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Abstract: In this study, we extend the universal differential equation (UDE) framework by
integrating Kolmogorov-Arnold Network (KAN) with ordinary differential equations (ODEs),
herein referred to as KAN-UDE models, to achieve efficient and interpretable deep learning
for complex systems. Our case study centers on the epidemiology of emerging infectious
diseases. We develop an efficient algorithm to train our proposed KAN-UDE models using
time series data generated by traditional SIR models. Compared to the UDE based on
multi-layer perceptrons (MLPs), training KAN-UDE models shows significantly improves
fitting performance in terms of the accuracy, as evidenced by a rapid and substantial reduction
in the loss. Additionally, using KAN, we accurately reconstruct the nonlinear functions
represented by neural networks in the KAN-UDE models across four distinct models with
varying incidence rates, which is robustness in terms of using a subset of time series data to
train the model. This approach enables an interpretable learning process, as KAN-UDE
models were reconstructed to fully mechanistic models (RMMs). While KAN-UDE models
perform well in short-term prediction when trained on a subset of the data, they exhibit lower
robustness and accuracy when real-world data randomness is considered. In contrast, RMMs
predict epidemic trends robustly and with high accuracy over much longer time windows (i.e.,
long-term prediction), as KAN precisely reconstructs the mechanistic functions despite data
randomness. This highlights the importance of interpretable learning in reconstructing the
mechanistic forms of complex functions. Although our validation focused on the transmission
dynamics of emerging infectious diseases, the promising results suggest that KAN-UDEs
have broad applicability across various fields.

Keywords: KAN; KAN-UDE; Deep Learning; Mechanistic models; Epidemiology

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 24, 2024. ; https://doi.org/10.1101/2024.09.23.24314194doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:biaotang@xjtu.edu.cn
https://doi.org/10.1101/2024.09.23.24314194
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction

Dynamical systems, described by ordinary differential equations (ODEs), serve as a
cornerstone for modeling processes across a vast array of complex systems. An ODE system,
as a mechanistic model, can effectively aid in understanding complex mechanisms by
providing a mathematical framework to describe the dynamic behavior of various systems.
This allows researchers to simulate, analyze, and predict how different variables interact over
time, leading to deeper insights into the underlying processes that govern complex systems in
fields such as biology, ecology, engineering, physics, and environmental sciences1. In biology,
for example, ODEs help model the complex interactions within cellular processes, aiding in
drug development understanding of diseases, sch as tumors, such as tumor2,3. In the field of
public health, they are crucial for simulating and predicting the spread of infectious
diseases4–6, which informs strategies for the control and prevention of epidemics. In
engineering, ODEs model a variety of systems from electrical circuits to mechanical systems,
facilitating the design of more efficient and safer technologies7. Physics benefits from ODEs
through simulations that predict planetary motions and quantum dynamics, while
environmental sciences use these equations to model ecological interactions and climate
change effects8. The versatility and utility of ODEs in these fields stem from their ability to
incorporate known laws of nature and principles into models that predict and explain
real-world phenomena. This ability makes ODEs indispensable tools in both theoretical
research and practical applications, providing insights that are not only profound but also
actionable in addressing some of the most pressing challenges.

While mechanistic ODE models excel in scenarios where the underlying mechanism are
well-understood and can be accurately quantified, they falter when facing highly nonlinear
systems featuring complex interactions that are not easily captured through conventional
approaches. Concurrently, the rise of machine learning, particularly deep learning, has
equipped us with powerful tools for approximating complex functions and identifying
patterns within large datasets. However, these models often lack interpretability and may
deviate from established physical laws, rendering them less suitable for scenarios where
understanding and adhering to the underlying mechanistic dynamics are essential. Therefore,
the methods to merge the power of model-driven and data-driven approaches have become
highly appealing. Consequently, the integration of mechanistic models with machine (or deep)
learning has emerged as a significant area of interest in recent years9,10.

In 2019, Raissi et al. introduced a framework known as Physics-Informed Neural
Networks (PINNs)11. PINNs incorporate physical laws into the training process as a part of
the loss function, addressing both forward and inverse problems involving nonlinear partial
differential equations12,13. This framework has now been widely adopted across numerous
fields as well. Recent studies have extended the concept of PINN to couple neural networks
with ordinary differential equation systems14, applying them to understand the transmission
dynamics of COVID-19 epidemics15. In 2020, Rackauckas et al. proposed a framework that
embeds neural networks into ordinary differential equations, referred to as Universal
Differential Equations (UDEs)16. This approach involves neural networks for learning terms
with high non-linearity where the mechanisms are unclear, while well-understood
mechanisms are modeled using ODEs. UDEs have since been applied in various fields,
including estimating the time-varying reproduction number of infectious diseases17, which
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can add new insight in understanding molecular mechanisms18. The UDE model offers
flexibility by integrating known physical knowledge with data-driven learning, making it
suitable for a wide range of complex systems. It is also highly scalable, allowing for
customization of both the neural network architecture and the form of the differential
equations to fit different systems and problems. However, the combination of neural networks
with differential equations can result in a model with numerous parameters and a complex
computational process, making the development of an efficient training algorithm for
achieving high accuracy both a meaningful and challenging problem. Moreover, in both
UDEs and PINNs, the use of neural networks to approximate complex functions or variables
still lacks interpretability. That is, while the UDE model demonstrates strong approximation
capabilities, the physical interpretability of its outputs--particularly those generated by the
neural network--remains challenging. This lack of transparency can hinder understanding of
the underlying system dynamics.

