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Abstract 
 
Patient-generated free-text messages are a well-recognized source of clinical burden and burnout for clinicians. 
Machine learning approaches such as Large Language Models (LLMs) may be applied to alleviate this burden by 
automatically triaging and classifying messages, but their performance in this domain has not been fully 
characterized.  In this study, we analyzed the effectiveness of GPT4 for classifying patient and provider messages for 
hypertension management through prompt engineering, comparing its performance to an alternative unsupervised 
generative statistical approach. The results of this study suggest GPT is promising for classification of medical-related 
messages even with very few guiding examples. 
 
Introduction 
 
Free-text message exchanges, such as those afforded by electronic health portal messaging systems, provide an 
opportunity for clinicians to extend longitudinal care beyond the walls of traditional face-to-face clinics. However, 
these free-text messages are also an increasing source of clinical burden and burnout for clinicians1-3. Moreover, this 
burden is likely to grow as expanding digital health technologies further facilitate patient and provider communication. 
For example, many mobile health apps enable patient and provider communication through Short Messaging Service 
(SMS) for those with chronic conditions4. Solutions are urgently needed to improve care delivery experiences and 
outcomes for both patients and providers. 

Natural Language Processing (NLP) and machine learning (ML) applications are promising potential tools to alleviate 
message burden. One potential application is to utilize NLP and ML approaches to triage patient messages to the 
appropriate member of the clinical team (scheduler, pharmacist, nurse, physician, etc.). There have been recent 
advances in the use of NLP and ML for filtering and reviewing clinical messages. In a study conducted by Chen et al. 
2019, an NLP system called HypoDetect (Hypoglycemia Detector) automatically identified incidents of patient-
reported hypoglycemia in secure message threads between patients with diabetes and the US Department of Veteran 
Affairs clinical teams5. Stenner et al. 2012 developed a rule-based NLP system called PASTE (Patient-Centered 
Automated SMS Tagging Engine) for extracting and tagging medication information from patient messages in a 
medication management system6.  

Despite these promising examples, there are also substantial limitations to them. For HypoDetect, 3000 messages 
needed to be annotated for training and testing. For PASTE, the team only used existing libraries (RxNorm, RxTerms 
and NDF-RT); therefore, excluding the ability to subcategorize messages beyond what can be identified through these 
knowledge sources. In a previous related study conducted by Davoudi et al. 2022, investigators leveraged latent 
Dirichlet allocation (LDA), an unsupervised, generative statistical model for subgrouping observations in a dataset to 
see how well the LDA model could identify different medication related intent (goal or main idea of the text) 
categories7.  While their results were promising, there was still much heterogeneity in intent for each LDA topic class. 
Even after applying a majority intent class heuristic (i.e. analysis was limited to messages containing only a single 
intent, while messages containing multiple intent categories were excluded), precision and recall values varied and 
some messages were not able to be predicted and classified.  

ChatGPT, developed by OpenAI (San Francisco, CA, USA), is a large language model (LLM) trained on a large 
corpus of datasets using the generative pre-trained (GPT) architecture which utilizes neural networks to process natural 
language8. It can be leveraged to handle a wide variety of tasks including writing and debugging code9,10, answering 
exam questions from the United States Medical Licensing Examination (USMLE) Step 1 and Step 2 Exams at the 
level of a 3rd year medical student11, and diagnosing and triaging medical cases12. Because LLMs are already trained 
on a large corpus of data, and the knowledge acquired can be used for other downstream tasks, we hypothesized that 
its performance in message triaging and intent classification would be an improvement from our previous LDA 
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approach.  We also anticipated that it would have the advantage of requiring far less manual preparation and therefore 
sought to further discern its performance when provided zero, one, or three training examples (i.e. zero-, one-, or few-
shot learning).  

Thus, the objective of this study was to assess the performance of GPT4 for message classification. We assessed its 
performance on a set of medication related patient and provider messages for hypertension management, as previously 
described in Davoudi et al., 20227. Briefly, these were text messages exchanged between patients and the health care 
team (nurse and physician) in an SMS-based remote hypertension management program. Messages for the study were 
manually reviewed, selected, and coded to create a dataset of messages that were limited to medication-related intent 
categories. The hypotheses of this study are as follows: H1) GPT4 can be highly accurate in classifying messages with 
recall and precision of above 0.9 and H2) Messages are best classified with few-shot learning. 
 
