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Abstract

Advances in the cloud technology for secured distributed data storage, modern techniques for
machine learning (ML), and access to large populations through mobile apps provide a unique
opportunity for the healthcare industry professionals in the areas of early screening and medical
diagnostics for certain diseases. This research study demonstrates the potential of ML using
convolutional neural networks (CNN) for medical diagnostics of skin melanoma. Specifically, a
comparison is presented between a shallow CNN (3-layers) with Resnet50 (50-layers) to classify
open datasets of skin melanoma images as malignant or benign. Various ML performance metrics
such as accuracy, recall, precision and receiver operating characteristic (ROC) are presented to
recommend a deep learning model for the mobile app. Also, a novel framework is proposed for
the scalability and adoption of ML-based medical diagnostics by large masses as a mobile app
running on data-secure cloud platform. Using the open datasets, it is shown that skin cancer can
be accurately diagnosed with a mobile phone app while maintaining patient privacy and data
security.

Keywords: Melanoma, Skin cancer, Convolutional neural networks, Resnet50, Mobile app,
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1. Introduction

The uncontrollable development of tissues in a specific body area is known as cancer. One of the
most quickly spreading diseases in the world is skin cancer. Skin cancer is a disease in which
abnormal skin cells develop out of control (Fig. 1). To determine potential cancer therapies, early
detection and accurate diagnosis are essential. Melanoma, the deadliest form of skin cancer, is
responsible for most skin cancer-related deaths in developed countries (www.cancer.org). It is
caused when melanocytes, which produce pigment within skin, are hit with radiation. The
melanocyte becomes cancerous and creates that tell-tale dark patch of skin. This lesion can either
be malignant or benign. Malignant melanoma is constantly growing, and can progress through
stages of cancer quickly, becoming very dangerous. Benign melanoma does not evolve and can be
easily left alone. According to the Global Health Observatory (2022), Melanoma cancer is
responsible for the most skin cancer-related deaths in the developed countries.

Artificial intelligence (AI) and machine learning (ML) have made significant progress by leaps
and bounds in several areas such as self-driving or assisted-driving cars, computer vision, retail
supply chain management, and healthcare. Computer ML models outperformed top human players
in games like Chess and Alpha Go. A study by Weng et al. [1] has demonstrated that ML models
have made significant improvements in the accuracy of cardiovascular risk prediction by
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increasing the number of patients identified who could benefit from preventive treatment while
avoiding the unnecessary treatment of others.
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Figure 1: (Left) Labeled diagram of Skin Tissue (Skin Anatomy [2]); (Right) The A-B-C-D-E
of diagnosing skin melanoma (Melanoma ABCDE [3]).

Several prior studies [4-7] have investigated ML models for melanoma detection and a non-
exhaustive review is presented here. Li et al. [8] advocated for construction of an artificial
intelligence system in dermatology using skin image database through interdisciplinary
collaborations. Bhatt et al. [9] presented a literature review of the state-of-the-art ML techniques
(e.g. Support vector machine (SVM), K-Nearest Neighbors (KNN), and Convolutional neural
networks (CNN) etc.) used to classify skin melanoma cancer as malignant or benign. Among open
datasets reviewed, ISIC (2016) and ISIC (2018)/HAM10000 are also used in the present study.

Haenssle et al. [10] compared a Convolutional Neural Network (CNN) ML model’s diagnostic
performance against a large international group of 58 dermatologists, including 30 experts, and
reported that most dermatologists were outperformed by the CNN ML model. They recommended
that irrespective of any physicians’ experience, they may benefit from the assistance by the image
classification capabilities of a CNN. Reis et al. [11] developed InSiNet architecture that
outperformed the other methods achieving an accuracy of 94.59%, 91.89%, and 90.54% in ISIC
2018, 2019, and 2020 datasets, respectively.