The main purpose of this study is to introduce a novel integration of Kolmogorov-Arnold
Networks (KANs) with ODEs, aiming to leverage the power of KANs for efficient learning in
the coupling of data-driven and model-driven approaches. This approach also utilizes KANs
to reconstruct the mechanistic formulation of the learned complex functions, thereby
achieving a fully interpretable learning methodology. To this end, we firstly develop the
general framework for the hybrid system that combines mechanistic models and KANs.
Subsequently, we develop a robust training algorithm that effectively combines the strengths
of KANs and ODEs, ensuring efficiency, stability and accuracy in the learning process.
Finally, we demonstrate the application of our integrated model framework to several key
problems in the field of epidemiology of emerging infectious diseases, showing significant
improvements over traditional methods in both predictive accuracy and computational
efficiency. The overall research design and corresponding methodology of this study are
summarized in Fig. 1.

Figure 1. Summary of research design and methodology
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Methods

Universal Differential Equation (UDE) Models

The Universal Differential Equation (UDE) modelling framework, restricted to the ordinary
differential equations, is of the following general form:

��(�)
�� = � �, �(�), �1, ��(�(�), �2) , (1)

Here, �(�) is an n-dimensional vector that characterizes the state variables of the complex
system at time t, � �, �(�), �1, ��(�(�), �2) is the corresponding vector-functions defining
the rules governing the changes in those variables. UDE models were developed to address a
wide range of dynamic systems by combining neural networks with differential equations,
offering a feasible and attractive way to integrate mechanism-driven and data-driven
approaches for understanding and predicting complex system behaviors. Specifically, the
function � consists of two components, as shown in Fig. 1. One component explicitly
incorporates the variables �, encompassing known physical laws or prior knowledge of the
system, which can typically be defined using classical physical principles or experimental
data. Correspondingly, �1 represents the set of parameters involved in the mechanistic terms.
The other component should implicitly involves the state variables but lacks a well-defined
mechanistic function. For this reason, we use neural networks to approximate the unknown
functions, capturing the complex and hidden interactions within the system. In model (1),
��(�(�), �2) represents the neural network, �2 as the parameters of the network.

Traditionally, the data-driven component in a UDE model is implemented using a
multilayer perceptron (MLP). Therefore, the UDE model with an MLP to approximate the
unknown functions is expressed as follows:

��(�)
�� = � �, �(�), �1, ���(�(�), �2) , (2)

The definitions of the variables and parameters in model (2) are the same as those in model
(1). For convenience, we refer to this type of model as an MLP-UDE model.

As noted in the introduction, combining neural networks with differential equations leads
to models with numerous parameters and a complex computational process. Therefore,
identifying a novel neural network structure to improve training efficiency in UDE models is
a key challenge. Kolmogorov-Arnold Networks (KAN) offer an innovative neural network
architecture inspired by the Kolmogorov-Arnold representation theorem, providing a practical
solution to improve training efficiency and learning accuracy. The representation theorem
states that any continuous multivariate function can be expressed as a combination of a finite
number of univariate functions and summation operations. Unlike multilayer perceptrons
(MLPs), KAN models utilize learnable activation functions along the edges (weights) rather
than fixed activation functions at the nodes (neurons). Specifically, the KAN framework
replaces traditional linear weight matrices with univariate functions parameterized as splines.
Given a continuous multivariate function � � , it can be represented as:

� �1, … , �� =
�=1

2�+1

∅�
�=1

�

��,�(��)� ,�

where ∅� and ��,� are univariate functions. This structure allows KAN model to offer
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greater flexibility and expressiveness compared to traditional neural network architectures.
In MLP architectures, each layer consists of alternating linear transformations and

nonlinear activation functions. In contrast, KAN achieves this through the superposition of
function matrices. Each input to a KAN layer is processed through a series of univariate
functions, which are then summed up to produce the outputs. KANs are composed of multiple
layers, each represented by a function matrix containing univariate functions that map the
input to the output dimensions. The computation at each layer can be expressed as:

��+1 = ∅�(��) =
�−1

��

��,�,�(��,�)� ,

where ∅� denotes the function matrix at layer �, and ��,�,� is the activation function mapping
from the �th node of layer � to the �th node of layer � + 1 . The output of the entire KAN
network is the composition of these layers:

���(�) = (∅�−1 ∘ ∅�−2 ∘ ⋯ ∘ ∅0)(�).