Methods 
 
This study was reviewed and approved by the University of Pennsylvania Institute Review Board.  
 
Biomedical Data Overview 
 
For this study, we obtained the de-identified and validated messages from the Davoudi et al study dataset7. This dataset 
included messages exchanged between providers and patients enrolled in Penn Medicine's Employee Hypertension 
Management Program (eHTN) between June 2015 and November 2019. Through the program, participants were 
diagnosed with hypertension, received a prescription medication, and treatment plan for blood pressure (BP) 
management, and a BP cuff for conducting home-based readings. An essential component to this study was unlimited 
text message conversations between patients and providers for hypertension management through a proprietary Health 
Insurance Portability and Accountability Compliant (HIPAA) text messaging mobile app through Way to Health 
(W2H)13. The entire study consisted of messages exchanged between 253 participants and 5 providers (n=271 patient 
messages and 240 provider messages). 
 
Medication-Related Messages 
 
The W2H dataset consists of short messages with one medication related intent that were manually annotated by two 
research team members.   
 
GPT4 
 
We used GPT4 (temperature of 0.1) serviced as a private instance within Penn Medicine’s Microsoft Databricks tenant 
using the Azure OpenAI Service. When interacting with GPT4, data is not retained, and in this way, prompts are also 
not shared with the open source ChatGPT version. Additionally, because medical data is considered sensitive, Penn 
Medicine has opted out of OpenAI’s content filtering and management policy so that all input prompts and output 
responses are not be flagged. We interacted with GPT4 using the API and using the openai Python Package to build a 
custom conversational experience with GPT4, and to programmatically access GPT4.  We classified messages using 
the GPT4 API (model: gpt4-32-k). 

Study Design 
 
The study workflow (applies to both patient and provider messages) can be found in Figure 1. The complete dataset 
was separated into training and testing sets for both patient and provider messages. We used this strategy to assess 
whether our prompts would generalize well to unseen data. To avoid biased performance metrics, the final data set 
was split into 70% training and 30% testing data for both patient and provider messages. Using the training set, 
prompts were created for three experiments: 1) Experiment 1: zero-shot learning (providing no training examples), 2) 
Experiment 2: one-shot learning (providing one training example from the training set), 3) Experiment 3: few-shot 
learning (providing three training examples from the training set). 
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Figure 1. Study Workflow. 

 
Additionally, the prompts include a role assigned to GPT4 (e.g. chatbot, triaging provider, etc.), an instruction prompt 
(the task it needs to do), descriptions of the message classes which were curated by manually reviewing the training 
sets, and sample messages and output for one and few shot learning. Below is an example prompt for patient message 
classification: 
 

“You are a chatbot triaging messages from a text messaging system for patients experiencing hypertension 
with the goal to identify the intent of these messages so that they can be tagged and triaged to the 
appropriate healthcare provider. Your task is to conduct a precise binary classification for each message 
that comes through the chatbot system. Some messages may seem like they belong in multiple categories, 
but based on the descriptions for each of the message categories, assign labels as positive (1.0), negative 
(0.0) for belonging most to the target category. Below are the descriptions of each of the four classes of 
messages (1) medication_location, (2) medication_question, (3) medication_request, and (4) 
medication_taking: <description of each category>. This is the target category:<category name>. The 
following is a/are sample messages(s): <sample message(s)>. The following is/are the expected output(s): 
<1.0 or 0.0>”. 

 
After creating the prompts, they were sent to GPT4 for refinement. For each experiment, GPT4 was tasked to classify 
the rest of the training set as belonging to the specified medication intent category (1 for positive and 0 for negative) 
for the specified run in the prompt.  GPT4s response was compared against the manually annotated reference standard. 
Until acceptable values for the performance metrics (precision and recall) was achieved, the prompts were 
continuously revised. The final prompts were then sent to GPT4 to classify the testing set. The results were then 
compared against the reference standard.  
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Results 
 
The training set used for curating prompts consisted of 195 patient messages and 170 provider messages. After 
dropping duplicates and because of issues with OpenAI Content Management Filtering Policy (though Penn Medicine 
has opted out of this)14, the remaining training set consisted of 186 patient messages and 166 provider messages. The 
characteristics of this training set can be found in Table 1. 

