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Abstract 

Dementia syndromes are complex sequelae whose multifaceted nature poses significant challenges in 

the diagnosis, prognosis, and treatment of patients. Despite the availability of large open-source data 

fueling a wealth of promising research, effective translation of preclinical findings to clinical practice 

remains difficult. This barrier is largely due to the complexity of unstructured and disparate preclinical 

and clinical data, which traditional analytical methods struggle to handle. Novel analytical techniques 

involving Deep Learning (DL), however, are gaining significant traction in this regard. Here, we have 

investigated the potential of a cascaded multimodal DL-based system (TelDem), assessing the ability 

to integrate and analyze a large, heterogeneous dataset (n=7159 patients), applied to three clinically 

relevant use cases. Using a Cascaded Multi-Modal Mixing Transformer (CMT), we assessed TelDem’s 

validity and (using a Cross Modal Fusion Norm - CMFN) model explainability in (i) differential 

diagnosis between healthy individuals, AD, and three sub-types of frontotemporal lobar degeneration 

(ii) disease staging from healthy cognition to mild cognitive impairment (MCI) and AD, and (iii) 

predicting progression from MCI to AD. Our findings show that the CMT enhances diagnostic and 

prognostic accuracy when incorporating multimodal data compared to unimodal modeling and that 

cerebrospinal fluid (CSF) biomarkers play a key role in accurate model decision making. These results 

reinforce the power of DL technology in tapping deeper into already existing data, thereby accelerating 

preclinical dementia research by utilizing clinically relevant information to disentangle complex 

dementia pathophysiology.  

Key Words: Alzheimer’s Disease, Cascaded Multimodal Mixing Transformers, Differential 

Diagnosis, Frontotemporal Dementia, Cross-Modal Fusion Norm, Prognostic Staging.   
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Introduction 

Dementia significantly reduces patient quality of life and represents a major source of economic and 

societal burden worldwide1. Despite an expected increase in the prevalence of dementia over the 

coming decades2, accurate diagnosis, prognosis, and identification of novel treatment avenues continue 

to pose significant challenges. After decades of clinical trial setbacks, the emergence of the first 

disease-modifying therapies (DMTs) targeting amyloid accumulation for Alzheimer’s Disease (AD - 

which represents a significant proportion of people with dementia3) have been reported4–8. However, 

challenges persist as these DMTs show only modest delays in disease progression, need real-world 

replication of clinical effects, and have a high prevalence of adverse effects9. While the roles of 

amyloid and tau in AD pathophysiology are widely recognized10 evidence suggests that the disease 

extends far beyond a simplistic interaction of these two proteins11,12. This multifactorial nature, which 

involves inflammation13, lifestyle factors14,15, and apolipoprotein E (APOE) 4 genotype and its 

complex interactions with brain function16,17 has contributed to the high rate of trial failure18 and the 

occurrence of significant adverse reactions to therapy19,20. As a result, the efficacy of these therapies 

remains controversial.  

In this evolving landscape, quantifiable biomarkers have emerged as an indispensable resource for AD 

and dementia research21, offering insights into disease progression, differential diagnosis, and 

therapeutic response22. Nevertheless, a noticeable disparity exists between clinical endpoints such as 

cognitive decline and the preclinical indicators of these biomarkers. This disparity underscores the 

challenges of translating actionable biomarkers into tangible clinical benefits23. However, with more 

comprehensive and diverse data, new and more precise biomarkers can be identified. This, in turn, 

could allow for the development of more effective therapeutic targets and more accurate predictors of 

clinical outcomes. Recent decades have seen a proliferation of large-scale initiatives aimed at 

achieving this goal through datasets such as the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

and its various incarnations24, including the Australian Imaging Biomarkers and Lifestyle Study 

(AIBL)25. These and similar large multimodal datasets contain a wealth of clinically relevant 

information that, if harnessed effectively, could revolutionize dementia research, enhance clinical trial 

design and execution, and ultimately improve standard of care and patient outcomes.  