This approach not only avoids the separation of linear and nonlinear components found
in MLPs but also allows each weight to be learned as a locally adjustable process based on the
input. As a result, KAN exhibits excellent generalization capabilities in high-dimensional
spaces, effectively overcoming the curse of dimensionality. In conclusion, MLPs face
limitations in scalability when dealing with high-dimensional problems, making it difficult to
maintain efficiency while achieving high precision, and they often lack interpretability.
Alternatively, the KAN model, with its superior expressive power and computational
efficiency in high-dimensional spaces, emerges as an ideal substitute for MLPs in this
context.

Therefore, to enhance the expressiveness and interpretability of the UDE model in
complex systems, we replace the MLP component in UDE models with KAN, thereby
improving the model's ability to learn unknown nonlinear relationships within the system.
This extends the applicability of the UDE framework and leads to the development of a new
integrated model, referred to as the KAN-UDE model, which is formulated as follows:

��(�)
�� = � �, �(�), �1, ���(�(�), �2) , (3)

where ���(�(�), �2) represents the unknown rule functions in the complex system as
approximated by the Kolmogorov-Arnold Network.

SIR-type epidemic MLP-UDE and KAN-UDE models

The SIR-type mechanistic compartment model of infectious diseases is of the following form:
�' =− �(�),
�' = �(�) − ��(�),
�' = �� � .

(4)

Here, the whole population are divided into three classes according to the epidemic status, i.e.
susceptible (�), infected (�), and recovered (�). The parameter � denotes the recovery rate,
which can be obtained through the surveillance of the infectious period of the infected
individuals. Therefore, it’s a well-established component in building the UDE models for
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characterizing the population transition from the infectious class to the recovered class. The
function �(�) is the incidence rate of newly infections per unit time. Notably, the incidence
rate is a crucial part of epidemic models and often takes various complex forms influenced by
multiple factors. For this reason, numerous types of incidence rates have been developed. In
this study, four key incidence rates are used, as listed in Table 1. Particularly, for a specific
epidemic influenced by various factors, it is often difficult to precisely determine the
appropriate incidence rate. Therefore, the incidence rate is treated as the unknown component
governing the transition from susceptible to infectious individuals, which will be learned from
the data using deep learning.

Based on the general frameworks of UDE models, the mechanistic model (i.e., model (4))
can be extended to MLP-UDE or KAN-UDE models by considering part of the incidence rate
as the implicit component to be learned from data and the recovery rate as the explicit
component, as shown in Fig. 1. The MLP-UDE and KAN-UDE models by setting different
parts to be learned related to different incidence rates are listed in Table 1.

Table 1. MLP-UDE and KAN-UDE models with different incidence rate

Modeling emerging infectious diseases is a crucial tool for understanding transmission
mechanisms and predicting epidemics, providing a basis for informed decision-making in
disease control. In this study, we focus on applying KAN-UDE models to two key aspects:
first, to learn the implicit functions for interpretable deep learning and gain insight into the
transmission mechanisms; and second, to achieve accurate and robust predictions of epidemic
trends.

Data

We use the traditional SIR model (i.e. model (4)) to generate the time series data of daily
reported case and daily new infections. In detail, the daily new infections at time � are

Incidence rate �(�) Learned part
(parameter values for
data simulation)

MLP-UDE models KAN-UDE models

Mass action19 ��� �� (� = 0.14) �' =− ��� ∗ �,
�' = ��� ∗ � − ��(�),
�' = �� � .

�' =− ��� ∗ �,
�' = ��� ∗ � − ��(�),
�' = �� � .

Nonlinear saturated

incidence rate20 � ���

1+��ℎ

�
��

1 + ��ℎ

(� = 0.14, � = 1, ℎ =
1, � = 1)

�' =− ��� ∗ �,
�' = ��� ∗ � − ��(�),
�' = �� � .

�' =− ��� ∗ �,
�' = ��� ∗ � − ��(�),
�' = �� � .

Incidence rate with media
effects21 ��−����

��−��

(� = 0.02, � = 0.5)
�' =− ��� ∗ ��,
�' = ��� ∗ �� − ��(�),
�' = �� � .

�' =− ��� ∗ ��,
�' = ��� ∗ �� − ��(�),
�' = �� � .

