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Abstract 21 

Background  22 

Understanding how genetics and environmental factors shape human metabolic profiles is crucial for 23 

advancing metabolic health. Variability in metabolic profiles, influenced by genetic makeup, lifestyle, 24 

and environmental exposures, plays a critical role in disease susceptibility and progression. 25 

Methods 26 

We conducted a two-year longitudinal study involving 101 clinically healthy individuals aged 50 to 65, 27 

integrating genomics, metabolomics, lipidomics, proteomics, clinical measurements, and lifestyle 28 

questionnaire data from repeat sampling. We evaluated the influence of both external and internal 29 

factors, including genetic predispositions, lifestyle factors, and physiological conditions, on individual 30 

metabolic profiles. Additionally, we developed an integrative metabolite-protein network to analyze 31 

protein-metabolite associations under both genetic and environmental regulations. 32 

Results 33 

Our findings highlighted the significant role of genetics in determining metabolic variability, identifying 34 

22 plasma metabolites as genetically predetermined. Environmental factors such as seasonal variation, 35 

weight management, smoking, and stress also significantly influenced metabolite levels. The integrative 36 

metabolite-protein network comprised 5,649 significant protein-metabolite pairs and identified 87 37 

causal metabolite-protein associations under genetic regulation, validated by showing a high replication 38 

rate in an independent cohort. This network revealed stable and unique protein-metabolite profiles for 39 

each individual, emphasizing metabolic individuality. Notably, our results demonstrated the importance 40 

of plasma proteins in capturing individualized metabolic variabilities. Key proteins representing 41 

individual metabolic profiles were identified and validated in the UK Biobank, showing great potential 42 

for predicting metabolic diseases and metabolic risk assessment. 43 

Conclusions  44 

Our study provides longitudinal insights into how genetic and environmental factors shape human 45 

metabolic profiles, revealing unique and stable individual metabolic profiles. Plasma proteins emerged 46 
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as key indicators for capturing the variability in human metabolism and assessing metabolic risks. These 47 

findings offer valuable tools for personalized medicine and the development of diagnostics for 48 

metabolic diseases. 49 

Keywords  50 

Human metabolism, genetics, proteomics, metabolomics, lifestyle, environment, metabolic risk 51 

 52 

Background 53 

The human metabolome is dynamic, and the variability in human metabolic profiles across individuals 54 

is shaped by each person’s unique genetic makeup, lifestyle, and environmental exposures1,2. These 55 

factors play critical roles in disease susceptibility and progression, including obesity, diabetes, 56 

hypertension, cardiovascular disease and other metabolic abnormalities3–6. Despite significant 57 

advancements in metabolomics, the determinants of individual metabolic variability remain 58 

incompletely understood. Twin studies have revealed a broad range of heritability for metabolite levels 59 

in human plasma7,8, and genome-wide association studies (GWAS) have identified numerous genetic 60 

variants influencing metabolite levels (mQTL, metabolite quantitative trait loci)9–13. This demonstrates 61 

the important role of genetics in human metabolism for the understanding of individual metabolic 62 

diversity. Beyond genetics, human metabolic profiles are also influenced by various factors such as 63 

obesity14–16, lifestyle 17, diet2,18,19, microbiome2,18,19, medications20, and other environmental exposures. 64 

For instance, by analyzing fasting plasma profiles of 1,183 metabolites in 1,679 samples from 1,368 65 

individuals, Chen et al.21 found that diet, genetics and the gut microbiome could explain 9.3%, 3.3% 66 

and 12.8%, respectively, of the inter-individual variations in plasma metabolomics. 67 

However, these GWAS and association studies often overlook the temporal dynamics and 68 

environmental interactions that continuously influence the metabolome. Seasonal variations, for 69 

instance, introduce another layer of complexity in metabolite levels22–24, reflecting changes in 70 

environmental conditions, dietary habits, physical activity, and other lifestyle factors25,26. The 71 

heterogeneity in metabolite levels among individuals further underscores their multifaceted roles in 72 
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various biological processes27,28. To accurately contextualize this variability in human metabolism, 73 

incorporating longitudinal molecular data from the same individuals is crucial. This approach allows 74 

for the monitoring of dynamics in metabolite levels in response to external influences and internal 75 

physiological changes, providing a more comprehensive understanding of individual metabolite 76 

variability5,29,30. In addition, longitudinal data can reveal temporal metabolic regulation patterns that are 77 

not apparent in cross-sectional studies31, offering deeper insights into the dynamic interplay between 78 

genetic predispositions and environmental factors and advancing precision medicine for metabolic 79 

health. 80 

Here, we conducted a detailed longitudinal multi-omics analysis involving 101 individuals aged 50-65 81 

over two years to explore the dynamics and individual differences in metabolic profiles. The influences 82 

of genetic predispositions, lifestyle factors, and physiological conditions on individual metabolic 83 

profiles have been investigated. Additionally, we established an integrative metabolite-protein network 84 

and identified key proteins and metabolites associated with human metabolic risk. This work contributes 85 

to a more comprehensive understanding of individual metabolite variability and advances our 86 

knowledge in more personalized approaches to monitoring metabolic health. 87 

Methods  88 

The wellness profiling study 89 

The Swedish SciLifeLab SCAPIS Wellness Profiling (S3WP) study is an observational study aimed at 90 

gathering longitudinal clinical and molecular data from a community-based cohort. This study derived 91 

from the Swedish CArdioPulmonary bioImage Study (SCAPIS), which is a prospective observational 92 

study with 30,154 individuals aged 50 to 65 years at enrollment, randomly selected from the general 93 

Swedish population between 2015 and 2018 32. In SCAPIS, no exclusion criteria are applied except the 94 

inability to understand written and spoken Swedish for informed consent. In the S3WP study, we 95 

enrolled 101 healthy individuals with the following exclusion criteria: (1) previously received health 96 

care for myocardial infarction, stroke, peripheral artery disease, or diabetes, (2) presence of any 97 

clinically significant disease which, in the opinion of the investigator, may interfere with the results or 98 
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the subject’s ability to participate in the study, (3) any major surgical procedure or trauma within 4 99 

weeks of the first study visit, or (4) medication for hypertension or hyperlipidemia. Before enrolling in 100 

the S3WP study, all subjects had been extensively assessed by SCAPIS 32. Throughout the duration of 101 

the S3WP study, follow-up visits are conducted every third month (±2 weeks) in the first year and 102 

approximately a 6-month interval in the second year. All subjects were fasting overnight (at least 8 h) 103 

before the visits. Lifestyle questionnaires, anthropometric measurements, clinical measurements, and 104 

plasma proteome profiling, metabolome profiling and lipidome profiling were examined at each of the 105 

follow-up visit. Whole genome sequencing data were detected at the baseline (Fig. 1a, Additional file 106 

2: Table S1). The study has been approved by the Ethical Review Board of Göteborg, Sweden 107 

(registration number 407-15), and all participants provided written informed consent. The study 108 

protocol adheres to the ethical guidelines outlined in the 1975 Declaration of Helsinki. 109 

Self-reported questionnaires 110 

Self-reported questionnaires, comprised 140 questions, were used to gather detailed information 111 

covering health, family history, medication, occupational and environmental exposure, lifestyle, 112 

psychosocial well-being, socioeconomic status, and other social determinants. These questionnaires had 113 

been administered in the SCAPIS trial. During each visit in the S3WP program, a selection of these 114 

questions was repeated to update the information from the initial SCAPIS questionnaire. Additionally, 115 

participants were asked about any changes in lifestyle factors between visits, such as infections, disease, 116 

medication, perceived health, and exercise level.  117 

Anthropometric and clinical measurements 118 

Height was measured to the nearest centimeter without shoes, with participants wearing indoor clothing. 119 

Weight was recorded on a calibrated digital scale under the same conditions. BMI was calculated by 120 

dividing weight (kg) by the square of height (m). Waist circumference was measured midway between 121 

the iliac crest and the lowest rib margin in the left and right mid-axillary lines. Hip circumference was 122 

measured at the widest part of the buttocks. Bioimpedance was assessed using the Tanita MC-780MA 123 

following the manufacturer's instructions. Systolic and diastolic blood pressure were measured in the 124 

supine position after a 5-minute rest using the Omron P10 automatic device. Blood pressure was initially 125 
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measured in both arms during the first visit, and subsequently in the arm that showed the highest reading. 126 

Clinical chemistry and hematology assessments included capillary glucose (Hemocue), plasma glucose, 127 

HbA1c, triglycerides, total cholesterol, LDL, HDL, ApoA1, ApoB, ApoA1/B ratio, creatinine, high-128 

sensitive C-reactive protein (hsCRP), ALAT, GGT, urate, cystatin C, vitamin D, TNT, NTproBNP, 129 

hemoglobin, and blood cell count. The complete list of the clinical variables can be found in Additional 130 

file 2: Table S1. 131 

Whole genome sequencing 132 

The whole genome-sequencing procedure has been detailed previously by Zhong et al. 33,34. Briefly, 133 

Genomic DNA was sequenced to average 30X coverage on the HiSeq X system (Illumina, paired-end 134 