Delans et al. [12] presented “teledermoscopy” as an emerging technology for skin cancer detection
and argued for teledermoscopy as an attractive tool to improve screening of skin cancers in
populations with limited access to dermatological care. It may significantly reduce unnecessary
biopsies through home monitoring of suspicious lesions and increase the overall cost-efficiency of
dermatologic care by reducing the number of unnecessary in-person visits for clearly benign skin
lesions. Wishma et al. [13] presented a methodology for building Android apps with associated
services for teledermatology use cases of melanoma detection. However, their approach doesn’t
address data security and patient privacy concerns.

The motivation of the present study takes inspiration from the above-mentioned impactful research
works and aims to scale-up the usage of data-driven ML models in disease diagnostics through the
contributions to datasets from large populations. To that end, a data-secure framework for mobile
app is proposed that interfaces with a pre-trained ML model on image datasets to predict the skin
melanoma classification. Due attention is paid to data security and patient privacy by using the
advances in cloud technology to interface with mobile apps and running the ML model in a data
secure environment. It is expected that early medical diagnostics or screening for skin melanoma
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can alleviate the burden on dermatologists in large populations with limited resources. Further, the
data-driven ML approach continuously improves in the performance with increasing skin image
datasets.

2. Materials and Methods

This research work uses data-driven ML techniques with mobile apps and hence, the main topics
discussed are the deep learning framework, the statistical learning performance metrics, and
mobile web app development. Description of the image datasets and CNN models is presented
first. Then, several model performance metrics are defined. Lastly, a data-secure framework
utilizing cloud technology with a mobile app is described.

2.1. Deep learning framework

Two CNN-based deep learning models are evaluated in this work for their performance of
detecting melanoma: a shallow CNN and a pre-trained Resnet-50 model [14]. Both models are
trained using about 8000 skin images classified as “benign” or “malignant” from the ISIC dataset
and "Human Against Machine with 10000 training images" (HAM10000) dataset [15]. Overall,
HAMI10000 consists of 10015 dermatoscopic images of common pigmented skin lesions (Fig. 2).

Figure 2: Example of images in the open dataset HAM 10000 showing a wide range of skin cancers
[15]. The present study deals with classification for only skin melanoma category.

A typical Convolutional Neural Network (CNN) architecture is shown in Fig. 3 (Top) with layers
labeled as: Input, Convolution, Pooling, Flattening, Dense, and Output [16, 17]. The input layer
represents the images as a combination of R, G, and B values at each pixel and thus, splitting an
image into channels of three matrices with the corresponding values at the pixel location and the
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matrix dimensions corresponding to the image resolution. The role of activation functions in neural
networks is like firing of neurons in the brain by transforming the weighted sum of all inputs into
an output. Their non-linear behavior is essential for “learning” and typically, simple functions are
used for easy training on large datasets. Examples include Tanh, Sigmoid, and ReLU. Convolution
layers perform the tasks of feature extraction from a digitized representation of an image as a 2D
array through a filter kernel and an activation function. Pooling operation performs down sampling
operations on the feature maps obtained after the convolution layers that results in dimension
reduction. Flattening layer transforms the output of last convolutional layer into a 1D array (i.e.
vector) as an input layer for the fully connected neural network (dense layers) that is subsequently
trained using the backpropagation algorithm. Dense or fully connected layers exploit the
backpropagation algorithm for training the weights and biases in the network for the “reduced”

dataset in the form of features instead of images. Lastly, the output (Softmax) layer is used for the
label model prediction output [18-22].

In this work, a shallow CNN is used first to learn about image datasets and computational
resources. Images were reduced to 224 x 224 x 3 arrays. 2D convolutional layer, followed by max
pooling, and dropout layers were stacked twice. It is followed by flattening, dense, and output
layers. In our study, the two-state output will be text labels as “Malignant” or “Benign”. Other ML
model parameters were: ReLU for activation functions, Adam optimizer in backpropagation,
epoch of 50, and batch size of 64.

