMD) RNA transcripts demonstrated a single prominent peak in the 
3’UTR region (Fig. 5d). No significant differences were observed between the clinical groups across 
(Fig. 5d). 
 
 
Chromosomal distribution of m6A sites across clinical groups. 
 

Chromosomal (Ch) distribution of the 
detected m6A sites revealed significant 
variability across the IDH1 mutant and 
wild-type groups (Fig. 6a). 
Interestingly, targets in the IDH1 
mutant group were localized most 
frequently to Ch 19 (n = 1190), 
followed by Ch 16 (n = 1039) and 17 
(973) (Fig. 6a). On the contrary, the 
sites most likely to be modified in the 
IDH1 wild-type group were localized to 
Ch 1 (n = 770), followed by Ch 19 (n = 
711) and 11 (579) (Fig. 6a). Overall, 
not only higher number of targets were 
modified per chromosome in the IDH1 
mutant group but the chromosomes 
with the largest discrepancy (Δ = mut - 
wild-type) between the two glioma 
subtypes were Ch 16 (Δ =714), Ch 17 
(Δ = 489), and Ch 19 (Δ = 479) (Fig. 
6a). 
 
Similar to IDH, three other molecular 
alterations demonstrated higher 
enrichment of m6A sites across all 
chromosomes in the mutant group: 
MGMT methylation (Fig. 6c), TERT 
promoter mutation (Fig. 6e), and TP53 
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mutation (Fig. 6f). EGFR amplification (a common alteration in GBM) was associated with very few 
m6A sites, with more modified targets seen in the wild-type group (Fig. 6d). ATRX loss also had 
similar loss of m6A sites, with higher abundance in ATRX retained group (Fig. 6b). 
 

 
Discussion 
In this study, we performed transcriptome wide profiling of m6A modifications across IDH mutant and 
wild-type gliomas. Our workflow leveraged the direct RNA sequencing platform of ONT,  enabling 
sensitive, high-depth coverage of native transcripts derived from tumor tissue RNA23. Downstream 
analysis was tailored to allow a multifaceted comparison of isolated RNA and is described below. 
 
We used Bambu22 to map full-length transcripts of varying lengths (<500 bp - >10,000 bp). Of the 
4,089,398 mapped RNA reads, 32.65% (1,335,000) were full-length transcripts. Notably, we 
observed almost a two-fold greater number of full-length transcripts in IDH mutant gliomas (n = 
860,053) compared to wild-type (n = 474,947) gliomas. Furthermore, differences in proportion of full-
length transcripts were observed across clonal subtypes: astrocytoma (40.7%0, oligodendroglioma 
(23.74%), and GBM (35.58%). 
 
Next, we compared the read length distributions of full-length transcripts. While the overall read 
length distributions were similar in IDH mutant and wild-type groups, subtype analysis revealed a 
higher prevalence of shorter transcripts in GBM and Oligodendroglioma, particularly in ALKBH5 
treated vs. untreated samples. It is important to note that our study included only two patients with 
oligodendroglioma, which highlights the need for further investigation in larger cohorts. A closer look 
at the RNA biotypes demonstrated the highest prevalence of Mt RNA in astrocytomas. Additionally, 
both astrocytomas and oligodendrogliomas exhibited a higher prevalence of detected lncRNA 
compared to GBM. 
 
Isoform analysis has garnered significant interest in recent studies, given the advances in detection 
and prediction. In the context of IDH mutant gliomas, we were particularly interested in correlating 
alternative splicing with gene expression using IsoformSwitchAnalyzeR24. Previous literature has 
provided evidence of the metabolic reprogramming of gliomas secondary to IDH mutation. This in 
turn is mediated due to alteration of key biological pathways: lipid and cholesterol synthesis25,26, cell 
to cell signaling25, autophagy27, and immune response28,29. To better understand these functional 
consequences, we analyzed isoform switches in transcripts grouped by functional categories. 
Nicotinamide phosphoribosyltransferase (NAMPT) is a key enzyme that maintains nicotinamide 
adenine dinucleotide (NAD) levels in cancer cells. High NAMPT levels in GBM have been correlated 
with poor survival and increased tumorigenesis30. We observed higher NAMPT expression in GBM 
compared to astrocytoma, with significantly higher usage of the protein-coding isoform NAMPT-201 
in GBM. Similarly, Pyruvate kinase M2 (PKM2), an enzyme that catalyzing the final step of 
glycolysis, has been associated with poor survival in GBM30,31. Our findings are consistent, showing 
higher PKM2 expression in GBM. However, this was linked to increased usage of non-coding PKM-
211 isoform and decreased usage of protein coding PKM-202 isoform. 
 