Incidence rate with
control effects22

� �0 − �� �−�� + �� ��

� �0 − �� �−�� + ��

(� = 0.014, �0 =
15, �� = 10, � = 1)

�' =− ��� ∗ ��,
�' = ��� ∗ �� − ��(�),
�' = �� � .

�' =− ��� ∗ ��,
�' = ��� ∗ �� − ��(�),
�' = �� � .
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Figure 2. The bar plots represent the simulated time series data of daily new infections (top two
rows) and daily reported cases (bottom two rows) generated by the traditional SIR model (i.e.,
model (4)) with varying incidence rates. For each time series data, the corresponding re-sampled
noisy data is depicted as the red line chart.

calculated by

Daily new infections (t) =
�−1

�
�(�)��� , (5)
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where �(�) is the corresponding incidence rate in model (4), and four types of incidence rate
are used, as listed in Table 1. The daily reported cases at time � can be calculated by

Daily reported cases (t) =
�−1

�
��(�)��� . (6)

For all the data simulation, we take the population as the density to the whole population,
hence the total population is � = 1 . We assumed that at initial time t=0, the proportion of
susceptible individuals is 0.99, the proportion of infected individuals is 0.01, and the
recovered population is 0. The parameter values in the SIR model with different types of
incidence rate for simulating the time series data are listed in Table 1. The fifth order explicit
Runge-Kutta method is used to solve the differential equations. Note that we have generated a
separate time series dataset for each model, corresponding to the different incidence rates
listed in Table 1. We ran the model (model (4)) from 0 to 99, resulting in a time series dataset
of daily new infections (with equation (5)) or daily reported cases (with equation (6)) for each
model (i.e. i.e. model (4) with varying incidence rates) over 100 time points. The simulated
datasets are shown in Fig. 2. In addition, given the randomness of real data, we re-sampled
each time series data (displayed as line chart in Fig. 2) by assuming that the population of the
time series at each time point follows a Poisson distribution with a mean of the value of
original data23. For convenience, we call the time series data with noise as noisy data.

Training algorithm

In general, to train the UDE model, we typically begin by fixing the well-known parameter
values and initial conditions of the differential equations, informed by prior knowledge. For
several emerging infectious diseases, the infectious period is approximately 5 days, allowing
us to fix the recovery rate at 1/5. In the case of a newly emerging infectious disease outbreak,
the initial recovered population can be set to 0. As we use the simulated data, we also take the
initial conditions as the known parameters when training the UDE models.

The next step is to train the model by minimizing the loss function to estimate the
unknown parameters in the mechanistic terms and to train the neural networks. The loss
function is usually defined as the mean squared error (MSE), given by:

� =
1
� �=1

�
(�� − ���)2.�

Here, ��� represents the values of the data, �� is the predicted value by the UDE models,
and � is the number of data points used for learning. For the epidemics of infectious disease,
��� is the time series data of daily reported cases or daily new infections, which is generated
by the mechanistic models in this study.

To proceed the training of the UDE models, adjoint sensitivity analysis is used for
calculating the sensitivity of the model output with respect to the parameters. That is, the
adjoint equation is defined to compute the sensitivity of the loss function with respect to the
model parameters, which is given by:

��
�� =− �(�)� ��(�(�), �, �)

��
,

where � represents the adjoint variable , �(�) is the state variable, � denotes the model
parameters , and �(�(�), �, �) represents the rule function governing the changes of the
variables. The solution of the adjoint equation involves reverse-time integration, allowing for
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the efficient computation of gradients that are used for optimizing the model parameters. That
is, the gradient of the loss function with respect to each model parameter is computed, which
allows for the efficient computation of gradients without the need to directly calculate the
partial derivatives for each parameter.

Once the gradients are computed, parameter updates are performed using gradient
descent or other optimization algorithms to iteratively reduce the error. After calculating the
adjoint variables, the gradient of the loss function with respect to the model parameters is
given by:

��
�� =−

�1

�0

�(�)� ��(�(�), �, �)
��

��� .

These gradients are utilized to update the parameters in both the ODEs and the neural
networks. After calculating the gradients using adjoint sensitivity analysis, an adaptive
optimization algorithm, such as the Adam optimizer, is employed to update the model
parameters. The Adam optimizer combines momentum and adaptive learning rate adjustments,
and its update rule is given by:

��+1 = �� −
�

�� + � ��,

where �� represents the current parameter, � is the learning rate, �� is the estimate of the
first moment (momentum), and �� is the estimate of the second moment (variance). The
inclusion of momentum and adaptive learning rates in Adam helps in efficiently navigating
the parameter space, mitigating issues such as vanishing and exploding gradients.