Table 1. Distribution of medication intent messages for training & testing set 
Message Type 

and Medication Intent Category Messages, n (%) Messages, n (%) 

Patient Training (n=186) Testing (n=85) 
medication_taking 52 (28.0) 23 (26.8) 
medication_request 89 (47.8) 41 (47.6) 
medication_location 36 (19.4) 16 (19.5) 
medication_question 9 (4.8) 5 (6.1) 

Provider Training (n=166) Testing (n=74) 
medication_refill 2 (1.2) 1 (1.4) 

medication_change 11 (6.6) 5 (6.8) 
medication_question_response 25 (15.1) 11 (15.1) 

medication_question 117 (70.5) 52 (69.9) 
medication_refill_question 11 (6.6) 5 (6.8) 

 
The training set messages not included in the prompts, which in this case were akin to a validation set, were used to 
tune the prompts. For zero-shot learning, all messages were used for evaluating GPT4's performance, and for one-shot 
and few-shot learning, one message and three messages respectively, were excluded for evaluation. To measure the 
performance of GPT4 on the testing set in terms of precision defined as (true positive)/ (true positive + false positive) 
and recall defined as (true positive) / (true positive + false negative), it was tasked to classify 85 patient messages and 
74 provider messages. Because of the content filtering issue, GPT4 was only able to classify 82 patient messages in 
the testing set. GPT4’s accuracy was very high for both patient and provider messages across all experiments. More 
than 89% and 90% of patients and provider messages, respectively, were accurately classified for all categories and 
across all experiments. The precision and recall metrics can be found in Table 2. For patient messages, GPT4 was 
able to identify all (Recall: 1.0) medication location and medication question messages for all experiments even though 
they only make up 19.51% and 6.10% of the data, respectively. Conversely, medication location messages had the 
overall highest precision and recall for the patient data.  For provider messages, GPT4 was able to identify all (Recall: 
1.0) medication refill question messages, despite only making up 6.85% of the training set. However, GPT4 had a 
precision and recall of both 0.00 for medication refill messages (which only consisted of one message in the training 
set). Additionally, every positive prediction made by GPT4 for patient medication request messages was correct 
(Precision: 1.0) for one and few-shot learning. Provider medication questions were the best classified across all 
experiments. GPT4s precision was lowest for zero-shot learning for the patient messages, and for provider messages, 
one-shot learning overall was the best approach. While GPT4’s performance was high to moderate for both precision 
and recall across all medication intents for patient messages, for providers messages, its performance was low-to-high 
for precision and recall across all medication intents. This might be because the provider testing set is much more 
imbalanced than the patient testing set. 
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Table 2.  Performance of medication intent classification for testing set using n-shot learning 

Message Type and Medication 
Intent Category 0-Shot Learning 1-Shot Learning Few-Shot Learning 

Patient Precision 
(P) 

Recall 
(R) 

Precision 
(P) 

Recall 
(R) 

Precision 
(P) 

Recall 
(R) 

medication_taking 0.74 0.91 0.83 0.91 0.87 0.91 
medication_request 0.95 0.92 1.00 0.90 1.00 0.85 
medication_location 0.73 1.00 0.76 1.00 0.89 1.00 
medication_question 0.63 1.00 0.83 1.00 0.83 1.00 

Message Type and Medication 
Intent Category 0-Shot Learning 1-Shot Learning Few-Shot Learning 

Provider Precision 
(P) 

Recall 
(R) 

Precision 
(P) 

Recall 
(R) 

Precision 
(P) 