We also identified common characteristics of isoforms preferentially used in GBM: exon loss, IDR 
loss, shorter 3’UTR, and ORF loss. This in combination with earlier observation of higher proportion 
of short (<500 bp) transcripts and lower counts of full-length transcripts in GBM raises an important 
question in tumor progression. It is possible that GBM cells rely on truncated, shorter isoforms to 
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evade immune control and enhance tumor metabolism, thereby promoting tumor proliferation. This is 
supported by our findings of increased usage of shorter protein coding isoforms in GBM when 
examining the immune response markers (CD63, CD151, CD81). However, all immune markers 
were upregulated (high expression) in the GBM group. This aligns with previous studies reporting 
suppression of terminal cell differentiation and immune response in IDH mutant cancers17. We 
hypothesize that isoform switches resulting in truncated proteins may correlate with a more 
aggressive tumor phenotype32. Functional validation studies are needed to explore the clinical 
implications of these events and their potential role in treatment resistance. 
 
For identification of m6A modified nucleotides, we employed m6Anet23, a neural-network-based 
multiple instance learning (MIL) model framework. A key advantage of this computational method is 
its ability to quantify single molecule modification probability from a single sample. This represents a 
major shift from previous comparative approaches23. Consistent with our hypothesis, a direct 
comparison of glioma subtypes demonstrated an overlap of only 29% of m6A sites between IDH 
mutant and wild-type groups. Over 50% of detected sites were unique to the IDH mutant group. 
IDH1/2 mutations are known to induce a DNA hypermethylator phenotype when compared to wild-
type counterparts. However, recently Pianka et al. used methylation RNA immunoprecipitation 
sequencing (MeRIP-seq) RNA sequencing to explore RNA methylation in IDH mutant gliomas33. The 
study reports 2HG mediated hypermethylation. Here, we extend these findings to the m6A RNA 
methylome using the Nanopore platform34. 
 
A chromosomal distribution analysis of m6A modifications revealed a much higher prevalence of 
m6A targets across all chromosomes in the IDH mutant glioma group. The greatest difference (Δ = 
mut - wild-type) was seen on chromosomes 19 and 16, with lower differences on chromosomes 5, 
14, 12, 21, and 18. According to a study that has looked at the chromosomal patterns of DNA 
methylation, hypermethylated gene bodies were localized to chromosomes 16 and 13 (among 
others) with lowest hypermethylation ratio seen in chromosomes 5 and 1833. Our study provides 
similar insights, but in the context of RNA modifications. We further stratified our chromosomal 
distribution analysis by hallmark glioma alterations, including TERT, MGMT, and TP53 mutations, all 
of which demonstrated higher numbers of m6A sites in the mutant group. This underscores the 
importance of parallel profiling of epigenomic and epitranscriptomic patterns which may hint to 
important biological consequences. 
 
Lastly, examining the biotypes of m6A modified RNAs, identified showed no differences in the protein 
coding RNA. However, lncRNA was not only more prevalent in IDH mutant gliomas but also more 
frequently modified. In contrast, mitochondrial rRNA was more prevalent in the IDH mutant group but 
more frequently modified in the IDH wild-type group. These findings highlight the complex interplay 
of RNA modifications in glioma biology and warrant further investigation. 
 
Finally, examining the biotypes of targets identified showed no differences in the protein coding 
RNA. However, lncRNA was not only more prevalent in IDH mutant gliomas but also more frequently 
modified. On the contrary, Mt rRNA was seen to be more prevalent in the IDH mutant group. 
However, this specific RNA subtype was more frequently modified in the iDH wild-type group. 