With the above preparation, the training process begins with model initialization. For the
ordinary differential equation (ODE) component, parameter initialization is based on known
physical principles, ensuring that the model parameters are physically meaningful. For the
knowledge-enhanced neural networks (KANs) component, the initial weights are generated
from the control points of the spline functions, ensuring that the model starts with sufficient
expressive power and favorable convergence properties. The initial weights are randomly
initialized using either a uniform or normal distribution. The positions of the spline function
control points and the initial weight values are carefully designed to enable the network to
effectively learn complex nonlinear relationships.

Beside the above design of the training process, we also adapt a series of algorithms to
facilitate the training and optimizing efficient of the KAN-UDEs model, for enhancing
computational efficiency, and improving predictive accuracy. This includes

(1) Unlike the original KAN network, which expands all intermediate variables to apply
different activation functions, we use a method that activates inputs with various basis
functions and then linearly combines them. This recalculation approach significantly reduces
memory costs by simplifying computations to basic matrix multiplications, and it naturally
supports both forward and backward propagation.

(2) During training, the KAN-UDE models adaptively adjusts the density of the spline
grid to more accurately capture complex system behaviors. Specifically, in regions with
higher errors, a finer grid is used to capture more detailed features, while in regions with
lower errors, a coarser grid is maintained to conserve computational resources. This dynamic
adjustment strategy ensures the model's efficiency and accuracy.
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Function reconstruction

To enhance the interpretability and practical applicability of the UDE models, we perform
pruning process and symbolic regression on the functional relationships identified by the
KAN network, to derive explicit mathematical descriptions of the mechanisms in the
implicit component, i.e. to reconstruct the functions in the incidence rate in this study.
Initially, the pruning process begins by introducing L1 regularization and entropy
regularization to sparsify the activation functions, thereby reducing redundant connections
within the networks. Here, L1 regularization measures the average output magnitude of
the activation functions, while entropy regularization controls the smoothness of the
activation function distribution to further enhance sparsity. By defining L1 norms and
entropy metrics on the input and output nodes, the pruning strategy ensures that only
nodes critical to the network's predictions are retained, significantly reducing the
network's complexity. This process removes non-essential nodes from the network
structure by controlling a threshold.

We then conduct the symbolic regression to reconstruct the functions based on the
reduced KAN by pruning process. Taking the outputs of the trained KAN in the UDE
models as the data information for function reconstruction, we initially search a best-fit
type of mechanistic functions, such as sin, log, exp, of the activation functions of each
connection between two nodes in the network. We therefore obtain a general form of the
functions with several affine transformation parameters in each activation function. We
further use grid search and linear regression to estimate the affine parameters by
minimizing the residual sum of squares between the output of the reduced KAN and the
predicted values of the learned functions. As a result, the implicit interactions in the
complex system are of explicit mathematical expression, and the UDE models become
fully mechanistic models. We call the KAN-UDE model with reconstructed forms of the
functions in the implicit component as reconstructed mechanistic model (RMM) for
convenience.

Epidemic predictions

We use the subset of the time series data to train the KAN-UDE models, and estimate
parameters and learn neural networks. We considered three scenarios in terms of the data set:
a subset including the data from initial to a time point far before the peak time, or to a time
point near the peak time, or to a time point after the peak time. In parallel, we use the same
subset of the time series date to reconstruct the functions of the incidence rate to obtain the
reconstructed mechanistic models (RMMs). Then, we can solve the trained KAN-UDE
models or the RMMs to predict the epidemic trends, here fifth order explicit Runge-Kutta
method is used to solve the model in terms of daily new infections or daily reported cases.
Furthermore, the rest of the time series data are used to test the prediction accuracy of
different models.

Robustness analysis

Given the robustness of the results, we primarily use noisy time series data to train the model,
learn the neural networks, reconstruct the incidence rate functions, and predict the epidemic
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trends. We then conduct a thorough comparison between the results obtained from the original
data and the noisy data. It is worth noting that using a subset of the time series data to train
the model, reconstruct the functions, and predict epidemic trends also serves as a key aspect
in testing the robustness of our models' results.

Main results
Training results
Using the time series data of daily new infections, we independently trained all the
MLP-UDE and KAN-UDE models listed in Table 2 by selecting various neural network
configurations. We firstly showed the results related to the incidence rate of mass action in
Fig. 3, that is, the results using the time series data, generated from the mechanistic model
with a incidence rate of mass action, to train the MLP-UDE and KAN-UDE models. It is
evident from Fig. 3 that the KAN-UDE model achieves significantly higher accuracy across
all neural network configurations after 5,000 iterations, indicating a superior fit to the time
series data. Specifically, using the learning accuracy defined in Supplementary Information,
the KAN-UDE models achieved 100% accuracy across all configurations except 2-5-1 after
5,000 iterations, as shown in Table 2. In contrast, the MLP-UDE model only reached 100%
accuracy with the 2-64-1 configuration. Furthermore, with simpler configurations such as
2-8-1 and 2-5-1, the accuracy of the MLP-UDE model was only 8.33% and 13.3%,
respectively. The declining trend in training accuracy with a simpler network configuration
for MLP-UDE models is intuitively visible in Fig. 4. However, the KAN-UDE model still
achieved 100% accuracy with the 2-8-1 configuration, indicating greater flexibility in
learning across different configurations.