2 × 150 bp). The alignment was performed using BWAmem using GRCh38.p7 as reference genome. 135 

Single-nucleotide and insertion/deletion variants were called following the GATK pipeline 136 

(https://software.broadinstitute.org/gatk/best-practices; GATK v3.6). BCFtools35 and PLINK 2.036 were 137 

used to perform quality control (QC). The exclusion criteria included: (1) removing variants which did 138 

not receive the “PASS” tag from GATK; (2) removing variants with minQUAL <30; (3) removing 139 

variants/samples that with a genotyping rate < 0.05; (5) removing variants with a low minor allele 140 

frequency (MAF) (<5%); (6) removing variants that failed the Hardy–Weinberg equilibrium (HWE) 141 

test (P < 1×10-6). In total, 6,691,390 high-quality variants were identified in all samples. Functional 142 

annotation of variants was performed using Ensembl Variant Effect Predictor (VEP) v11137. 143 

Plasma metabolomics and lipidomics profiling 144 

Plasma metabolites and lipids profiling were obtained by gas chromatography-mass spectrometry (GC-145 

MS) and liquid chromatography-mass spectrometry (LC-MS)29. Briefly, the metabolites were extracted 146 

by using Agilent 1290 Infinity UHPLC-system (reverse phase chromatography) combined with an 147 

Agilent 6550 Q-TOF mass spectrometer equipped with an electrospray Jetstream ion source operating 148 

in positive and negative ion mode. The m/z range was 70-1700, and data were collected in centroid 149 

mode with an acquisition rate of 4 scans/s. The mass spectrometry files were processed using Profinder 150 

B.08.01 (Agilent Technologies Inc., Santa Clara, CA, USA). Peak detection was performed using mass 151 

feature extraction. The lipids were extracted following a modified Folch protocol 38. The data were 152 
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processed using Batch Targeted Feature Extraction algorithm within MassHunter™ ProFinder version 153 

B.08.00 (Agilent Technologies Inc., Santa Clara, CA, USA). In-house databases with exact mass and 154 

experimental retention times of lipids were used for identification. The detailed method can be found 155 

in Tebani et al.29. In total, 456 metabolites were identified in 101 subjects and 173 lipids were measured 156 

in 50 subjects.  157 

All metabolite concentrations were log2-transformed to approximate a normal distribution. Metabolites 158 

with any of the following conditions have been removed: (1) metabolites that failed detection in at least 159 

30% of samples; (2) the ratio of maximum and minimum interquartile range (IQR) of metabolite 160 

concentrations across four visits > 2; (3) duplicated metabolites. In addition, 5 subjects were removed 161 

because they participated in < 4 follow-ups. The filtering process retained a total of 527 unique 162 

metabolites for 96 subjects (357 metabolites based on 96 subjects and 170 lipids based on 50 subjects) 163 

for the downstream analysis of the study. 164 

Metabolite annotation was performed using resources from the Human Metabolomics Database 165 

(HMDB) (version 5.0) 39 and relevant literature 4,7–10. A total of 527 metabolites were categorized into 166 

9 main classes and 63 subclasses. Additionally, 11 lipid subclasses were further subdivided into 23 167 

secondary lipid subclasses, resulting in the creation of 75 custom terms. These customized terms, along 168 

with metabolic pathways curated in the Small Molecule Pathway Database (SMPDB), were used for 169 

the enrichment analysis of metabolites. The complete list of the customized terms can be found in 170 

Additional file 2: Table S3. 171 

Plasma protein profiling 172 

We used a multiplex proximity extension assay (Olink Bioscience, Uppsala Sweden) to measure the 173 

relative concentrations of 794 plasma proteins in eleven Olink panels. To minimize inter-run and intra-174 

run variation, the samples were randomized across plates and normalized using both an internal control 175 

(extension control) and an inter-plate control; then a pre-determined correction factor was applied to 176 

transform the data. The pre-processed data were provided in the arbitrary unit Normalized Protein 177 

eXpression (NPX) on a log2 scale. QC procedures were performed at both sample and protein level. 178 

Briefly, samples were flagged (did not pass QC) if the incubation control deviated more than a pre-179 
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determined value (+/− 0.3) from the median value of all samples on the plate (www.olink.com). To 180 

reduce the batch effect between samples run at different times, bridging reference samples from 181 

different visits were also run on plates from the different batches. Reference sample normalization based 182 

on bridging samples was conducted to minimize technical variation between batches (www.olink.com). 183 

After QC, a total of 794 unique proteins for 90 subjects and 6 visits (540 samples) were retained for 184 

analysis. The detailed information about plasma protein profiling can be found in previous papers34,33. 185 

Proteins were annotated according to their molecular function, following the Human Protein Atlas v23 186 

(https://www.proteinatlas.org/). 187 

Co-expression analysis of plasma metabolites 188 

Before performing co-expression analysis, metabolomics and lipidomics data for 527 metabolites were 189 

scaled to zero mean and unit variance. UMAP was applied as an unsupervised clustering modeling 190 

method for dimensionality reduction, providing an overview of clustering patterns among samples with 191 

similar data profiles. The K Nearest Neighbour Search (KNN) algorithm was implemented to calculate 192 

the adjacency matrix using the ‘nn2’ function from the R package RANN v2.6.140, setting the maximum 193 

number of nearest neighbors to 20. To calculate the number of shared nearest neighbors (SNN), we 194 

employed the ‘sNN’ function from the R package dbscan v1.1.1141, considering 5 neighbors for the  195 

calculation. R package igraph v1.5.042 was used to build the adjacency matrix based on the nearest 196 

neighbor results for each metabolite and to identify communities using the ‘cluster_louvain’ function. 197 

In total, 19 clusters were identified from the initial clustering. The mean scaled abundance of 198 

metabolites within each of these 19 clusters was then used for a second step of hierarchical clustering. 199 

Euclidean distances between the 19 clusters were computed, and similarities were assessed using the 200 

ward.D2 method. The hierarchical clustering dendrogram was subsequently divided into 8 distinct 201 

groups, resulting in the identification of 8 unique metabolite clusters (Additional file 2: Table S2). 202 

Seasonal variation analysis 203 

The seasonal patterns of both metabolites and proteins were analyzed by calculating the amplitude of 204 

their temporal expressions. The amplitude was defined as the square root of the sum of the squares of 205 

the coefficients of the sine and cosine terms of sampling month from the fitted seasonal model:  206 
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𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚  ∼   sin �2𝜋𝜋⋅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ
12

� + cos �2𝜋𝜋⋅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ
12

� + 𝑆𝑆𝑚𝑚𝑆𝑆 + 𝐵𝐵𝐵𝐵𝐵𝐵 + 𝐴𝐴𝐴𝐴𝑚𝑚 + (1|𝑖𝑖𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚) (1) 207 

To identify temporally co-expressed metabolites and proteins, Euclidean distances were calculated for 208 

those showing significant results associated with sampling month (FDR-adjusted P < 0.05) based on 209 

their scaled mean intensity at each month. Clustering analysis was then performed using the ‘ward.D2’ 210 

method in the ‘hclust’ function from the R ‘stats’ package. The resulting hierarchical clustering tree was 211 

divided into distinct seasonal groups, revealing unique patterns of seasonal variation (Additional file 212 

2: Table S5 and Additional file 2: Table S8). 213 

Genome-wide association analysis of plasma metabolites  214 

For each plasma metabolite, we calculated the coefficients of metabolite intensity for each subject using 215 

a linear regression model, with visit included as a covariate. These coefficients served as adjusted 216 

metabolite levels for subsequent GWAS analysis. GWAS was conducted using the PLINK v2.036, 217 

employing a linear regression model that included body mass index (BMI), sex, and age as covariates. 218 

To identify independent mQTLs, linkage disequilibrium (LD) r2 > 0.1 with window size 1 Mb was first 219 

used to exclude the correlated variants. Given the high correlation among metabolites, we utilized an 220 

eigendecomposition method to estimate the effective number of independent metabolites4. Out of the 221 

527 metabolites, the estimated number of independent metabolites was 23, and this number was used 222 

to calculate the Bonferroni threshold for multiple hypothesis testing (5 × 10−8 / 23 = 2.17 × 10−9). For 223 

metabolites associated with multiple mQTLs, conditional analysis was performed by re-calculating 224 

genetic associations using the lead single-nucleotide polymorphism (SNP) as a covariate. Only 225 

associations with a conditional P-value < 0.01 were considered to be independent mQTLs. A total of 66 226 

significant associations between genetic variants and individual blood metabolite concentrations were 227 

identified. Among them, 19 independent metabolite quantitative trait loci (mQTLs) (Linkage 228 

Disequilibrium, LD, r2 < 0.1, conditional P < 0.01) involving 22 metabolites were identified 229 

(Additional file 2: Table S11). 230 
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Meta-analysis of plasma metabolite GWAS 231 

For the meta-analysis of plasma metabolite GWAS, we included six out of 22 identified genetic-related 232 

metabolites with available published GWAS summary results. The GWAS summary data from 233 

published studies4,7 was retrieved via the GWAS Catalog (www.ebi.ac.uk/gwas/, accession date: 234 