The full potential of these datasets, however, remains somewhat unexploited. This is due to challenges 

in analyzing data obtained from numerous sources, each having unique issues such as data-missingness 

and comparability26,27. Standard analytical techniques, although sophisticated and well-validated, are 
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often ill-equipped to handle this lack of data harmonization and structure, particularly the 

multimodality 28 associated with large datasets. This absence of uniformity thus undermines the fruitful 

translation of preclinical research to clinical application. Recent years, however, have seen the advent 

of new technologies that could address these barriers. The rapidly advancing field of Deep Learning 

(DL) for example, presents such an opportunity and is gaining significant traction within regulatory 

frameworks in North America29, Europe30, and Asia31. Recent innovations, particularly in multimodal 

DL models, offer an unprecedented opportunity for more holistic analyses of these heterogeneous 

dementia datasets32, even in the presence of missing and diverse forms of data33 As a result, DL-

powered analytical technologies could enhance how we approach, understand, and analyze large, 

complex, and disorganized data.  

While promising in this respect, such multimodal DL systems require diligent validation due to (i) the 

often-subtle nature of novel biomarker identification, (ii) the need for alignment of model predictions 

with existing medical knowledge, and (iii) the “black box” nature of model decision-making. In this 

paper, we aimed to provide this validation of a DL-powered clinical decision support system designed 

to enhance dementia research and patient care. Termed the TelDem system, we evaluated the power 

of this DL approach in integrating multimodal data from disparate sources, handling missing data, and 

incorporating diverse modalities. Specifically, we focused on six datasets from the ADNI, AIBL and 

the Frontotemporal Lobar Degeneration Neuroimaging Initiative (FTLDNI) studies, comprising of 

over 7,000 patients with AD and three subtypes of frontotemporal lobar degeneration (FTLD). 

Additionally, we defined three distinct use cases, each reflecting real-world clinical scenarios based 

on expert opinion. In the first use case (UC1), we assessed TelDem in the context of the often-difficult 

differential diagnosis of AD and FTLD34,35 by evaluating the architecture’s ability to successfully 

identify cognitively normal individuals (CN), AD, and three FTLD subclasses (behavioral variant 

frontotemporal dementia – bvFTD, semantic variant Primary Progressive Aphasia – svPPA, and non-

fluent agrammatic variant Primary Progressive Aphasia – nfvPPA). In the second use case scenario 

(UC2), we focused on AD and its stages including risk-states, evaluating whether the architecture 

could successfully classify participants into CN, mild cognitive impairment (MCI), or AD. Finally, in 

the third use case scenario (UC3), we evaluated the system in predicting the conversion of MCI to AD. 

Each use case was designed to reflect current challenges facing biomarker identification, with the aim 

of testing TelDem’s potential in accelerating dementia research and patient care.  
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Methods 

Data used in this article were obtained from six open-source datasets; the Alzheimer's Disease 

Neuroimaging Initiative (ADNI)36, releases 1, 2, 3, and ADNI-GO, the Australian Imaging, Biomarker 

& Lifestyle Flagship Study of Ageing (AIBL)25,37, and the Frontotemporal Lobar Degeneration 

Neuroimaging Initiative – (FTLDNI). Each dataset contains a variation of cognitively normal 

individuals (CN), people with MCI, AD, and FTLD, resulting in 7,159 participants included in our 

study (Table 1).  

Table 1: Diagnosis Composition of the Harmonized Dataset data-points accumulated from three open-source 

datasets; ADNI, AIBL, and FTLDNI. CN = Cognitively normal individuals, sMCI = Stable mild cognitive 

impairment, pMCI = progressive Mild Cognitive Impairment, AD = Alzheimer’s disease, bvFTD = behavioral 

variant Frontotemporal Dementia, svPPA = semantic variant Primary Progressive Aphasia, nfvPPA = non-fluent 

variant Primary Progressive Aphasia. Other refers to data which did not satisfy our modeling criteria (see Data 

Selection paragraph). 