On the other aspect, we also counted the number of iterations needed to achieve 100%
accuracy for the two types of UDE models, as detailed in Table 2. From Table 2, it is evident
that the KAN-UDE model requires significantly fewer iterations to reach 100% accuracy
compared to the MLP-UDE models. For example, with a 2-128-1 configuration, the
KAN-UDE model achieved 100% accuracy within 1,400 iterations, whereas the MLP-UDE
model required 4,800 iterations to reach the same accuracy. The conclusion that the
KAN-UDE model outperforms the MLP-UDE model when comparing the loss of the two
UDE models after 5,000 iterations, as shown in Table 2.

Overall, we find that the KAN-UDE modesl outperform the MLP-UDE models across
multiple metrics. When using the time series data generated from the traditional SIR model
with the other three types of incidence rates to train the UDE models, we observe the similar
results in terms of learning accuracy and final loss when comparing the MLP-UDE models
and the KAN-UDE models, as shown in Fig. 5 and Table 2. Therefore, the KAN algorithm
proves to be more effective and efficient in scenarios where high accuracy and low loss are
critical, despite requiring longer computation time per iteration. Furthermore, using the
estimated parameters and trained neural networks, we solved for the variables (i.e.
�(�), �(�), �(�)) in the KAN-UDE models, as shown in SI Fig. 1. SI Fig. 1 demonstrates that
the simulated curves of all variables align closely with the simulated data. This indicates that
training the KAN-UDE models with a single time series dataset can accurately capture the
behavior of all the variables.
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Figure 3. Training results after 5000 iterations for MLP-UDE and KAN-UDE models across
various configurations, where the left panel is for MLP-UDE model while the right panel for
KAN-UDE model. Here the time series data of daily new infections generated by the traditional
SIR model with the incidence rate of mass action is used.
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Table 2. Comparison of training process and training outcomes between MLP-UDE and
KAN-UDE models across various configurations

Note that, “-” means that the model did not reach 100% accuracy after 5,000 iterations.

Figure 4. Accuracy and training time for both MLP-UDE and KAN-UDE models across different
configurations.

Incidence rate used
for generating the
time series data

Network
Configur
ation

Accuracy
(%)

Time (s)
Iterations to
���%
Accuracy

Loss (after 5000
iterations)

MLP KAN MLP KAN MLP KAN MLP KAN
Mass action 2-128-1 95 100 628 1242 - 1100 2.38 × 10−5 2.20 × 10−6

2-64-1 100 100 670 1264 4600 1800 6.45 × 10−4 8.59 × 10−7

2-32-1 66.67 100 711 1263 - 3900 1.02 × 10−4 2.28 × 10−6

2-16-1 73.33 100 732 1178 - 1900 1.04 × 10−4 7.69 × 10⁻ ⁷
2-8-1 28.33 100 645 1311 - 4900 8.17 × 10−4 3.72 × 10−5

2-5-1 8.3 80 488 1201 - - 1.36 × 10−4 4.99 × 10−5

Nonlinear saturated
incidence rate

2-16-1
94.17 100 706 1389 - 3600 3.67 × 10−5 2.45 × 10−6

Incidence rate with
media effects

2-16-1 65 100 693 1130 - 3200 1.11 × 10−4 1.38 × 10−5

Incidence rate with
control effects

2-16-1 83.33 100 732 1051 - 4300 4.52 × 10−5 1.04 × 10−5
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Figure 5. Training results after 5000 iterations for MLP-UDE and KAN-UDE models. Here, we
use the time series data generated from the traditional SIR model with three different types of
incidence rate, as marked in the title of each sub-figure. The network configuration is fixed as
2-16-1.

Interpretable learning

To verify the interpretability of the KAN model, we reconstructed the implicit functions
of the incidence rate after the training process. The reconstruction results are detailed in Table
3. As shown in Table 3, the KAN model accurately reconstructed all the incidence rate
functions across various types, perfectly matching the original settings of the functions used
to generate the time series data. Notably, after reconstructing the incidence rate functions, the
implicit components of the KAN-UDE models gained explicit mechanistic meaning. As a
result, the KAN-UDE model now becomes a fully mechanistic model, referred to as a
reconstructed mechanistic model (RMM). This demonstrates the KAN-UDE model's strong
capability to represent the functional forms of these models, offering superior generalization
and enhanced interpretability.