2023.10), including 3 cohorts: Cooperative Health Research in the Region of Augsburg (KORA, N = 235 

1768), TwinsUK (N = 1052) and Canadian Longitudinal Study of Aging (CLSA, N = 8,299). All these 236 

three cohorts comprised relatively healthy European individuals. To ensure consistency across datasets, 237 

we used LiftOver43 to convert the genome coordinates to the GRCh38 reference genome. The meta-238 

analysis was performed on these three cohorts along with our study, involving a total of 5.8 million 239 

SNPs, using an inverse-variance fixed-effect model using GWAMA v2.2.244. The genome-wide 240 

significance threshold for the meta-analysis was set at P < 8.33×10-9, accounting for multiple testing 241 

correction (5×10-8 / 6). 242 

Experimental validation 243 

ACADS short interfering RNA (siRNA) and negative control siRNA were transfected into 293T cells. 244 

Following a 48-hour incubation period, the cells were collected and divided into two equal portions. 245 

One portion was lysed and quantified using the Bicinchoninic Acid (BCA) Protein Assay Kit. Equal 246 

amounts of protein lysate from each sample were used for immunoblotting to assess the expression 247 

levels of the ACADS protein. The immunoblotting results were analyzed to determine the efficacy of 248 

ACADS knockdown. The remaining portion of the cells was processed for metabolite analysis. 249 

Specifically, the relative content of butyrylcarnitine was measured using a liquid chromatography-250 

quadrupole time-of-flight mass spectrometer (LC-QTOF MS, Agilent #1290-6546). The mass 251 

spectrometer was equipped with Agilent Jet-stream source operating in negative and positive ion mode 252 

with source parameters set as follow: Nebulizer gas, 45psi; Sheath gas temperature, 325 °C; Sheath gas 253 

flow, 10L/min; Dry gas temperature, 280 °C; Dry gas flow, 8L/min; Capillary voltage, 3500v for two 254 

ion modes and nozzle voltage, 500v for positive and 1000v for negative mode. The QTOF scan 255 

parameters were set as follows: Scan speed, 2 scan/s. Separation of metabolites was achieved in a Waters 256 

ACQUITY UPLC BEH Amide column(2.1 mm × 100 mm × 1.7 μm) and guard column (2.1 mm × 5 257 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 8, 2024. ; https://doi.org/10.1101/2024.09.23.24314199doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.23.24314199
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

mm × 1.7 μm). Agilent Masshunter profinder 10.0 was used to extract its characteristic m/z 232.1547 258 

ion from the total ion chromatogram. Butyrylcarnitine was quantified by peak area. Data analysis was 259 

conducted using Agilent MassHunter profinder 10.0 software. The detailed experimental setup are 260 

provided in Supplementary Information. 261 

Protein-metabolite association analysis, Mendelian randomization, and network analysis 262 

Linear mixed modeling (LMM) was conducted to identify associations between 527 metabolites and 263 

794 proteins, with sex, age, and BMI as fixed effects, and subject and visit as random effects. The 264 

analysis was performed using the ‘lmerTest’ package45, and the Kenward-Roger approximation was 265 

applied to calculate P-value using the R package ‘pbkrtest’ v0.5.246. In addition, one-sample MR 266 

analysis was performed to test the causal relationships between protein-metabolite pairs identified 267 

through LMM (FDR-adjusted P < 0.05). This analysis utilized instrumental variable (IV) regression by 268 

two-stage least squares (2SLS) using the ‘ivreg’ function from the R package AER 1.2-1047, which is 269 

based on Sex, age and BMI were included in the regression models as covariates, while the independent 270 

pQTLs (genome-wide significance, P < 5×10-8) associated with the protein were used as IVs. SNP 271 

would be removed from the IVs if it had more than 5 association across the proteins13. The full list of 272 

IVs was provided in Additional file 2: Table S15.  273 

The protein-metabolite association network was constructed by combining both the LMM and MR 274 

results. Betweenness centrality score for each node in the network was calculated using the function 275 

‘betweenness’ from the package ‘igraph’ v1.5.042. Proteins and metabolites with a score > MAD above 276 

the respective median were classified as Tier 2, while proteins and metabolites with a score >2×MAD 277 

the median were categorized as Tier 1. All significant (FDR-adjusted P < 0.05) protein-metabolite pairs 278 

identified from the LMM were used to perform a UMAP clustering based on samples without missing 279 

values. 280 

Metabolic risk stratification of participants in the study  281 

To evaluate the metabolic risk levels of participants at various study visits, five classical metabolic risk 282 

indicators were utilized: body mass index (BMI), high-density lipoprotein (HDL), systolic blood 283 

pressure (SBP), fasting glucose (Gluc), and triglycerides (TG). Each measurement was normalized by 284 
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adjusting for sex-specific effects and then dividing by the standard deviation across all samples. K-285 

means clustering was performed to stratify the samples into two groups (high risk and low risk) using 286 

the function ‘kmeans’ from the R package ‘stats’ 48. Additionally, other clinical biochemical markers, 287 

including alanine aminotransferase (ALAT), gamma-glutamyltransferase (GGT), urate, troponin T 288 

(TNT), and white blood cells (WBC), were normalized in a same way. These markers were then used 289 

to test for differential expression levels between the two stratified metabolic risk groups. 290 

Individuals with metabolic diseases in the UK Biobank  291 

The UK Biobank is a large-scale biomedical database and research resource that includes genetic, 292 

lifestyle, and health information from half a million UK participants aged 40-69 at baseline49,50. 293 

Participants were enrolled from 2006 to 2010 in 22 recruitment centers across the UK, with follow-up 294 

data continuously collected. Proteomic profiling was conducted on blood plasma samples collected 295 

during baseline recruitment from a randomized subset of UK Biobank participants. For this study, we 296 

focused on Normalized Protein Expression (NPX) data for Tier 1 proteins and extracted metabolic 297 

disease diagnoses information (field ID: 41202, ICD 10: E10, E11, E66, E03, E05, E78, M10, E88). 298 

Participants with available proteome data for Tier 1 proteins were selected. To validate the predictive 299 

power of Tier 1 proteins for various metabolic diseases, we focused on diseases with sufficient case 300 

numbers for proteome analysis. Only data from participants diagnosed before baseline recruitment were 301 

included, and individuals with multiple diagnoses were excluded. This resulted in the inclusion of type 302 

2 diabetes (N = 144), obesity (N = 25), hyperthyroidism (N = 21), and gout (N = 27) for predictive 303 

analysis.  304 

For robust statistical analysis, NPX values were rank-inverse normal-transformed. Remaining missing 305 

values were imputed using the average value calculated across all individuals. Ultimately, the dataset 306 

comprised 242 participants in the metabolic disease group and 5,511 in the healthy group. 307 

Identification of individuals who develop obesity in the UK Biobank  308 

To identify individuals at risk of developing obesity in the future, we utilized BMI records (field 309 

ID:21001) from the UK Biobank, which included baseline recruitment data collected between 2006 and 310 
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2010 and three follow-up visits in 2012-2013, 2014+, and 2019+. Participants with a baseline BMI 311 

lower than 25 kg/m² were included in the analysis. These individuals were further stratified into two 312 

groups: the ‘future obese’ group, consisting of individuals who recorded a BMI higher than 30 kg/m² in 313 

at least one of the three follow-up visits, and the ‘control’ group, comprising individuals who maintained 314 

a BMI lower than 30 kg/m² across all subsequent visits. To ensure data quality and relevance, we filtered 315 

the samples based on the availability of proteome data for Tier 1 proteins. This filtering process resulted 316 

in the classification of fifteen individuals into the ‘future obesity’ group and 3,185 individuals into the 317 

control group.  318 

Machine learning for predictive tasks 319 

To develop and validate prediction models, the samples were randomly split into training and validation 320 

datasets using a 7:3 ratio. For analyses performed on the S3WP data, samples from the same individuals 321 

were kept together in either the training or validation group. For the UK Biobank data, balanced datasets 322 

were constructed by randomly selecting an equal number of control samples for predicting metabolic 323 

diseases. All data were scaled before the prediction analysis. The prediction models were built using 324 

the XGBClassifier from the Python library xgboost v2.0.351 with “binary:logistic” used as the objective. 325 

To address class imbalance, the subsample parameter was set to 0.5, and the scale_pos_weight 326 

parameter was adjusted to the ratio of negative and positive samples. The model training and validation 327 

procedure was repeated 100 times, each time with a different random split of the data, to account for 328 

stochastic variability in the selection of training and validation data. Receiver operating characteristic 329 

(ROC) curves were generated and visualized using the R package ‘verification’ v1.4252. 330 