Recall 
(R) 

medication_refill 0.00 0.0 NA NA NA NA 
medication_change 0.50 1.00 0.71 1.00 0.67 0.80 

medication_question_response 0.67 0.55 1.00 0.73 0.86 0.55 
medication_question 0.91 0.96 0.92 0.92 0.92 0.92 

medication_refill_question 0.41 1.00 0.56 1.00 0.56 1.00 
 
In Figures 2 and 3, we show the outcomes of GPT4 message classification as belonging to a particular class (true 
positive (TP) and false positive (FP) predictions). The color of the bars indicates the manually annotated reference 
standard medication intent. The bars with a black outline are the TP results. Though GPT4 incorrectly classified many 
patient messages, many of these misclassifications were reduced after conducting few-shot learning. For the 
medication request messages, GPT4 incorrectly classified some medication location messages (n=2) as medication 
request messages, however those messages were no longer misclassified after one and few-shot learning.  
 

 
Figure 2. Distribution of medication intents for patient messages as classified by GPT 
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For provider messages, GPT4 incorrectly classified messages for all categories across all experiments except for 
medication question response messages with one-shot learning. Additionally, GPT4 classified many messages that 
were medication questions as medication refill questions. However, this was decreased during one and few-shot 
learning. Generally, one and few-shot learning performed the same with one shot learning having a slightly better 
distribution for excluding FP messages in the provider set. 
 

 
Figure 3. Distribution of medication intents for provider messages as classified by GPT 

 
Discussion  
 
This study examined the performance of GPT4 to classify patient and provider messages exchanged in a bi-directional 
HIPAA-compliant text messaging mobile app. We found that GPT4 was able to classify patient messages with 
moderate to high precision and recall; however, because of the skewed data, it performed much worse on the provider 
set with low to high precision and recall. Because of this, GPT was not able to classify messages with precision and 
recall values of above 0.9. Compared to Davoudi et al.'s study7, GPT4 was able to correctly classify the messages in 
most cases better than, or in some cases comparable to LDA.  

There are several important implications. First, GPT4 may be a promising tool for triaging free-text messages with 
reasonable performance.  We used a fairly small (<300 messages total) and skewed training set for our experiments 
and still achieved good precision and recall; we anticipate that in contexts where GPT4 may actually be used for 
message classification, e.g. patient portal message triaging, this limitation might be overcome given the sheer volume 
of patient messages available. However, this study also suggests that GPT4 triage performance could suffer where the 
event of interest is infrequent (i.e. data are skewed).  

Moreover, utilizing GPT4 for triage may require fairly minimal tailoring by the end-user. In our experiments, we 
found that predictive performance could be improved with just three additional training examples (few-shot learning). 
This makes GPT4 a flexible tool that can be adapted quickly to a specific local context and/or to dynamic clinical 
workflows, which are constantly being modified to adapt to health system needs. This is contrast to our primary 
comparator, LDA, or other machine learning approaches that often require large training sets to optimize performance.   

This study is important because while LLMs represent a powerful new technology, its applications and roles within 
health care are still in development. One application under exploration is the use of LLMs to help respond to patient 
generated messages, but early on their impact is mixed. The majority of draft replies (80% or more, depending on 
clinician type) started by GPT4 were not used at all by clinicians in one pilot15, and in another study, common measures 
of EHR usage such as the amount of time required for clinicians to read or draft a reply, were not affected by the use 
of GPT4 responses16. This study suggests that another potential role for GPT4 is for message triaging.  
 
This study also has some limitations and drawbacks. First, our dataset was limited to messages with a single intent 
category, which is not typical for free-text messages that often have layered, multiple intents. Further work is needed 
to assess GPT4 triage capability for more complex messages. Also, as mentioned above, we used a static Azure 
OpenAI GPT4 endpoint served on the Penn Medicine’s Databricks Platform. Despite choosing to opt-out of content 
filtering, many messages were excluded from being classified.  
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Conclusions 
 
This study found that GPT4 can classify medication related hypertension management messages exchanged between 
patients and providers. This model could also be used to classify other messages from this study with single intents 
and may even be used to improve the processes in which providers triage messages that come in through a patient's 
portal. Consequently, this could provide patients with more timely care. Additionally, this provides an opportunity for 
extending communication between patients and providers beyond the patient portal as LLMs can help clinicians triage 
through messages that come by way of non-traditional means.  
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