Table 3. Performance comparison of KAN-UDE models with different incidence functions

Incidence rate used for
generating the time series data

Time(s) Iteration Loss Reconstructed
functions

0.4I ��� 427s 1200 5.51*10−6 0.4I
�

1 + � �
���

1 + ��ℎ
385s 1400 3.12*10−5

1 −
I

1 + I
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�
1 + 2�

�
���

1 + ��ℎ
479s 1800 1.15*10−5

0.5 −
0.05I

0.2 + 0.1I
�

1 + 5�
�

���

1 + ��ℎ
393s 1600 2.20*10−5

0.5 −
0.05I

0.2 + 0.1I
�−0.5� ��−���� 533s 1000 3.12*10−6 e−0.5I

�−� ��−���� 397s - 1.21*10−4 e−I

5.0 + 10�−0.2� ​
� �0 − �� �−�� + �� ��

624s - 2.2*10−5 5.0+10e−0.2t

Epidemic predictions

We employed KAN-UDE models, MLP-UDE models, and RMMs to predict epidemic
trends by training the models on a subset of the time series data and reconstructing the
incidence rate functions, as shown in Figs. 6-8. As demonstrated in Figs. 6-8, the RMMs
consistently provide perfect predictions of the epidemic trends as the red dashed curves
perfect matches the testing data, because KAN precisely reconstructs the incidence rate
functions. This holds true whether the subset of time series data is taken from the initial
period up to 40 days before the peak, around 60 days near the peak, or 80 days after the peak.
In contrast, the predictions by the KAN-UDE models and MLP-UDE models are significantly
less accurate than those of the RMMs, showing poorer robustness due to the lack of a
mechanistic form for the incidence rate. A closer examination reveals that the KAN-UDE
model also outperforms the MLP-UDE model in terms of the prediction accuracy, because of
achieving higher learning accuracy after the same number of iterations during training. In
particular, the KAN-UDE model performs well in short-term predictions (7-day forecasts) for
several scenarios (comparing the green dashed curves with the testing data in Fig. 7(B) and
Fig. 8(A)), especially when trained on longer time series data, as evidenced by comparing Fig.
8 to Fig. 6. However, prediction accuracy significantly decreases in long-term forecasts, as
indicated by the increasing error between the test data and the model's predicted values.

Figure 6. Epidemic prediction by KAN-UDE model, MLP-UDE models, and RMM by training
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the model with a subset of the time series data. Here the data from original period up to 40 day is
used for training and the remaining data (validation data) for testing the prediction accuracy. The
training process is stopped after 5,000 iterations.

Figure 7. Epidemic prediction by KAN-UDE model, MLP-UDE models, and RMM by training
the model with a subset of the time series data. Here the data from original period up to 60 day is
used for training and the remaining data (validation data) for testing the prediction accuracy. The
training process is stopped after 5,000 iterations.

Figure 8. Epidemic prediction by KAN-UDE model, MLP-UDE models, and RMM by training
the model with a subset of the time series data. Here the data from original period up to 80 day is
used for training and the remaining data (validation data) for testing the prediction accuracy. The
training process is stopped after 5,000 iterations.
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Robustness analysis

In this section, we use noisy data to train the KAN-UDE model, reconstruct the
incidence rate function, and predict the epidemic trends of daily new infections. The main
findings are presented in Fig. 9 and Fig. 10. These results are compared to those obtained
from the original data, which is also plotted in the figures for convenience. As shown in Fig. 9,
the KAN-UDE model can also effectively fit the noisy data, and well capture the epidemic
trajectories. And the learned curves from the noisy data can also match the curves learned
from the original data. However, the UDE model's predictions show poor robustness, with a
significant difference between the predicted curves generated by the KAN-UDE models
trained on original versus noisy data. Despite this, the KAN-UDE model still accurately and
robustly reconstructs the incidence rate functions across various types when trained with
noisy data. Consequently, the RMMs learned from noisy data can also produce robust and
highly accurate predictions, comparable to those obtained from RMMs trained on original
time series data.

Figure 9. Training results on the noisy data in terms of the four types of incidence rate. The
training process is stopped after 5,000 iterations. Here the RMMs are obtained by reconstructing
the functions using the noisy data. For comparison, the training results on the original data are also
displayed in the figures.
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Figure 10. Epidemic predictions made by the UDE models trained on either noisy or original data.
In this case, the data from the first 40 days is used for training, while the remaining data
(validation data) is used to test prediction accuracy. The training process is stopped after 5,000
iterations.