Statistical analysis and visualization 331 

Uniform Manifold Approximation and Projection (UMAP) was performed by using the R package 332 

umap53. Canonical correspondence analysis (CCA) was performed including lifestyle factors, 333 

anthropometric and clinical measurements, and visit as constraining variables using the R package 334 

vegan v2.6.454. The association between each variable and CCA1 and CCA2 was quantified by the 335 

estimated coefficient obtained from univariate linear regression. The mixed model expressed by 336 

equation (1) was used to determine the associations between sex, BMI, age, seasonality and metabolite 337 
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abundance, with metabolite abundance as response, sex, BMI, age, and month of sampling as fixed 338 

effects and subject as random effect. All of mixed model analyses were performed using the lmerTest 339 

package45 and Kenward-Roger approximation was applied to calculate P-value using the R package 340 

pbkrtest v0.5.246. Variance analysis of metabolites and UMAP components was conducted using a linear 341 

regression model including significantly associated mQTLs (and pQTLs for UMAP components), 342 

clinical measurements, lifestyle parameters, sex, age, and visit as variables. The fraction of explained 343 

variability was measured as the Sum of Squares Explained (SSE) and p-value was determined using 344 

Analysis of Variance (ANOVA) by the built-in R function aov. Pearson correlation was used to estimate 345 

the correlation between metabolites and proteins. Kruskal-Walis test and t-test were used to compare 346 

differences in the levels of metabolites or proteins between groups. Fisher’s exact test was used for 347 

enrichment analysis of metabolites. FDR was calculated for multiple testing correction by using the 348 

function p.adjust, selecting the Benjamini-Hochberg method. FDR-adjusted P <0.05 was considered 349 

significant in the analysis.  350 

The Sankey plot was generated using the function sankeyNetwork of R package networkD3 v0.455. The 351 

heatmap was generated using the R package pheatmap v1.0.1256. Networks were created using the R 352 

package igraph v1.5.042. Chord diagrams were generated using the R packages circlize57. Spider plots 353 

were generated using the package ggradar v0.284. The package ggalluvial v0.12.558 was used to show 354 

the group of the samples from the same individual across the six visits. All the other visualizations were 355 

performed using the ggplot259 R package. All of the data analysis and visualization was performed using 356 

the R project60. 357 

Results 358 

Longitudinal analysis of human metabolic profiles in a wellness study 359 

To systematically investigate the human metabolic profiles over time, we performed a comprehensive 360 

integrative multi-omics analysis of 101 participants in the Swedish SciLifeLab SCAPIS Wellness 361 

Profiling (S3WP) program over two years 29. Whole-genome sequencing was performed at baseline for 362 

all participants. Extensive phenotyping of the individuals was conducted every three months in the first 363 
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year and at approximately a 6-month interval in the second year, which included plasma metabolome 364 

and lipidome profiling, proteome profiling, clinical measurements, and detailed lifestyle questionnaires 365 

covering physical activity, mental health, substance intake, and other environmental factors, alongside 366 

blood sample collection, to capture seasonal fluctuations and provide a robust temporal perspective (Fig. 367 

1a and Additional file 2: Table S1). Using a combination of GC-MS and LC-MS technologies, we 368 

identified a total of 527 metabolites in the study. These metabolites were classified into nine main 369 

classes, covering a wide range of lipids (n = 335, 63.6%), amino acids (n = 77, 14.6%), xenobiotics (n 370 

= 37, 7.0%), peptides (n = 17, 3.2%), carbohydrates (n = 20, 3.8%), cofactors and vitamins (n = 16, 371 

3.0%), nucleotides (n = 14, 2.7%), energy (n =7, 1.3%), and other metabolites (n = 4, 0.8%). The 372 

metabolites were further categorized into 63 subclasses based on their functions and biochemical 373 

characteristics (Fig. 1a and Additional file 2: Table S2, see Methods for more details). 374 

To explore the co-expression patterns of these identified metabolites, we conducted a clustering analysis 375 

applying K-nearest neighbor (KNN), shared nearest neighbor (SNN) and Louvain algorithms and 376 

revealed that the 527 measured metabolites could be classified into eight major clusters (Fig. 1b-c, 377 

Additional file 1: Fig. 1 and Additional file 2: Table S2). Functional enrichment analysis based on 378 

customized class and pathway terms was further performed for each cluster to identify shared pathways 379 

among groups of co-expressed metabolites (Fig. 1d and Additional file 2: Table S3). Specifically, 380 

cluster 1 showed a co-regulation of pathways involved in fatty acid metabolism, including steroids and 381 

their derivatives, as well as monoglycerides. Cluster 2 mainly included metabolites related to the 382 

metabolism of dietary components such as caffeine and benzoates. Cluster 3 included pathways central 383 

to the urea cycle, specifically the arginine and proline metabolism. It also involved the metabolism of 384 

amino acids like methionine, cysteine, glycine, serine, and theronine, which are crucial for nitrogen 385 

balance and protein turnover61. Cluster 4 exhibited a co-expression similar to Cluster 3, featured by 386 

metabolites like dipeptides as well as the metabolisms of  arginine, aspartate, and gamma-glutamyl 387 

amino acids, which are mainly involved in protein synthesis and amino acid recycling62. Cluster 5 388 

mainly consisted of metabolites essential for the cell membranes composition and signaling, including 389 

sphingomyelin, ceramide, and phosphatidylcholine63. Cluster 6 showed the interconnected pathways of 390 
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glycolysis, gluconeogenesis, and sugar metabolisms, including the metabolism of fructose, mannose, 391 

and galactose. Cluster 7 included metabolites related to energy storage and mobilization, such as 392 

triglycerides and diglycerides64. Cluster 8 comprises lyso-phosphatidylcholine, lyso-393 

phosphatidylethanolamine, and phosphatidylcholine, key components involved in cell membrane 394 

remodeling65. 395 

Individual and seasonal variations in plasma metabolome profiles 396 

We assessed the variability in the expression of each metabolite over time by analyzing both inter-individual 397 

and intra-individual variations, calculated using the coefficient of variance (CV; Fig. 2a and Additional file 398 

2: Table S4). Notably, our analysis revealed that the variability between individuals for each measured 399 

metabolite was greater than the variability observed within the same individual, with ratios of inter-400 

individual to intra-individual CV ranging from 1.09 to 8.86. Among these metabolites, pyrrole-2-carboxylic 401 

acid and picolinic acid showed the most significant differences between individuals (Fig. 2a). This suggests 402 

that, despite the fluctuations in each person’s metabolic profile over time due to various environmental 403 

factors, each individual maintained a distinct metabolomic signature. 404 

Interestingly, some metabolites showed seasonal patterns which partially contributed to the intra-individual 405 

variations. To explore the seasonal influences on metabolite variability and identify potential seasonal 406 

patterns, we performed an association analysis between metabolite levels and the month of sampling, with 407 

sex, age and BMI considered as covariates. A total of 121 metabolites showed clear associations with the 408 

month of sampling, with amplitudes ranging from 0.016 to 0.541 (Fig. 2b and Additional file 2: Table S5). 409 

Hierarchical clustering of these metabolites further showed four distinct seasonal patterns: extremely low 410 

levels from January to March (Cluster M1, n = 18); relatively low levels during the winter months (Cluster 411 

M2, n = 18); relatively high levels during winter (Cluster M3, n = 49); extremely high levels in December 412 

(Cluster M4, n = 36) (Fig. 2c-g and Additional file 2: Table S6). The metabolites in Cluster M1, exhibiting 413 

the lowest levels from January to March, were enriched in carbohydrate metabolism pathways (Fig. 2h and 414 

Additional file 2: Table S7). As an example, fructose reached its lowest levels in January and February 415 

(Additional file 1: Fig. 2a). This could reflect a post-holiday shift to baseline dietary habits or a reduction 416 

in the consumption of sugars. Conversely, the elevation of energy-related pathways in Cluster M4 during 417 

December may indicate an increased caloric intake during the festive period or an adaptive physiological 418 
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response to colder temperatures. Metabolites in Cluster M2, with relatively low levels in winter, were 419 

enriched in pathways associated with NAD+ signaling, nicotinate and nicotinamide metabolism, purine 420 

metabolism, and phosphatidylethanolamine biosynthesis (Fig. 2h). This could reflect a reduced requirement 421 

for or availability of these pathways’ end products during the winter, possibly due to changes in diet, reduced 422 

exposure to sunlight affecting vitamin D synthesis, which in turn affects NAD+ synthesis 66. Interestingly, 423 

the seasonal pattern of vitamin D closely correlated with the metabolites in Cluster M2 (Pearson P = 0.04827, 424 

Fig. 2i). In contrast, Cluster M3 metabolites, which were relatively high during winter, were associated with 425 

amino acid metabolism, specifically glycine and serine metabolism, as well as pathways involved in 426 

ammonia recycling and the metabolism of methionine and homocysteine (Fig. 2h). For instance, the highest 427 

level of cysteine was observed during winter (Additional file 1: Fig. 2b). These increased levels of amino 428 

acid metabolism could suggest a shift in fuel utilization towards amino acid catabolism for energy production 429 

and could also be associated with lower levels of physical activity as reported by Pedersen EB, et al67. 430 

Interestingly, the energy metabolism-related fatty acid succinylcarnitine in Cluster M3, which is involved in 431 

carnitine synthesis and utilization pathway, also showed a significantly high inter-individual variation, 432 

indicating varying levels of energy metabolism among individuals (Fig. 2j). 433 

We further analyzed the seasonal variations of plasma proteins and found that some plasma proteins also 434 

exhibited seasonal patterns, with two opposite seasonal clusters observed: Cluster P1, with low levels during 435 

the colder season (Cluster P1, n = 51), and Cluster P2, with relatively low expression levels during the 436 

warmer months (Cluster P2, n = 312) (Additional file 1: Fig. 2c-e and Additional file 2: Table S8). As an 437 

example, 46 proteins in Cluster P2 were found to closely correlate with the seasonal patterns of metabolites 438 

in Cluster M3. These proteins primarily function in amino acid, glycan, and fatty acid metabolism. 439 