 
 CN sMCI pMCI AD bvFTD svPPA nfvPPA Other 

ADNI 
3067 2574 966 1773 - - - 720 

AIBL 
1263 193 64 158 - - - 8 

FTLDNI 
451 -  -  -  264 147 137 9 

 

ADNI (adni.loni.usc.edu) was launched in 2003 as a public-private partnership, led by Principal 

Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial 

magnetic resonance imaging (MRI), positron emission tomography (PET), other biological markers, 

and clinical and neuropsychological assessment can be combined to measure the progression of mild 

cognitive impairment (MCI) and early Alzheimer’s disease (AD). ADNI is a longitudinal multicenter 

neuroimaging study consisting of CN individuals, MCI, and AD across four separate studies: ADNI-

1, ADNI-GO, ADNI-2, and ADNI-3. Participants underwent physical and neurological examinations, 

standardized neuropsychological tests, and provided blood, urine, and in a minority of cases (~20%), 

cerebrospinal fluid (CSF) samples. All participants underwent either a 1.5T or 3T MRI scan, a Mini-

Mental State Examination (MMSE), the Clinical Dementia Rating (CDR), and memory performance 

measured on the Wechsler Memory Scale (WMS-R) Logical Memory (LM-II subscale of the WMS-

R) at screening. Eligibility criteria relied on a set of cognitive scores and included, for instance, an 
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MMSE score between 24 and 30 in cognitively normal individuals and MCI, and between 20 and 26 

in AD36.  

AIBL is a two-site longitudinal study by the AIBL study group, in which participants were initially 

classified as AD, MCI, and CN and assessed over approximately 10 years. Participants were at least 

60 years of age and were screened for neurological conditions including non-AD dementia and 

psychiatric illnesses including schizophrenia, depression, Parkinson’s disease, or stroke. AIBL study 

methodology has been reported previously37.  

The FTLDNI study investigates sporadic and familial forms of FTLD, in particular bvFTD, svPPA, 

and nfvPPA. This includes both symptomatic individuals and asymptomatic or ambiguously 

symptomatic family members. The study aims to delineate brain function changes attributable to these 

disorders and differentiate them from normal aging. Participants were categorized after a 

comprehensive series of physical exams, cognitive evaluations, and interviews according to 

international consensus criteria38,39. Notably, FTLDNI includes two extra CDR readouts that pertain 

to a modified version of the assessment: the CDR Dementia Staging Instrument PLUS National 

Alzheimer’s Coordinating Center (NACC) Behavior and Language Domains (CDR plus NACC 

FTLD40). This assessment was specifically aimed at discriminating FTLD from AD. For a detailed 

breakdown of the compiled dataset endpoints, including full sample demographics, see supplementary 

table 1. 

Clinical Use Cases: We identified three clinical settings that mirror realistic use cases (UCs) based on 

clinical expert opinion. The UCs were evaluated by in turn, each time increasing the number of input 

modalities for the model, thereby gradually transitioning from a unimodal to a multimodal model. We 

designed the unimodal application to simulate a real-world situation in which data are limited, 

inputting only MRI to the model. We then expanded the information set to data that is accessible in 

most clinical environments and does not require any invasive procedures. This clinical standard setting 

includes the patient’s demographics and behavioral and cognitive assessments, such as the MMSE. 

Finally, we evaluated the system in the most comprehensive UC (referred to hereafter as the 

Invasive/Research setting) where we included biomarkers or variables not acquired routinely. These 

included CSF biomarkers, plasma biomarkers, and APOE genotyping. In UC1, we tested the systems’ 

ability to distinguish between CN, AD, and the FTLD subclasses – bvFTD, svPPA, and nfvPPA). For 

UC1, we tested the system fits in an unimodal configuration with only T1-w MRI as an input, and 

subsequently in a multimodal configuration in which demographics, cognitive assessments, and APOE 
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status were added. Secondly, UC2 assessed whether the system could stage AD disease, first in CN 

participants, MCI, and AD, and, in UC3, the progression from MCI to AD. For each UC, we conducted 

5-fold cross-validation experiments by splitting the folds on a subject level to avoid data leakage when 

evaluating our models (see supplementary Fig. 1).  

Data Selection: We applied quality control on the assigned labels in the ADNI and AIBL datasets by 

removing participants who had at least one diagnosis not related to AD. Notably, this step allowed us 

to exclude many MCI participants who were indicated to have FTLD or Lewy Body Dementia, which 

have very different features from MCI and AD (these participants appear as “Other” in Table 1, 

alongside people without a diagnosis and conditions outside of our scope). 