 
Methods 
 
Study Population 
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The study population (n=15) included patients 18 years or older with histopathologically confirmed 
IDH1 mutant or wildtype gliomas who underwent surgery at Massachusetts General Hospital (MGH) 
for biopsy or resection of a primary brain lesion. The study population can be classified into high-
grade glioma (HGG) (III/IV) and low-grade glioma (LGG) (I/II) groups, with varying IDH1 status as 
follows: 1) IDH1 R132H, HGG (n=4), 2) IDH1 WT, HGG (n=4), 3) IDH1 R132H, LGG (n=4), 4) IDH1 
WT, LGG (n=4). Exclusion criteria for the cohort included history of primary or metastatic cancers, 
active infectious disease (including SARS-CoV-2), and enrollment in clinical trials. All samples were 
collected with informed consent under Partners institutional review board (IRB)-approved protocol 
2017P001581. Patient demographics are and clinical details are depicted in oncoprint format in 
Supplementary Figure 2a. 
 
Tumor Tissue Processing 
Tumor tissue aliquots are collected during neurosurgical resection or biopsy. Tumor tissue was 
microdissected and suspended in RNAlater (Ambion) or flash-frozen, and stored at -80°C. 
 
Total RNA Isolation 
Frozen tissue was thawed and lysed in 1-2 mL of ice-cold TriZol Reagent (ThermoFisher Scientific, 
Cambridge, MA, USA). Lysate was homogenized by passing through a 20-gauge RNAse-free needle 
10 times. Total RNA was then extracted as per the manufacturer’s protocol and eluted in nuclease 
free water (Invitrogen). Both RNA quantity and quality were assessed for purity with Nanodrop One 
spectrophotometer (ThermoFisher Scientific, Cambridge, MA, USA). Agilent RNA 6000 pico kit was 
used with Agilent Technologies 2100 Bioanalyzer (Waldbronn, Germany) to determine the 
concentration and RIN (RNA Integrity Number) value of the samples. 
 
Ethanol precipitation 
To remove potential contaminants and carry-over inhibitors purification via ethanol precipitation was 
performed at multiple stages of the workflow: post extraction, post demethylation, and post poly(A)+ 
enrichment. To do this RNA was combined with 0.1 volume of 3 M, pH 5.2 sodium acetate and 3 
volumes of ice-cold, 100% molecular biology grade ethanol (Sigma-Aldrich, St. Louis, MO). The 
ethanolic solution was stored at -20 ℃ overnight. Following this, RNA was recovered by 
centrifugation at 16,000g for 30 min at 4 ℃. The supernatant was carefully aspirated without 
disturbing the pellet. Subsequently, the pellet was washed with 0.5 ml of ice-cold, freshly prepared 
70% ethanol. This was followed by centrifugation at maximum speed for 10 min at 4 ℃. The 
supernatant was removed and the tube was left open at room temperature to ensure that last traces 
of fluid have evaporated. The pellet was then dissolved and resuspended in nuclease free water 
(Invitrogen). 
 
Enzymatic Demethylation 
Total RNA extracted from each tumor tissue was equally split into two aliquots for subsequent 
demethylation or mock treatment. Given the variability in RNA yield from each tissue sample, up to 
200 μg of RNA was either demethylated or mock treated with active recombinant FTO/ALKBH5 
protein (Abcam, Cambridge) at a 1:0.3 molar ratio in a 500 µL reaction, as previously described by 
Zheng et. al, in 50 mM HEPES (Sigma-Aldrich, St. Louis, MO), 100 µM 2-oxoglutarate (Sigma-
Aldrich, St. Louis, MO), 100 µM ascorbate (Sigma-Aldrich, St. Louis, MO), 50 µM Ammonium (II) Iron 
Sulfate (Sigma-Aldrich, St. Louis, MO), 1 mM TCEP (Sigma-Aldrich, St. Louis, MO), and 50 U of 
RNAse-Inhibitor (ThermoFisher Scientific, Cambridge, MA, USA)35. Care was taken to avoid 
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introduction of RNAses, and all solutions were prepared in nuclease free water (Ambion).  RNA was 
ethanol precipitated and eluted in 100 µL of nuclease free water. 
 
m6A Quantification (ELISA) 
Enzymatically demethylated and mock treated total or poly(A)+ RNA was assessed for integrity and 
concentration using RNA Pico Total RNA Assay and RNA Pico mRNA Assay (Agilent). 8 µL of RNA 
sample was used as input for the m6A colorimetric assay (Abcam). Absorbance values at 450 nm 
and quantity of RNA from BioAnalyzer were used to calculate relative m6A abundance (% m6A). 
Efficiency of demethylation was quantified using the following equation: % m6A demethylation = 
(Demethylated m6A abundance/Mock m6A abundance). 
 