Specifically, angiopoietin-like protein 4 (ANGPTL4), which regulates lipoprotein lipase and has been found 440 

to be influenced by dietary fatty acids in both human muscle68 and mice heart69, showed associations with a 441 

group of fatty acids, such as cis-4-decenoylcarnitine and laurylcarnitine (Additional file 1: Fig. 2f and 2g). 442 

Along with these fatty acids, ANGPTL4 exhibited relatively lower expression levels from June to September 443 

(Additional file 1: Fig. 2h). The associations between proteins and metabolites will be described in more 444 

depth below. 445 
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Sex- and BMI-related divergences in plasma metabolite levels 446 

The associations between plasma metabolite concentrations, lifestyle factors and clinical measurements were 447 

analyzed using canonical correspondence analysis (CCA) that incorporated all 527 metabolites, 13 lifestyle 448 

variables, and 43 clinical chemistry and anthropometric variables across visits. Regression analysis of the 449 

two CCA components showed that CCA1 was mainly associated with BMI and lipid profiles, whereas CCA2 450 

was more closely related to sex, body composition (muscle and fat percentage), hemoglobin, and urate. 451 

Notably, a clear divergence between male and female samples was observed, emphasizing sex as a significant 452 

factor influencing plasma metabolomic levels (Fig. 3a). The associations between metabolites and sex were 453 

visualized in a volcano plot (Fig. 3b and Additional file 2: Table S9). Among the 119 metabolites that 454 

showed significant sex differences, 35 were found to be elevated in females and 84 were more abundant in 455 

males (Fig. 3b). In particular, the peptide gamma-glutamylleucine exhibited higher levels in males (Fig. 3c) 456 

and has been found to be associated with elevated cardio-metabolic risks70. Additionally, 86 BMI-related 457 

metabolites were identified (Fig. 3d and Additional file 2: Table S10), with glutamic acid showing the 458 

strongest association (Fig. 3e), which aligns with previous reports71. Furthermore, the ratio of glutamic acid 459 

to other amino acids, such as lysine, ornithine, and hydroxyproline, have been reported as promising 460 

biomarkers for identifying metabolically healthy obese individuals71. Interestingly, lifestyle factors such as 461 

physical activity, stress, and smoking were found to correlate with metabolite levels and show collinearity 462 

with sex. In general, the stress levels in females were higher than in males, which was also significantly 463 

associated with the elevation of the stress hormone corticosteroid72. On the other hands, a higher incidence 464 

of smoking among males was associated with the alterations in several metabolites, such as glutamine, which 465 

plays a central role in cellular metabolism and function, highlighting the influence of lifestyle factors on 466 

metabolic health. 467 

Genome-wide association analysis of the plasma metabolite profile 468 

To investigate the genetic influence on inter-individual differences in plasma metabolite concentration, 469 

a GWAS was performed based on individual variation coefficients for 527 plasma metabolites and 6.7 470 

million common genetic variants (minor allele frequency, MAF > 0.05) identified through whole-471 

genome sequencing. A total of 66 significant associations between genetic variants and individual blood 472 

metabolite concentrations were identified (P < 2.17 × 10−9, conventional P of 5 × 10−8 adjusted for the 473 
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number of independent metabolites 4). Among them, 19 independent metabolite quantitative trait loci 474 

(mQTLs) (Linkage Disequilibrium, LD, r2 < 0.1, conditional P < 0.01) involving 22 metabolites were 475 

identified (Fig. 4a and Additional file 2: Table S11). Of 19 mQTLs, 4 were pleiotropic genetic variants 476 

associated with multiple metabolites. Of these metabolites, 45% were lipids (n = 10) (Fig. 4a-b). Out 477 

of the 22 genetically associated metabolites in our study, six have been previously analyzed in other 478 

GWAS studies4,7. To validate the associations between these metabolites and genetic variants, a meta-479 

GWAS analysis was conducted for these six metabolites. Most of the genetic loci (8 out of 11) identified 480 

from meta-analysis showed the same direction of effects as in our study (Additional file 2: Table S12). 481 

Among these, the association between the genetic variant (rs34673751) from Acyl-CoA dehydrogenase 482 

short chain (ACADS) and butyrylcarnitine was the most significant in the meta-analysis. The ACADS 483 

gene encodes the enzyme short-chain acyl-CoA dehydrogenase (SCAD), which is essential for 484 

mitochondrial fatty acid beta-oxidation, while butyrylcarnitine is a short-chain acylcarnitine involved 485 

in fatty acid transport and energy metabolism. Our longitudinal analysis further demonstrated that 486 

individuals carrying A allele at rs34673751 exhibited stable higher blood butyrylcarnitine levels. 487 

Moreover, heterozygous individuals for the protein variant presented intermediate levels of blood 488 

butyrylcarnitine compared to the homozygous groups (Fig. 4c-e). To experimentally validate the 489 

association between ACADS and butyrylcarnitine, we knocked down the expression of ACADS in 293T 490 

cell lines using siRNA. Subsequent metabolite analysis revealed that silencing the ACADS gene 491 

increased the levels of butyrylcarnitine in these cells (Fig. 4f-g), providing direct evidence of ACADS’s 492 

role in the regulation of butyrylcarnitine levels.   493 

Another notable example of the identified mQTLs is the association between metabolite 4-androsten-494 

3alpha,17alpha-diol monosulfate (2), a sulfated steroid and a derivative of androstenediol, and the gene 495 

cytochrome P450 family 3 subfamily A member 7 (CYP3A7). (Fig. 4h). The highest association was 496 

found for the variant rs45446698, located upstream of the CYP3A7 gene. Individuals carrying a TT 497 

homozygote had higher and more stable levels of 4-androsten-3alpha,17alpha-diol monosulfate (2) than 498 

individuals carrying a TG heterozygote (Fig. 4i-j).  499 
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Quantification of genetic and non-genetic effects on plasma metabolite levels 500 

To quantify the influence of genetics, lifestyle, and physiological conditions on metabolite variability, 501 

we applied a linear multivariate regression model to each metabolite. This model included all 19 mQTLs, 502 

13 lifestyle factors, 43 anthropometric and clinical chemistry parameters, and visit. In the analysis, the 503 

genetic variants were combined as “genetic component”, all the lifestyle-related factors were combined 504 

as “lifestyle component”, and all anthropometric and clinical chemistry variables were categorized into 505 

13 clinical classes. A summary of the analysis across all 527 analyzed plasma metabolites (Fig. 5a and 506 

Additional file 2: Table S13) showed that the influence of genetics, lifestyle, and physiological 507 

conditions on plasma metabolite level varied considerably. Genetics emerged as one of the important 508 

factors; out of the 22 metabolites with at least one significant genetic association, 5 metabolites had a 509 

genetic contribution greater than 20% (Fig. 5b). The metabolite most affected by genetics was 1,3-510 

Dimethylurate, which is formed from caffeine and can be used as an indicator of caffeine metabolism 511 

73, with 30% of its blood level variance explained by genetic variants. Besides genetics, 469 metabolites 512 

were influenced by various clinical factors, with a total contribution greater than 20%. Consistent with 513 

the CCA analysis (Fig. 3a), body composition and lipid profiles showed the most significant 514 

associations with plasma metabolite levels, with 69 metabolites associated with each of them. In 515 

addition, 54 metabolites were associated with urate levels, 48 with kidney function, 36 with glucose 516 

homeostasis, 18 with liver function, 17 with heart function, 15 with leukocytes, 6 with the acute phase 517 

response, and 28 with other clinical parameters. The top 25 most significant metabolites associated with 518 

clinical components were highlighted in Fig. 5c. As an example, a significant association was observed 519 

between body composition and pyroglutamylvaline, aligning with previous study that found 520 

pyroglutamylvaline to be positively associated with leg muscle74. Additionally, multiple metabolites 521 

have been identified as being associated with immune cell and red cell populations, as well as 522 

inflammatory biomarkers like C-reactive protein (CRP) (Fig. 5c and Additional file 2: Table S13). 523 

These results indicated the intricate crosstalk between metabolism, immune response, and 524 

hematopoiesis.  525 
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Furthermore, we identified 39 metabolites associated with various lifestyle factors, with 9 showing an 526 

influence from lifestyle factors greater than 20% (Additional file 2: Table S13). These lifestyle-related 527 

metabolites included 15 associated with smoking, 8 with changes in housing, 4 with physical activity, 528 