Discussion
Recently, an innovative neural network framework, Kolmogorov-Arnold Networks (KAN),
has been proposed, where the Kolmogorov-Arnold representation theorem underpins the
approach, proposing that any multivariate continuous function can be represented as a
superposition of continuous functions of one variable. Several studies have already pioneered
their attempts to replace the MLP-based neural network by KAN24, aim at testing the
performance of KAN in learning process25–28. This study focuses on embedding KANs within
mechanistic ODE model frameworks, creating a hybrid model that retains the physical
interpretability of differential equations while enhancing the ability to reconstruct the
mechanistic formulation of complex and nonlinear interactions that occur in many scientific
fields.

As concluded in previous research29, biomedical studies primarily focus on two
objectives: prediction and explanation. Using epidemic modeling in emerging infectious
diseases as a case study, we established a modeling framework that couples efficient,
interpretable, and robust deep learning approaches by leveraging the power of the
Kolmogorov-Arnold Network (KAN). This framework is designed to learn mechanistic
functions in epidemic models and to provide precise and robust predictions of epidemic trends,
thereby offering new insights into the integration of mechanistic models with deep learning.

It is well known that the incidence rate and transmission rate are critical components of
epidemic modeling, yet the form and parameter values of the incidence rate are often difficult
to determine. Therefore, we focused on the incidence rate as the element to be learned and
proposed the corresponding epidemic KAN-UDE and MLP-UDE models. By training these
models with time series data of daily new infections or reported cases, we found that training
of KAN-UDE models are much more efficient compared to the training of MLP-UDE models,
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both in terms of achieving higher accuracy after the same number of iterations and in
requiring fewer iterations to reach the same level of accuracy. This supports the conclusion
that KAN outperforms MLP in achieving higher accuracy.

To achieve interpretable deep learning for understanding the spread of infectious diseases,
we reconstructed the incidence rate functions, represented by neural networks in the
KAN-UDE models. We demonstrated that KAN accurately reconstruct these functions,
closely mirroring the corresponding incidence rate of the mechanistic models used to generate
the time series data. This approach helps to make the "black box" elements of coupling
mechanistic models with deep learning more interpretable, resulting in a fully mechanistic
model (referred to as RMM). Notably, even when training the model using only a subset of
the time series data (specifically, data from before the turning point of an epidemic outbreak),
KAN was able to robustly and precisely reconstruct the incidence rate function. This is
critical, as we often have very limited data during the initial phase of epidemic outbreaks.

In addition to enhancing interpretability, reconstructing the mechanistic function is also
crucial for achieving robust and precise predictions of epidemic trends. Given the inherent
randomness in real data, we trained the model using noisy data and then reconstructed the
incidence rate function, which matched exactly with the function learned from the original
data. As a result, the RMM models trained on noisy data produced the same robust and
precise long-term predictions of epidemic trends. In contrast, when predicting epidemic trends
directly using the KAN-UDE models, the predictions based on the original data and the noisy
data differed significantly, indicating poor robustness. Notably, the accuracy of long-term
predictions by the KAN-UDE model was also substantially lower.

It is important to note that we also used time series data of daily reported cases for
training, epidemic predictions, and robustness analysis, including training on noisy data, as
shown in SI Figs. 2-8. We observed similar results in terms of the training accuracy of the
KAN-UDE models, precise function reconstruction, and accurate epidemic predictions when
compared to using time series data of daily new infections to train the models. This is crucial
for data-driven approaches in epidemic analysis, as different epidemics may present varying
types of data given the data accessibility.

As we mentioned in the introduction, dynamic systems are integral to many fields.
Therefore, the modeling framework that couples KAN with differential equations should have
wide-ranging applications across numerous domains. In addition to the mechanistic analysis
and more accurately prediction for the spread of infectious diseases, thereby supporting public
health decision-making, the potential applications of KAN-UDE modelling framework are
vast and varied, extending beyond the examples mentioned here. In the field of financial
engineering, it could model the dynamics of asset prices, providing more precise tools for risk
management. Additionally, in meteorology, KAN-UDE models could enhance weather
forecasting models, leading to better predictions of extreme weather events. Furthermore, in
ecology, it could be employed to simulate population dynamics within ecosystems, offering
theoretical support for environmental conservation and sustainable development. In summary,
the application potential of KAN-UDE models is extensive, and its capabilities merit further
exploration and development.

Conclusion
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In conclusion, using epidemic modeling of infectious diseases as a case study, this research
demonstrated that KAN significantly improves learning accuracy and provides an
interpretable deep learning approach for reconstructing mechanistic functions in complex
dynamic systems. It also exhibits high robustness when trained on subsets of time series data
or noisy data. Our approach paves the way for a new paradigm in modeling dynamical
systems, where the integration of machine learning and traditional modeling techniques yields
more accurate, interpretable, and robust predictions. This integration offers a flexible and
powerful representation of a system's physical processes, accommodating both known and
unknown components. This work not only advances the field of computational modeling but
also provides practical insights and tools for scientists and engineers addressing complex
dynamic systems.
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