Poly(A)+ Isolation 
Post enzymatic treatment with ALKBH5 or mock treatment, RNA samples were enriched for poly(A)+ 
species using the NEBNext® Poly(A) mRNA Magnetic Isolation Module (New England 
Biolabs,Ipswich, MA), according to manufacturer recommendations. All enrichment reactions were 
scaled up according to input RNA quantity, using 5 µg as upper limit for individual samples. Eluted 
poly(A)+ RNA was then assessed for quality and concentration by the RNA Pico mRNA Assay 
(Agilent). 
 
Library Preparation and Sequencing 
Demethylated and mock treated poly(A)+ RNA from NEBNext poly(A) isolation module (New 
England Biolabs) was eluted according to manufacturer’s instructions, and then ethanol precipitated. 
RNA was pelleted and resuspended in 10 µL of nuclease free water (Invitrogen). 1 µL was used for 
RNA Pico mRNA Assay for quality check. The remaining 9 µL was used as input for library 
preparation. Libraries were prepared using the SQK-RNA002 kit (Oxford Nanopore Technologies) 
with selected modifications based on previous optimization runs: RTA and RMX ligation times were 
extended to 25 minutes, elution times were extended to 15 minutes, bead-binding times on Hula 
mixer were extended to 7 minutes, and Superscript IV (ThermoFisher Scientific) was used instead of 
Superscript III (ThermoFisher Scientific). As such, thermocycling conditions were modified, and the 
RTA adapted RNA was reverse transcribed at 53°C for 50 minutes, with reaction inactivation at 80°C 
for 10 minutes, before holding at 4°C. Following library preparation, demethylated and mock treated 
poly(A)+ RNA samples were sequenced on a MinION sequencer using R9 flow cells (Oxford 
Nanopore Technologies) for 24 hours, or until refuel of flow cell resulted in a lack of reads. Live 
basecalling (fast) was used to monitor Q-score (Qfilter ≥ 5) and translocation speed for the purposes 
of refueling. 
 
Statistical analysis 

Raw Sequencing throughput, QC, Genome Alignment, and Quantification 
Total RNA extracted from each patient tissue sample was split into two aliquots, demethylated along 
with a mock control, and sequenced in parallel. Raw FAST5 files were compiled for each sequencing 
run, and pass reads (qscore>7) were basecalled using Dorado (0.5.0+0d932c0) using the model 
rna002_70ps_fast@v3. The resulting FASTQ files were processed using nanoseq (3.1.0) 
(https://github.com/nf-core/nanoseq/tree/dev), an analysis pipeline for Direct RNA Sequencing Data. 
It comprises raw read QC, alignment, and quantification. 
During the first part of nanoseq, QC metrics from raw reads were generated using Nanoplot. Next, 
reads were aligned to the human (GRCh38) genome using minimap2 (2.17-r941). Post alignment, 
SAM files were converted to sorted BAM files using samtools (1.16.1) and mapping metrics were 
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presented using MultiQC (1.11). Finally, nanoseq utilized bambu (3.0.8) to quantify human genome 
alignments and generate gene counts and normalized abundances. The resulting raw count data 
were imported into R for differential expression analysis. 
 
Full Length Reads 
Reads counts mapped as full length reads for each transcript were estimated using Bambu (3.7.0). 
 