4 with stress, and 9 with other lifestyle factors. The top 25 most significant metabolites associated with 529 

lifestyle factors are listed in Fig. 5d. Notably, smoking had the most prominent influence on blood 530 

metabolite levels. Among the smoking associated metabolites, glutamine, the most abundant amino acid 531 

in the body and considered conditionally essential for critical illness and injury75,76, was negatively 532 

associated with smoking, along with factors such as 3-pyridinol, an intermediate product in nicotine 533 

degradation77 (Additional file 2: Table S13).  534 

Individual metabolite-protein profiles in human plasma 535 

To investigate the co-expression patterns of plasma metabolites and proteins, we applied linear mixed 536 

modeling (LMM) to 527 metabolites and 794 proteins, adjusting for cofounders including subject, visit, 537 

sex, age, and BMI. The analysis revealed 5,649 significant protein-metabolite pairs, involving 479 538 

metabolites and 625 proteins, each characterized by a correlation with a false discovery rate (FDR) 539 

adjusted P of less than 0.05 (Additional file 2: Table S14). Among these significant associations, 459 540 

involving 121 metabolites and 257 proteins (48.93% of the overlapping metabolite-protein associations) 541 

aligned with previous findings from Benson MD, et al.78, despite differences in molecular measurement 542 

platforms. In Fig. 6a we present the 200 most significant protein-metabolite associations to illustrate 543 

the complex interplay within the protein-metabolite network. Multiple important hormones, enzymes, 544 

receptors and cytokines, such as glucagon (GCG), lipoprotein lipase (LPL), natriuretic peptide (NPPC), 545 

and interleukin 10 (IL10), have been identified as hub proteins in the network, highlighting their broad 546 

regulatory roles in human metabolism. Most of these protein-metabolite associations were connected 547 

to lifestyle and physiological conditions. As an example, we found a co-regulation between leptin (LEP) 548 

and aceturic acid (Fig. 6b). LEP, a hormone secreted by adipose tissue, plays an important role in 549 

regulating hunger and energy balance79, with higher concentrations observed in females80. Aceturic acid, 550 

also known as N-acetylglycine, is a derivative of the amino acid glycine and has been reported to 551 
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modulate weight and associated adipose tissue immunity 81. Our findings suggested a significant 552 

interaction between LEP and aceturic acid with gender stratification. 553 

Subsequent Mendelian Randomization (MR) analyses were conducted to investigate potential genetic 554 

drivers of causality between plasma proteins and metabolites. A total of 87 putative causal associations 555 

were identified between 38 proteins and 61 metabolites (FDR-adjusted P < 0.05, Additional file 1: Fig. 556 

3a, Additional file 2: Table S15). As an example, we detected a significant MR association between 557 

MDGA1, a cell surface glycoprotein involved in cell adhesion, migration, axon guidance, and 558 

neurodevelopment82–84, and 1-Arachidonoylglycerol (1-AG) (Fig. 6c), a stable regioisomer of the 559 

endocannabinoid 2-AG engaged in physiological functions such as emotion, cognition, and 560 

neuroinflammation85,86. Our analyses showed that the cis instrumental variable (rs9349050, Fig. 6d) for 561 

the MDGA1 protein consistently differentiated both MDGA1 and 1-AG levels in individuals carrying 562 

different genotypes (Additional file 1: Fig. 3b-c). This stable and positive association between 563 

MDGA1 and 1-AG indicated a potential genetic basis for the co-regulation of proteins and metabolites 564 

in the nervous system.  565 

Using Uniform Manifold Approximation and Projection (UMAP), we clustered the individual 566 

molecular profiles based on the integrated metabolite-protein network. We noted that each individual 567 

possessed a unique and stable protein-metabolic profile (Fig. 6e). Regression analysis of the two UMAP 568 

components (Fig. 6f-g) revealed that UMAP1 was most significantly associated with genetic factors, 569 

followed by kidney function, lipid profile, body composition and erythrocytes. UMAP2 showed 570 

significant associations with body composition, blood pressure, genetics, and erythrocytes. Additionally, 571 

immune response, vitamin D, urate levels, liver functions, glucose homeostasis were moderately 572 

associated with the metabolite-protein profiles. Lifestyle factors such as stress, drug intake, smoking, 573 

and physical activity also exhibited minor influences on these profiles. 574 

To identify key proteins and metabolites with the highest connectivity of the protein-metabolite network, 575 

we quantified their importance using the centrality betweenness score and categorized them into three 576 

tiers based on their deviation from the median level, measured in median absolute deviations (MAD). 577 

These categories include Tier 1, high importance (beyond two MADs); Tier 2, moderate importance 578 
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(beyond one MAD); and Other: low importance (within one MAD). (Fig 6 h-i). Notably, ANGPTL4 579 

and LEP were the top two proteins with the highest scores (Fig. 6j). ANGPTL4 has been reported as a 580 

key regulator in lipid metabolism, primarily by inhibiting the activity of lipoprotein lipase (LPL)87, and 581 

also involved in angiogenesis, vascular permeability, and inflammation processes. In our analysis, we 582 

revealed that ANGPTL4 was associated with a broad spectrum of metabolites, involving those related 583 

to lipid and glucose metabolism, tissue functions, and immune responses (Additional file 1: Fig. 3d). 584 

LEP, which is a well-known hormone, has been shown in recent studies to reflect systemic alterations 585 

of the human metabolome88,89. In our analysis, we observed that LEP was associated with a spectrum 586 

of metabolites related to blood pressure and glucose homeostasis, as well as stress (Additional file 1: 587 

Fig. 3d). On the other hand, N-Acetylaspartate (NAA), one of the most abundant metabolites in the 588 

mammalian brain, and 3-Hydroxyhippurate, a microbial aromatic acid metabolite derived from dietary 589 

polyphenols and flavonoids found in normal human urine, were identified as high-importance 590 

metabolites through network analysis and found to be associated with kidney function in the study (Fig. 591 

6k, Additional file 2: Table S13). 592 

Variability of protein-metabolite profiles and the associations with metabolic health 593 

To investigate the associations between protein-metabolite profile variability and metabolic health, we 594 

stratified the analyzed samples into two risk groups (high-risk group and low-risk group) based on the 595 

clustering patterns of five key indicators of metabolic syndrome: high density lipoprotein (HDL), body 596 

mass index (BMI), systolic blood pressure (SBP), triglycerides (TG) and fasting glucose (Gluc)90. The 597 

high-risk group was characterized by increased levels of BMI, SBP, TG, and Gluc, alongside decreased 598 

levels of HDL, in comparison with the low-risk group (Fig. 7a). We then explored the differences in 599 

clinical chemistry measurements between these two groups. We found significant higher levels of two 600 

liver function biomarkers (alanine aminotransferase, ALAT; gamma glutamyltransferase, GGT), one 601 

kidney function biomarker (urate), one heart function biomarker (troponin T, TNT), and one immune 602 

biomarker (white blood cells count, WBC) in the high-risk group, indicating an increased susceptibility 603 

to cardiometabolic diseases (Fig. 7b). 604 
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Predictive modeling of the metabolic risk of the analyzed samples was conducted using proteins and 605 

metabolites. Interestingly, we found that the predictive power for risk groups, based on a combination 606 

of all proteins and metabolites, to be comparable to that based on Tier 1 proteins (n = 13) and metabolites 607 

(n = 14) alone, as well as models based on only proteins (Fig. 7c,d). This highlighted the potential 608 

importance of Tier 1 proteins and metabolites for metabolic risk assessments. In addition, proteins 609 

contributed more significantly to metabolic risk prediction than metabolites, with metabolites providing 610 

only marginal additional predictive value. Remarkably, the predictive power of Tier 1 proteins alone 611 

approached that of the full protein model (Fig. 7c,d), while metabolites demonstrated considerably 612 

lower predictive power compared to proteins (Fig. 7c,d). The importance of Tier 1 proteins and 613 

metabolites in relation to metabolic risk was quantified using a linear regression model to estimate the 614 

impact coefficients (Fig. 7e,f). We further examined the expressions levels of the 13 Tier 1 proteins in 615 

individuals with metabolic diseases, including obesity, type 2 diabetes (T2D), gout or hyperthyroidism,  616 

compared to healthy individuals using data from the UK Biobank49. Our analysis revealed that the 617 

expression levels of all Tier 1 proteins were significantly different (P<0.05) between healthy individuals 618 

and those diagnosed with any of these metabolic diseases (Fig. 7g, Additional file 1: Fig. 4). 619 

Furthermore, the expression patterns of these 13 Tier 1 proteins varied significantly across different 620 

metabolic diseases, indicating their potential use as diagnostic biomarkers for various metabolic 621 

conditions. Moreover, we assessed the predictive power of Tier 1 proteins for these metabolic diseases, 622 

resulting in average AUCs ranging from 0.643 and 0.878 across different diseases (Fig. 7h). 623 