Use Case 1 - Dementia Differential Diagnosis: Data selected for this task includes CN participants 

from all studies, AD patients from AIBL and ADNI, and FTLD subclasses from the FTLDNI dataset. 

We used structural imaging, demographics, behavioral assessments, and cognitive scores as modalities 

in modeling. Among these, we included the CDR, ensuring the score formulation was consistent across 

the FTLDNI Dataset, and ADNI/AIBL (see supplementary Fig. 2). 

Use Case 2 - AD Staging: Dementia patients came from the AIBL and the ADNI studies while the 

CN group also included patients from FTLDNI. Modalities included were demographic, behavioral 

assessments, CSF and plasma biomarkers, and T1-weighted (T1w) Magnetization-Prepared Rapid 

Gradient-Echo (MPRAGE) MRI. We did not include any cognitive scores since they were used as 

screening tools and outcome metrics to define the conditions at baseline. 

Use Case 3 - MCI conversion: Only ADNI and AIBL participants were included for this UC. We 

defined as progressive MCI (pMCI) all MCI patients who also received an AD diagnosis during the 

duration of the study, independently of the progression time. Data used for this application was 

demographics, T1w MRI, CSF and plasma biomarkers, behavioral scores, and cognitive scores since 

their adoption to define the condition only applied to the baseline encounter. 

Preprocessing of Tabular Data 

Cerebrospinal Fluid and Plasma Biomarkers: We obtained all data from the Imaging and Data 

Archive (IDA) from the Laboratory of Neuroimaging (LONI) portal and data processing is as 

described by ADNI. Briefly, CSF Gap43 and Neurofilament Light Chain (NFL) were preprocessed 

with an ELISA assay while plasma NFL was processed with a single molecule array (Simoa) 

technique. Plasma phosphorylated tau (p-Tau181) was assessed with an in-house Simoa array while 

plasma NT1-Tau was processed through the Quanterix Simoa Platform HD-1. CSF Amyloid β1-40 (Aβ1-
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40), Amyloid β1-42 (Aβ1-42), Tau, and p-Tau were processed by the University of Pennsylvania. We 

removed outliers by filtering out all samples beyond the 95th percentile of the respective distributions 

as their variability was reported to be considerable41, especially for older studies. Moreover, while 

ADNI relied on predefined cutoffs, this procedure was not applied consistently across biomarkers. 

Finally, we computed an additional variable, the ratio between Aβ1-42 and Aβ1-40 and rescaled all 

features between 0 and 1 to convert data to a suitable scale for machine learning. 

Neurological and Behavioral Assessments: We selected the total scores from all relevant 

neurological assessments. We subsequently applied min-max rescaling as described for CSF data 

preprocessing above. For the Neuropsychiatric Inventory Questionnaire (NPI-Q), we identified and 

marked all questionnaires that were left completely unanswered as missing. When a screening question 

was answered negatively, we assigned a severity score of zero to that answer. We then extracted only 

the 12 severity scores for each questionnaire, excluding the screening questions. We normalized the 

scores by dividing them by 3 (highest severity score) and constructed dense vectors as input to our 

models. An overview of all included data for each UC is shown in Table 2. 

T1w MRI preprocessing: We included T1w MRI images from the ADNI 1-3-Go, AIBL, and NIFD 

databases in our analyses by querying all relevant images (including both 1.5 and 3 Tesla acquisitions). 

We applied a deep neural network from ANTsPyNet to each T1w image to perform brain extraction. 

Each extracted brain was bias-corrected using ANTsPy and cropped to remove empty space. We then 

resampled all images and centered cropped images to 1283 voxels to fit all images to a uniform size 

and isotropic voxel resolution of 1.7 mm3.  