/=N S oo

T /X - x
- " I..'i \ ¢ :
\“v:l i I:l D — Class-N
FULLY
INFUT COMVOLUTION POOLING CONVOLUTION POOLING J FLATTEN CONNECTED SOFTMAX
FEATURE LEARNING CLASSIFICATION

o™ o o™ <t < o «© -]
= Iz 8 = < B EAR R AR & B o BBy S F NN g o
Tl o~ [ 22 Clow R [t SlEE Qa2 a2 ol a wle ] =
A= gl &| = =2 2| 3 =l = 3 e RN =z > = 21 F | 2|y ° ™
Z>» 5> 3 § § g & E[§|§ 6§ 6|8 E[§| 5§ 68| 5 e|l&|5 6§ & 8 S
gl o el e B 8|88 gl oo olo| o g 9|8 o|lol8 g|o 8 6|06|8 g =
°l & %8l %R < o= - o< @ = - M- e c|o|a g
~ 28| x & &) B ol E| X X | x| x ol X% x| X|T ®|&| X x| X[ % ©
X - - Xlo| - —|d| - L e - |@m| X X = — =

0 w 0w w

x x = B

3] (] 5] 3]

o o o ]

m o m m

© < © ™

Figure 3: (Top) Workflow of a convolution neural network (CNN) showing various layers with

their roles for the classification tasks on image datasets (Adapted from Vocaturo et al. [23]);
(Bottom) the ResNet 50 Architecture [14, 24].
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ResNet is a deep CNN architecture introduced by He et al. [24] and builds on four repetitive
components — Convolution layers, Convolution blocks, Residual blocks, and Fully connected
layers. ResNet-50 is a specific implementation that uses 3-layer convolution blocks of different
sizes in the sequence of 3-, 4-, 6-, and 3 blocks (Fig. 3, Bottom). The novel idea of using residual
blocks with “skipping” connections allow the network architectures to be deep and yet mitigate
the problem of vanishing gradients during the model training [14, 24]. In this study, a pre-trained
ResNet model in Keras was used with skin image datasets. Other ML model parameters for ResNet
were: ReLLU for activation functions, Adam optimizer in backpropagation, epoch of 50, and batch
size of 64.

2.2. Statistical analysis

Overfitting is a critical concern when deep learning models are used on limited datasets. It occurs
when a model aligns too closely with the training dataset and exhibits a large increase inerrors
when making predictions on data other than that used in the training process. Ripley [25] describes
the data split into training-validation-testing sets as: “Training set — A set of examples used for
learning, that is to fit the parameters of the classifier, Validation set — A set of examples used to
tune the parameters of a classifier, for example to choose the number of hidden units in a neural
network, and Test set — A set of examples used only to assess the performance of a fully-specified
classifier”. In this study, testing datasets were never used for tuning hyperparameters and therefore,
provided an unbiased estimate of the generalization error. In this work, we avoid overfitting by
dividing the dataset into separate training and testing sets (80:20 data splits) and choosing the
number of epochs (=50) that minimize testing loss. Further, a cross-validation approach was also
used for shallow CNN model with 3 folds in image dataset to confirm that similar level of ML
model predictive accuracy was achieved.

Several performance metrics are used to evaluate the two trained CNN models. A confusion matrix
is a tabular representation of the actual data against model prediction for classification tasks (Fig.
4).
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Figure 4: (Left) A confusion matrix for classification problem; (Right) Different ML model
performance metrics.

Specifically, the following definitions are used in defining the confusion matrix based on True
Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives (FN): Accuracy is
the fraction of true predictions (both positive and negatives) out of all the data. Precision is the
fraction of true positives out of all positives predicted by the model. Recall is the fraction of model
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predicted positives out of total positives and is the same as sensitivity or true positive rate (TPR).
F1 is the harmonic mean of precision and recall. Specificity is the fraction of model predicted
negatives out of the total negatives. Receiver Operating Characteristic (ROC) is the curve obtained
by plotting TPR (recall) against FPR (1 — specificity) at different classification thresholds and
helps determine which model learns better.