Next, we examined the stability of the risk levels of participants throughout the two-year study. In 624 

general, the metabolic health status of most participants (70 out of 101) remained consistent, with 39 625 

categorized within the high-risk group and 31 within the low-risk group at every visit (Fig. 7i). A notable 626 

exceptional case was participant W0010, who experienced a significant weight reduction from 120 kg 627 

during the third visit to 104.7 kg by the fourth visit (Fig. 7j). This remarkable change caused a shift 628 

from the high-risk group in the initial three visits to the low-risk group in the subsequent three 629 

assessments. Focusing on the Tier 1 proteins, we observed a significant decrease in their levels from 630 

the third to the fourth visit (Fig.7k). However, between the fourth and sixth visits, protein levels 631 
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reversed despite no significant change in BMI (Fig. 7k), suggesting alterations in the individual’s 632 

underlying metabolism at the molecular level. Additionally, we found that nearly half of the Tier 1 633 

proteins (6 / 13) displayed significantly different levels between lean (BMI < 25) and obese (BMI > 30) 634 

groups (Additional file 1: Fig. 5). We further predicted future obesity in individuals with a baseline 635 

BMI lower than 25 in the UK Biobank using the 13 Tier 1 protein expressions. The results showed that 636 

participants who later developed obesity (BMI > 30) already exhibited a distinct profile of Tier 1 637 

proteins at baseline compared to those who maintained a BMI lower than 30 throughout the study period 638 

(Additional file 1: Fig. 6a, b). Predictive models demonstrated that baseline expression levels of Tier 639 

1 proteins could predict future obesity with an average AUC of 0.773 with a 95% confidence interval 640 

of 0.739-0.806 (Fig. 7l). 641 

Discussion 642 

In this study, we have performed a longitudinal multi-omics analysis on a group of clinically healthy 643 

participants aged 55 to 65 over two years to explore how genetics, lifestyle and physiological conditions 644 

affect individual metabolic profiles. We systematically examined the abundances and dynamics of 527 645 

blood metabolites, which were categorized into nine major classes: lipids, amino acids, xenobiotics, 646 

peptides, carbohydrates, cofactors and vitamins, nucleotides, energy, and others. These metabolites 647 

were analyzed alongside their co-regulations with 794 proteins. By integrating whole-genome 648 

sequencing and extensive phenotyping data collected concurrently at each sampling time point, our 649 

results revealed an intricate interplay between genetic predispositions and environmental factors in 650 

shaping individual metabolic profiles. 651 

One unique aspect of our study is the focus on the temporal dynamics of individual metabolic profiles. 652 

We identified eight co-expressed metabolite clusters based on longitudinal data and linked them to 653 

various metabolic pathways that are susceptible to both internal and external modulators, such as energy 654 

mobilization and dietary intake. By analyzing intra-individual metabolite variation over time, we 655 

observed four distinct seasonal patterns of plasma metabolites, with more fluctuations or extreme 656 

concentrations during the summer and winter. These seasonal fluctuations of metabolites might reflect 657 

changes in physical activity 67, diet 91, and metabolic rate 92, which are closely related to the season and 658 
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might be regulated by seasonal gene expressions in multiple tissue types, including adipose tissue, brain, 659 

and gonadal tissue 93,94. Similar seasonal variations were observed in the proteomics profiling, 660 

suggesting a coordinated seasonal influence on both metabolite and protein levels. 661 

In general, our analysis revealed higher inter-individual variations than intra-individual variations in 662 

plasma metabolite levels. By integrating whole-genome sequencing, we identified significant 663 

associations between genetic variants and blood metabolite levels (mQTLs). Numerous mQTLs have 664 

been identified within various populations8–13,95, and in this study, we used individual coefficients 665 

obtained from longitudinal data to better associate metabolite levels with genetic factors. Considering 666 

the significant seasonal variations observed in metabolite levels, this approach allows for more accurate 667 

quantification of individual metabolite levels for mQTL identification. Our findings indicated that many 668 

plasma metabolite levels during adult life were genetically predetermined at birth and remained stable 669 

within a range of dynamics under healthy conditions. Additionally, our results showed that lifestyle and 670 

clinical factors also significantly contributed to the variability in blood metabolite levels. Notably, 89% 671 

of (469 out of 527) metabolites exhibited at least a 20% variability attributable to lifestyle or clinical 672 

factors, indicating a substantial influence from lifestyle and physiological conditions on human 673 

metabolism. Among these, body composition and smoking were the top physiological and lifestyle 674 

factors influencing blood metabolite levels.  675 

Proteins, as essential regulators and executors of metabolic processes, are critical components of human 676 

metabolic profiles, making their analysis essential for a comprehensive understanding of human 677 

metabolism. By integrating longitudinal metabolomics and proteomics data from the same individuals, 678 

we established a protein-metabolite co-expression network and found that each individual possessed a 679 

unique and stable protein-metabolic profile over time. This stability of individuals’ protein-metabolite 680 

profiles suggested that, despite the changes in environment, there is an inherent individuality to 681 

metabolic regulation. Our analysis showed that genetic factors were the most significant contributors to 682 

these profiles, with additional moderate influences from physiological conditions such as kidney 683 

function, blood pressure, and body compositions. Moreover, lifestyle factors like stress, smoking, and 684 

drug intake also had considerable impacts. 685 
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Furthermore, we identified key signature proteins and metabolites that characterize individual protein-686 

metabolic profiles and assessed the predictive power of the most important Tier 1 proteins and 687 

metabolites for identifying individuals at high metabolic risk. Remarkably, the predictive performance 688 

of these Tier 1 biomarkers was comparable to that of the full set of proteins and metabolites, 689 

underscoring their potential utility in metabolic health monitoring. This finding also revealed a superior 690 

predictive power of proteins over metabolites. This is likely because proteins are directly involved in 691 

essential metabolic processes, function as signaling molecules and regulators, and generally exhibit 692 

greater stability and consistency over time. In our previous report, we also showed that plasma proteome 693 

exhibited most of the effects from clinical data34,33. We further validated this panel of 13 Tier 1 proteins 694 

in large-scale population data from the UK Biobank for the prediction of metabolic diseases. These 695 

biomarkers showed significant potential in diagnosing metabolic diseases. Although, all of the 13 696 

proteins were elevated in various metabolic diseases, they exhibited different patterns in different 697 

metabolic abnormalities. Interestingly, we observed that the levels of the 13 proteins in an obese 698 

individual in the S3WP study initially decreased following weight loss but subsequently started to revert 699 

to the initial levels, despite a stable BMI during the study period. In the UK Biobank, we also noted that 700 

individuals who eventually became obese already exhibited an altered profile of Tier 1 proteins at a 701 

normal BMI and at baseline. These observations suggest that fluctuations in the proteome may precede 702 

BMI changes, highlighting their potential value in weight management strategies. However, it should 703 

be noted that more comprehensive analyses in large disease cohorts of these plasma proteins and 704 

metabolites must be performed to validate their use as clinical biomarkers. Another limitation of this 705 

study is the relatively small cohort size, which may not capture the full spectrum of individual metabolic 706 

variability across diverse populations. Thus, further validation and generalization of the findings in 707 

larger, more diverse cohorts and in clinical settings are necessary. 708 

Conclusions 709 

In summary, our study provides a comprehensive longitudinal analysis on how genetics, lifestyle, and 710 

physiological factors influence the human metabolic profiles. Our results demonstrated the dynamic 711 

interplay between genetic predispositions and environmental factors, including seasonal variations, 712 
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lifestyle, and physiological changes. By integrating proteomics and metabolomics data, we established 713 

a detailed protein-metabolite network and identified key molecular signatures that enhanced metabolic 714 

disease diagnostics and risk assessments. These findings offer promising avenues for improving 715 

metabolic health monitoring and developing future targeted interventions based on an individual's 716 

unique metabolic profile.  717 
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Figures 1018 

Fig. 1 1019 

 1020 

Fig. 1 Longitudinal multi-omics profiling and co-expression analysis of human plasma 1021 

metabolites in 101 healthy individuals. 1022 

a Overview of the study design for the S3WP project, detailing the longitudinal data collection strategy 1023 

over six visits in two years (created with biorender.com). This included whole-genome sequencing, 1024 
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proteomics, metabolomics, lipidomics, clinical measurements, and lifestyle questionnaires from 101 1025 

individuals. A total of 527 identified metabolites were categorized into 9 major classes. b UMAP 1026 

clustering of the 527 metabolites showing their co-expression patterns, color-coded by their classes and 1027 

grouped by co-expression clusters. c Sankey plot showing the distribution of metabolic classes across 1028 

the clusters. d Bar plot showing the functional enrichment results of the metabolite clusters using 1029 

Fisher’s exact test.  1030 

 1031 

Fig. 2 1032 

 1033 

Fig. 2 Inter- and intra-individual variability of plasma metabolites and seasonal influences 1034 
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a The inter-individual and intra-individual variations of plasma metabolite levels, calculated as the 1035 

coefficient of variation (CV) for each metabolite within each visit and across all participants, color-1036 

coded by metabolite classes. b Seasonal variation analysis of plasma metabolites using amplitude 1037 

analysis, color-coded by metabolic classes. Y-axis showing the adjusted p-values with multiple test 1038 

corrections using Benjamini and Hochberg method. c Heatmap showing the scaled levels of 121 1039 

metabolites with significant seasonal variations across 12 months. d-g Plasma metabolite levels 1040 

throughout the year for metabolites in Cluster M1-M4. h Pathway enrichment analysis of metabolites 1041 

within each seasonal cluster. Significantly enriched pathways were defined with adjusted P-values < 1042 

0.05 (Fisher’s exact test with multiple test corrections using using Benjamini and Hochberg method). i, 1043 