Differential expression and isoform usage analysis 

We used DESeq2 (1.45.3) in R to test for differential gene and isoform expression between the two 
IDH1 groups and three classification groups. First, lowly expressed genes were filtered out by 
removing genes with less than 10 counts across all samples. The remaining counts were normalized 
using DESeq’s internal size factor estimation. Log2 fold changes and adjusted p-values (Benjamini-
Hochberg) were calculated, with an adjusted p-value (FDR) threshold of 0.05. For isoform-level 
differential expression, isoform counts were generated using NanoCount (1.0.0.post6) and were 
similarly processed using DESeq2. The isoform-level results were obtained by applying the same 
normalization, model fitting, and statistical testing procedures as described for genes. Differential 
isoform usage analysis was performed in R using IsoformSwitchAnalyzeR (2.5.0). The isoform 
counts and abundances were input along with the annotation and transcriptome files. Single isoform 
genes were filtered out during the preFilter() step since these genes cannot have changes in isoform 
usage. Statistical analysis was performed with isoformSwitchTestSatuRn(). We required a difference 
in isoform proportions between classification groups of >0.2 and an FDR-adjusted p-value of <0.05 
for significance. The functional consequences of the identified isoform switches were generated 
using the analyzeSwitchConsequences() function. This analysis identified changes in important 
function domains such as coding potential, exon loss, domain loss, and isoform length. 

Transcriptome-wide m6A modification sites 

We used m6anet (2.1.0), a machine learning-based tool, to detect m6A sites in DRACH motifs from 
our direct RNA reads in all samples. Input data included raw nanopore FAST5 reads, which were 
aligned to the reference genome using minimap2. After alignment, m6ANet was employed to predict 
m6A modification sites based on sequence context and nanopore signal patterns. The output of 
m6anet provided predicted m6A sites with probability that the site is modified, the transcript position 
of the site, the 5-mer motif of the site, and the estimated percentage of reads in the site that is 
modified. 

Distribution of modified sites 
To analyze the distribution of m6A-modified sites across transcript regions, custom R scripts were 
used to calculate the lengths of the 5' UTR, CDS, and 3' UTR regions. For each transcript, the 
coding sequence (CDS) length was determined by summing exon lengths, while the UTR lengths 
were calculated based on start and end coordinates. Transcripts with missing UTR annotations were 
assigned a length of zero for the missing regions. To visualize the distribution of m6A-modified sites 
across these regions, a custom function was implemented in Python. The transcript position of each 
modification site was compared with the UTR and CDS regions to determine if the site was located 
within the 5' UTR, CDS, or 3' UTR. The relative position within each region was calculated, and 
kernel density estimation (KDE) plots were generated to visualize the relative density of m6A sites 
across these transcript regions. Modifications grouped by transcript biotypes (protein-coding, 
nonsense mediated decay, retained intron) and methylation status were visualized. 
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Figure 1. Overview of m6A Direct RNA Sequencing Approach. (a) Schematic showing RNA 
extraction and RNA preparation upstream of library preparation. RNA from tumor tissue with patients 
from glioma (n=15) is extracted using TriZol Reagent. RNA is either mock treated, or demethylated 
using recombinant ALKBH5. Both control and demethylated RNA are evaluated again for quality, 
and then enriched for the transcriptome using oligod(T) beads. Library preparation was conducted 
using direct RNA Sequencing (SQK-RNA002) protocol. Parallel sequencing of ALKBH5 treated and 
untreated samples performed using MinION. (b) Stacked bar graphs demonstrating the percentage 
of mapped and unmapped reads from ALKBH5 treated (left) and untreated (right) RNA isolated from 
IDH mutant (P1-P8, n = 8) and IDH wild-type (P9-P15, n = 7) glioma tumor tissue. (c) Venn Diagram 
(top) comparing the number of common and unique genes detected in all ALKBH5 treated (n = 15) 
and untreated (n = 15) samples. Dot plot (bottom) comparing the average quality score of the 
sequencing output from treated and untreated RNA in individual patients. (d) Quality control (QC) 
Nanoplots plotting log transformed read length vs average read quality (using a kernel density 
estimate) in ALKBH5 treated (n = 15, left) and untreated (n = 15, right) samples. (e) Weighted 
histogram of read lengths after log transformation in ALKBH5 treated (top) and untreated (bottom) 
samples.  
 