Cascaded Multimodal Mixing Transformers: To overcome data-missingness, we used PyTorch 

2.0.1 to implement a Cascaded Multimodal Mixing Transformer (CMT), adapted from a previously 

described architecture42. Unlike other DL models that process all inputs simultaneously, CMT builds 

its final representation sequentially, enriching a learnable representation with information from 

different modalities step-by-step (Fig.1). In our implementation, we used this sequential nature to 

effectively exclude missing modalities from the processing chain instead of feeding zero-like 

embeddings to the blocks. 
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Figure 1. Cascaded Multimodal Transformers Overview. Visual depiction of the inference approach 

adopted by the CMT. Each data is individually embedded in a latent dimension, these embeddings serve then as key and 

value in a cross-attention layer; after normalization, a transformer encoder layer further processes the fused embedding. 

Each block follows the previous ones and integrates data only if the modality is available. The final embedding is finally 

fed through a set of fully connected layers and mapped to probabilities to answer questions specific to each use case. 

Modular Architecture. Our CMT consisted of blocks designed to convert data from different sources 

into a unified latent representation with a dimension of 256. Each block processed the output of the 

previous one by integrating additional information42. Each block contained three main components: an 

embedder, a cross-attention layer, and a transformer encoder. The embedders transformed our input 

modalities into modality embeddings with unique encodings that could be processed by the model. 

This allowed for the independent embedding of each modality separately. We encoded categorical data 

(i.e., APOE status and sex) with a lookup table, while ordinal data (such as assessment scores and age) 

were linearly projected to the latent dimension. Finally, we adopted a convolutional feature extractor 

as encoding architecture for volumetric MRI data. We applied cross-attention to merge each modality 

embedding with the latent one, sequentially. In this step, we translated the individual modality 

information (e.g. T1w MRI) to the transformer’s space using the modality embedding as the Key and 

Value and specified the Query as the model’s latent embedding to attend to the incoming data. 

Following each fusion, we applied self-attention and a forward network with a dimension of 1024, 

consistent with a standard transformer encoding layer43 (Fig. 1). 

Modality Dropout. We leveraged the original modality dropout technique42 to account for bias 

originating from different data availabilities across modalities and to improve model robustness to 

missing data. Here, we randomly masked batches of data with Not a Number (NaN) according to a 
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well-defined dropout rate (see further sections), thereby applying missingness upon existing data to 

make the model more robust to unavailable information, independently of the modality. 

Data Sparsity and Bias: To account for possible biases common to models trained on complex, 

incomplete, and multimodal data, we took bias-correcting quality control steps. To account for biases 

resulting in discrepancies in data availability across studies (such as CSF biomarkers only being 

measured in ADNI), we used variables that were available for all the conditions selected for each use 

case (for example, we included CSF in UC2 but not in UC1). We also developed a new training 

framework referred to as Cascaded Training to deal with unbalanced classes with different amounts of 

missing data for each modality. Additionally, we used an established balanced accuracy metric to 

evaluate model decision-making better44. 

Cascaded Training Framework: We developed the Cascaded Training Framework to address 

suboptimal learning outcomes caused by different data-missingness patterns across modalities and 

frequency of the diagnoses. The model's blocks were sequentially and individually trained with a 

modality-specific loss weight computed on the class distribution within each modality. Once a block 

was trained, its weights were frozen, allowing for the next block to be added in sequence (Fig. 2). We 

conceptually separated the training block CMTi, which is the one being trained at a given iteration, 

from the trailing blocks CMTj|j<i that appeared before CMTi and provided context to the block being 

trained. In our experiments, for simplicity, we trained all categorical and ordinal blocks with a learning 

rate of 1E-5 for 20 epochs. To train the T1w MRI block, we raised the learning 5E-5 and used a linear 

learning rate decay schedule for 70 epochs. We used the Medical Open Network for Artificial 

Intelligence (MONAI) libraries45 to load NIFTI, rescale intensities between 0 and 1, apply random 

affine transformations and flip along the z-axis (transversal) to improve robustness and 

generalizability46. Data augmentation can result in data leakage between train and validation splits. 