Vitamin D concentration levels across 12 months during the study period. j, Succinylcarnitine levels 1044 

over 12 months as an example of metabolites in Cluster M3. Each line represents an individual; red 1045 

lines indicate females and blue lines indicate males. Regression lines are added using trigonometric 1046 

functions. 1047 

Fig. 3 1048 

 1049 

Fig. 3 Influence of clinical measurements and lifestyle factors on metabolite levels. 1050 
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a Canonical correspondence analysis (CCA) showing correlations between plasma metabolite levels, 1051 

clinical measurements and lifestyle variables. The upper and left bar plots show the estimated linear 1052 

regression coefficients for clinical and lifestyle variables with respect to CCA1 and CCA2. b, d Volcano 1053 

plots showing the impacts of sex (b) and BMI (d) on plasma metabolite levels (Kenward-Roger 1054 

approximation with Benjamini and Hochberg correction). c Concentration of gamma-glutamylleucine 1055 

across four study visits, shown as an example of a sex-associated metabolite. Each line represents an 1056 

individual; red lines indicate females and blue lines indicate males. e Scatter plot showing the 1057 

correlation between glutamic acid concentration and BMI, color-coded by BMI. 1058 
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Fig. 4 1059 

 1060 

Fig. 4 Genome-wide association analysis of the genetic regulation of the plasma metabolites. 1061 

a Manhattan plot showing the identified mQTLs in the study. Significant loci are annotated based on 1062 

the closest gene, with colors indicating the class of the corresponding metabolite. b Chord diagram of 1063 

loci shared (r2 > 0.2) among metabolites in GWAS study. Line thickness is proportionate to the -1064 

Log10(P). c Manhattan plot of butyrylcarnitine showing the genome locations of all associated mQTLs. 1065 
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d Boxplot showing the association between plasma levels of butyrylcarnitine and the genotype of 1066 

rs34673751, color-coded by the genotype of rs34673751. e Plasma levels of butyrylcarnitine across 1067 

study visits; each individual is represented by a line; color-coded by the genotype of rs34673751. f-g 1068 

Western blot showing increased butyrylcarnitine levels in the ACADS know-down 293T cell lines 1069 

compared to the control group. h Manhattan plot for 4-androsten-3alpha,17alpha-diol monosulfate (2), 1070 

showing the associated genetic loci. i Boxplot showing the association between plasma levels of 4-1071 

androsten-3alpha,17alpha-diol monosulfate (2) and the genotype of rs45446698. j Plasma levels of 1072 

butyrylcarnitine across study visits; each individual is represented by a line; color-coded by the 1073 

genotype of rs34673751. 1074 

Fig. 5 1075 

 1076 

Fig. 5 Influence of genetic, clinical and lifestyle factors on plasma metabolite level variability. 1077 

a Overview of influence of genetic, clinical and lifestyle factors on the plasma metabolite level 1078 

variability. b Barplot showing the variance explanation fraction for each component across all 22 1079 
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genetic-related metabolites, color-coded by the variable classes. c Barplot showing the top 25 1080 

metabolites most strongly associated with clinical components. d Barplot showing the top 25 1081 

metabolites most strongly associated with lifestyle components. 1082 

Fig. 6 1083 

 1084 
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Fig. 6 Characterization of protein-metabolite network 1085 

a Network presenting the top 200 significant protein-metabolite pairs identified by the linear mixed 1086 

model (LMM) (FDR-adjusted P < 0.05). Solid circles represent proteins in the inner ring, color-coded 1087 

by protein annotation. Squares represent metabolites in the outer ring, color-coded by different 1088 

metabolite-related influence factors. Pairs of related proteins and metabolites are connected by dashed 1089 

lines (indicating correlations supported by LMM results) and solid lines (indicating correlations 1090 

supported by both the LMM and Mendelian randomization (MR) analysis). Green lines indicate positive 1091 

correlations between proteins and metabolites in the LMM, while red lines indicate negative 1092 

correlations. b Scatter plot showing the correlation between aceturic acid concentration and LEP, color-1093 

coded by sex. c Scatter plot showing the correlation between 1-Arachidonoylglycerol (1-AG) 1094 

concentration and MDGA1, color-coded by different genotypes of rs9349050. d Manhattan plot for 1095 

MDGA1 protein, showing the associated genetic variants with plasma levels of MDGA1. One of the 1096 

most significant SNP (rs9349050) was used as an instrumental variable in the MR analysis. e UMAP 1097 

clustering of the protein-metabolite profiles of the analyzed samples, color-coded by individual with 1098 

lines connecting the visits for each individual. f, g Bar plots showing the variance explanation fraction 1099 

of different genetic, clinical and lifestyle factors, calculated from linear mixed modeling, for UMAP1 1100 

(f) and UMAP2 (g). h, i Distribution of betweenness score of proteins (h) and metabolites (i) in three 1101 

tiers. j, k Dot plots highlighting the Tier 1 proteins (j) and metabolites (k) 1102 

Fig. 7 1103 

 1104 
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 1105 

Fig. 7 Predictive models for metabolic risk assessment  1106 

a Measurements of classical metabolic risk indicators, including HDL, BMI, SBP, TG and Gluc, 1107 

compared between high risk and low risk groups. b Measurements of ALAT, GGT, urate, TNT and 1108 

WBC for the high risk and low risk groups. c Area under the curve (AUC) of prediction models based 1109 

on six different combinations of plasma proteins and metabolites: i) all proteins and metabolites; ii) tier 1110 
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1 proteins and metabolites; iii) all proteins; iv) tier 1 proteins; v) all metabolites; vi) tier 1 metabolites. 1111 

The AUC values were calculated by performing random sampling 100 times to account for variability. 1112 

d Average receiver operating characteristic (ROC) curves for the predictive models for the six 1113 

combination of plasma proteins and metabolites for predicting metabolic risk levels. e, f Linear model 1114 

coefficients obtained using Tier 1 proteins (e) and metabolites (f) as independent variables and a dummy 1115 

variable to indicate if the sample belonged to the high risk or ow risk group. g Tier 1 proteins’ profiles 1116 

of healthy individuals, compared with obesity, T2D, gout or hyperthyroidism in the UK Biobank. h 1117 

Average ROC curves obtained using Tier 1 proteins to predict individuals with either obesity, type 2 1118 

diabetes (T2D), gout, hyperthyroidism in the UK Biobank database. i Alluvial plot showing the risk 1119 

level of individual samples across visits. The y-axis represents the individuals involved in the study, 1120 

with colors indicating different risk levels. j BMI levels of the individual W0010 during the study visits. 1121 

k Changes in Tier 1 proteins over time in individual W0010 who lost a significant amount of weight 1122 

(15.4kg) between visit 3 and visit 4. l Average ROC curve of predictive models using Tier 1 proteins to 1123 

predict future obesity in the UK Biobank. The 95% confidence intervals (CI) of ROC curves were 1124 

plotted in d, h, k Red; High risk group, blue; Low risk group. High density lipoprotein, HDL; body 1125 

mass index, BMI; systolic blood pressure, SBP; triglycerides, TG; fasting glucose, Gluc; alanine 1126 

aminotransferase, ALAT; gamma glutamyltransferase, GGT, troponin T, TNT; white blood cells count, 1127 

WBC. 1128 

 1129 

Additional file 1 1130 

Supplementary Methods and Figures. Additional methods on experimental validation and figures S1-1131 

S6. 1132 

Fig. S1 Co-expression clustering of 527 analyzed metabolites.  1133 

Fig. S2 Seasonal variation analysis of plasma metabolites and proteins. 1134 

Fig. S3 Mendelian randomization protein-metabolite network. 1135 

Fig. S4 Associations between Tier 1 proteins and metabolic diseases. 1136 

Fig. S5 Association between Tier 1 proteins and obesity. 1137 
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Fig. S6 Prediction of future obesity in the UK Biobank. 1138 
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Table S1-S15. 1140 

Table S1. Complete list of analyzed metabolites, proteins, and clinical parameters. 1141 

Table S2. Classification and co-expression patterns of 527 analyzed metabolites. 1142 

Table S3. Functional enrichment analysis of metabolite co-expression clusters. 1143 

Table S4. Inter- and intra-individual variations of 527 analyzed metabolites. 1144 

Table S5. Plasma metabolites with significant seasonal variation. 1145 

Table S6. Temporal co-expression patterns of seasonal associated metabolites 1146 

Table S7. Pathway enrichment analysis of metabolite co-expression clusters. 1147 

Table S8. Temporal co-expression patterns of seasonally associated proteins. 1148 

Table S9. Sex-associated plasma metabolites. 1149 

Table S10. BMI-associated plasma metabolites. 1150 

Table S11. Summary of identified independent mQTLs 1151 

Table S12. Meta-analysis of identified independent mQTLs. 1152 

Table S13. Contributions of genetics, lifestyle, and clinical factors to the variability of plasma 1153 

metabolites. 1154 

Table S14. Comprehensive mixed-effect modeling analysis of protein-metabolite associations. 1155 

Table S15. Summary of one-sample mendelian randomization analysis. 1156 
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