2.3. Mobile web application development

Cazzaniga et al. [26] presented a teledermatology system cycle and recommended the use of ML-
based apps to make it cost-effective (Fig. 5). Medhat et al. [27] presented a comparative study for
skin melanoma detection using MobileNet-V2 among three different CNNs on mobile phones.
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App Download and Identification of Automated Quality
Registration Suspected Skin Lesions Check, and Transmission
to Cloud Service

Secure Data Store, ML-
based Cloud Analytics, Response back to the
and Expert Dermatologist Patient, Follow up.
Review

Figure 5: (Left) Teledermatology System Cycle adapted from Cazzaniga et al. [26]; (Right)
Connecting mobile apps to machine learning models for the early detection of skin cancer can
help scale-up the service for large populations. [28]

A typical electronic health record (EHR) management system using cloud server addresses the
patient privacy required for HIPPA compliance and data security required by the hospitals and
healthcare providers (Fig. 6). The user password provides the required privacy for the patient-
specific information to be uploaded to the data-secure cloud server and the output of the ML model
is then sent back to the patient. Liu et al. [29] advocated the use of cryptography (such as
Blockchain) to further enhance data security for large biomedical databases.
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Figure 6: (Left) Cloud-centric EHR management system architecture [29]; (Right) Proposed
scheme for improving biomedical data security with blockchain [28].
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3. Results and Discussion

The confusion matrix and receptor-operator curve from the CNN model are shown here to illustrate
the evaluation of model performance metrics (Fig. 7). It is observed that a shallow CNN model
achieved the prediction accuracy of 83.7% accuracy. The ROC curve shows that this model learned
quickly and can be useful for early diagnostics. However, the false negatives (Recall or Fi) must

be reduced further since their consequences can be severe for the patients.
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Figure 7: (Left) Confusion matrix for the CNN model on the test dataset; (Right) Receiver
Operating Characteristic (ROC) for the CNN model.

For comparison, two CNN models with different architectures (due to differences in number of
layers, activation functions, and hyperparameters during training) are studied further. The shallow
CNN model (3 convolution layers) reached around 65% accuracy on average, while the Resnet50
model had 96% accuracy during training and over 80% in testing datasets (Fig. 8, left). Loss
function values decrease with increase in epochs during training for both models. However, the
loss function values increase with epochs for test datasets with Resnet50 (Fig. 8, right).
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Figure 8: Improving model performance metrics using (Top row) a simple CNN and (Bottom
row) ResNet50: (Left) Model accuracy vs. epochs; (Right) Training and testing loss function
values vs. epochs.
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Lastly, a framework is proposed for the adoption of ML models for medical diagnostics using a
mobile app on the cloud platform. We implemented the code as a mobile/web application and
ported it to the cloud platform for ease of accessibility while maintaining patient privacy and data
security. The HIPAA-compliant mobile app is a patient portal that allows users to capture and
maintain their skin images and submit them. The images submitted are securely uploaded to the
cloud server where the image is processed based on the Al algorithms. The patient will be provided
with updates on their submitted skin images, or they will be asked to contact the provider. A history
of the images submitted is maintained to keep track of them in the app. The patient can maintain
their profile and other settings in the app (Fig. 9).
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Figure 9: (Left) Proposed architecture for the data-secure mobile app; (Right) Screenshot of
login page of the developed mobile app for the cloud-based security in the present work.

Conclusion and Future Work

The present study used open datasets and code repositories to compare ML models of varying
levels of fidelity. Specifically, image datasets for skin melanoma were used to classify the image
as benign or malignant. A deep CNN (ResNet50) was shown to improve training and test
prediction accuracies and Fi-scores for classification of skin melanoma.

At present, the adoption of ML models for medical diagnostics is hindered by the concerns of
patient privacy and data security. To that end, a framework is proposed using the cloud platform
along with a mobile app. It is argued to be a scalable approach because mobile phones have already
penetrated a large portion of the population around the world.
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