Therefore, we used MONAI augmentation pipelines that work in a streamlined fashion to avoid this.   
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Figure 2. Cascaded training iteration. Representation of cascaded training showing trailing blocks that are 

“locked” as their weights are frozen. Stage 1 shows the integration of “Age” to the model, whose weight is subsequently 

frozen for the following integration of “Sex” (Stage 2). This process of integration and preceding freezing of weights is 

repeated with the inclusion of all further features to the model (Stage N). Despite the freezing of feature weights, they 

remain capable of processing the input and providing context to the training block, which is shown placed at the end of the 

chain. 

Modality Dropout Computation. We used modality dropout on the trailing blocks to mitigate the 

bias associated with different data availabilities. Let’s denote with 𝐶𝑀𝑇𝑖 as the CMT’s Block that 

processes the modality 𝑚𝑖. Before 𝐶𝑀𝑇𝑖  began training, we filtered out from the original dataset all 

the observations where  𝑚𝑖 was missing, leading to a dataset 𝒟mi
 where the training modality was 

complete. We then computed the dropout to be applied on the trailing blocks in a way to have 

homogeneous amounts of missing data. Let’s denote with 𝑟𝑡𝑎𝑟𝑔𝑒𝑡 the missing rate to be achieved in all 

trailing modalities. We removed from the target dropout the natural missing rate of the data (𝑟𝑑𝑎𝑡𝑎) in 

the identified subset. This strategy allowed us to avoid over-dropping of sparse modalities since their 
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missing rate would have been close to the target dropout, hence resulting in a minimal additional 

dropout. 

𝑟𝑑𝑎𝑡𝑎 = 
|𝒟mi

∩𝒟mj
|

|𝒟mi
|

, 1 < 𝑗 < 𝑖 

𝑟𝑚𝑗 = 𝑚𝑎𝑥 (𝑟𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑟𝑑𝑎𝑡𝑎, 0);  1 < 𝑗 < 𝑖

 

We adopted an expected dropout rate of 70% for tabular data, and subsequently raised it to 90% when 

training T1w MRI, in order to boost unimodal performance. Additionally, we implemented a label-

specific modality dropout strategy to address potential biases that could arise from uneven data 

distributions across different classes, ensuring that no label was appearing more frequently than the 

others within the same trailing modality. This, in turn, prevents the model from associating data 

patterns too closely with specific classes, which can occur if certain modalities are disproportionately 

linked to specific classes (for example, in ADNI, CSF was acquired more often in MCI and CN). To 

achieve this, for each epoch, we determined the extent of missing data for each modality within each 

label. For each modality, we identified the highest rate of missing data across all labels. Then, for 

labels with lower rates of missing data for a given modality, we artificially increased the amount of 

missing data to match the highest rate observed. We accomplished this by randomly selecting a subset 

of data points to be masked as if they were missing. In the hypothetical situation where a modality was 

present exclusively in one diagnosis, this dropout would have assumed the value of 1 (total dropout) 

for the other classes, resulting in no learning regarding that modality. 

Explainability. We relied on graphical and quantitative methods to establish the origin of our model’s 

errors and to characterize the response of our model to different modalities. We adopted t-distributed 

stochastic neighbor embedding (t-SNE)47 to visualize high-dimensional features learned by the 

embedders of each block in a 2-dimensional space. We also observed that the input-output relationship 

of cross-attention carried value in explaining how the model was responding to different modalities, 

independently of their nature. We propose then a new cross-attention-based explainability metric, 

Cross-Modal Fusion Norm (CMFN), as follows: 

  

𝐶𝑀𝐹𝑁 ≜ ‖𝑄𝑖𝑛 + 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛( 𝑄𝑖𝑛, 𝑄𝑚𝑜𝑑𝑎𝑙𝑖𝑡𝑦, 𝑄𝑚𝑜𝑑𝑎𝑙𝑖𝑡𝑦)‖𝐹
                     