Figure 2. Quantification of RNA biotypes and full-length transcripts across clinical groups. (a) 
Stacked bar graph demonstrating the relative abundance of protein coding, mitochondrial RNA (Mt 
RNA) and other biotypes across individual patients (n = 15). (b) Stacked bar graph demonstrating 
the relative abundance of other (lncRNA, pseudogenes, IG and TCR RNA, small RNA, ribozyme, 
rRNA) across individual patient.  (n = 15). (c) Pie chart summarizing the relative abundance of RNA 
biotypes in the study cohort stratified by glioma subtype; astrocytoma (n = 6), oligodendroglioma (n = 
2), and glioblastoma (GBM, n = 7). (d-i) Stacked plots comparing the prevalence (%) of full-length 
RNA transcripts of varying lengths (<500bp - >10,000bp) in different groups: (d) ALKBH5 treated vs 
untreated RNA, All (e) IDH mutant vs wild-type glioma, ALKBH5 untreated RNA, (f) IDH mutant vs 
wild-type glioma, ALKBH5 treated RNA, (g) ALKBH5 treated vs untreated RNA, Astrocytoma, (h) 
ALKBH5 treated vs untreated RNA, Oligodendroglioma, (i) ALKBH5 treated vs untreated RNA, 
Glioblastoma. 
 
Figure 3. Differential gene expression analysis across glioma subtypes. (a-c) Heatmaps 
representing the top 200 differentially expressed genes for three comparisons: (a) IDH1 mutant vs 
wild-type, (b) astrocytoma vs glioblastoma (GBM), and (c) GBM vs oligodendroglioma. Gene 
expression levels are depicted by a color gradient, with red indicating upregulation and blue 
indicating downregulation. Rows represent individual genes, and column represent samples within 
each group. (d-f) Volcano plots highlighting significantly differentially expressed genes for the same 
comparisons as in panels a-c. Each point represents a gene, with log2 fold changes on the x-axis 
and -log10 adjusted p-values on the y-axis. Red dots correspond to significantly upregulated genes 
(adjusted p-value <.05, log2 fold change >1). 
 
Figure 4. Clinically relevant genes exhibit different isoform usage between Astrocytoma and 
Glioblastoma (GBM). (a-p) Gene and isoform expression plots represented as bar graphs 
comparing gene expression (first), isoform expression (second), and isoform usage (third). Top 
panel shows the isoform structure with protein domains highlighted. Gene and isoform expression 
bar plots are shown below. (q) Consequences of isoform switch in astrocytoma vs GBM, comparing 
differences in the fraction of alternative splicing events. Data points denote fraction of genes having 
the consequence with size of the circle representing the number of genes and horizontal bar 
indicating 95% confidence interval. (r) Bar graphs depicting the number of isoform switching 
consequences associated with different glioma subtypes.  
 
Figure 5. Deduction of m6A consensus motifs and distribution and biotype analysis of m6A 
modifications across the mRNA transcriptome. (a) Consensus MOTIF definition of m6A 
modifications in the transcriptome in IDH mutant (n = 8, left) and IDH wild-type (n = 7, right) glioma. 
Bitplot depicting the nucleotide composition with height of each symbol indicating the relative 
frequency of each nucleotide at that position. (b) Venn Diagrams comparing the number of common 
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and unique m6A sites detected in IDH mutant vs wild-type glioma (left) and across the glioma 
subtypes (right). (c) Prevalence of m6A RNA biotypes in IDH mutant (left) and wild-type (right) 
gliomas. (d) Metagenes plot depicting m6A RNA mapping in a transcriptome pattern in individual 
patients (top, left). m6A RNA mapping patterns in IDH mutant vs wild-type gliomas across different 
RNA biotypes: protein coding (top, right), retained intron (bottom, left), and nonsense mediated 
decay (bottom, right). 
 
Figure 6. Chromosomal distribution analysis of m6A sites across hallmark glioma alterations. 
(a-f) Stacked bar graphs denoting the number of m6A sites detected per chromosome in the mutant 
(yellow) vs. wild-type (grey) groups stratified by glioma specific mutations: (a) IDH1, (b) ATRX, (c) 
MGMT, (d) EGFR, (e) TERT, (f) TP53. 
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