=  ‖𝑄𝑖𝑛 + 𝑆𝑜𝑓𝑡𝑀𝑎𝑥 (
𝑄𝑖𝑛 ∙ 𝑄𝑚𝑜𝑑𝑎𝑙𝑖𝑡𝑦

𝑇

√𝑑
) ∙ 𝑄𝑚𝑜𝑑𝑎𝑙𝑖𝑡𝑦‖

𝐹
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In this formulation, Qin is the multimodal embedding, Qmodality is the embedding about to be merged 

and d is the latent dimension. We hypothesize that Qin encapsulates information about the patient, 

which is progressively enriched through the information flow, while Qmodality provides contextual 

information about the input modality. As a result, the proposed metric aims to describe the modality-

specific cross-attention response given the participant's characteristics which are comprehensively 

stored in 𝑄𝑖𝑛. We computed the average CMFN for each class to understand important mechanisms 

across features, and we plotted how this metric was reacting at different values within the same 

modality to get insights on what was considered meaningful. For high-dimensional modalities, we 

relied on t-SNE to reduce the dimensionality of the embeddings and highlighted the coordinates by 

CMFN magnitude as shown in Fig. 5. 

Post-Hoc Analysis. Following model training on different folds, we evaluated each on its respective 

validation fold. This cross-validation process provided performance metrics and confidence intervals, 

which we aggregated to evaluate the model's overall performance across the dataset, enabling global 

confusion matrix creation, post hoc analysis, and attention analysis. We also analyzed misclassified 

data to uncover sources of error. Where we could not plot the input values to interpret where the model 

misclassified, we again adopted t-SNE as a dimensionality reduction tool and colored correct and 

incorrect predictions with different markers.  
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Table 2. Overview of data included from each open-source database (ADNI, AIBL, FTLDNI) for each use case scenario. CSF = Cerebrospinal Fluid, WMS L1/L2 = 

Weschler Memory Scale (revised) Logical Memory 1/2, CDR = Clinical Dementia Rating, MMSE = Mini-Mental State Examination, MoCA = Montréal Cognitive 

Assessment, GDS = Geriatric Depression Scale, APOE = Apolipoprotein-E, Aβ = Amyloid-beta, GAP43= Growth-associated protein 43, p-Tau = Phospho-tau, NFL = 

Neurofilament Light 

 

   Imaging Demographics 
Behavioral 

Assessments 
Cognitive Assessments Genetics CSF Biomarkers Plasma biomarkers 

Use Case Clinical 

Setting 
T1w MRI Age Sex 

Education 

Years 
GDS NPI-Q MoCA MMSE CDR® 

WMS-

LM1 

WMS-

LM2 

APOE 

Status 

Aβ1-

42 

Aβ1-42 /  

Aβ1-40 
NFL Gap43 Tau p-Tau p-Tau181 NFL 

1. Dementia 

Differential 

Diagnosis 

Unimodal ✔                    

Clinical 

Standard 
✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔            

2. AD Staging 

Unimodal ✔                    

Clinical 

Standard 
✔ ✔ ✔ ✔ ✔ ✔               

Invasive/ 

Research 
✔ ✔ ✔ ✔ ✔ ✔      ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

3. MCI 

Conversion 

Unimodal ✔                    

Clinical 

Standard 
✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔          

Invasive/ 

Research 
✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔  ✔  ✔ ✔ ✔ ✔ 
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Results 

Comparison of our model performance to state-of-the-art results obtained from other literature 

(see supplementary section 3) show varying results for each UC (Fig. 3), with poorer 

performance in the unimodal approach of UC1 and equal or improved performance in UC2 and 

UC3, particularly in the Clinical Standard and Invasive/Research multimodal modeling 

approaches. For UC1, we report two performances: for the full differential diagnosis, 5-classes 

prediction (classes being: CN, AD nfvPPA, bvFTD, and svPPA; chance level 20%) and, when 

comparing with the literature, for a 3-classes prediction (CN, AD, FTLD; chance level 33%) 

obtained by grouping the FTLD subclasses predictions to one new class. This aggregation was 

necessary to provide a robust comparison with existing work. 

 

Figure 3. Performances obtained in different Use Case Scenarios and Clinical Settings. 

Results show that multimodality (i.e. adding more forms of data to the model) enhanced model accuracy in each 

Use Case. For UC1, aggregated performances are shown (CN vs AD vs FTLD). In this UC, unimodal performance 

yielded a lower balanced accuracy compared to previous literature, while multimodal modeling increased 

balanced accuracy. Results from each of UC2 and UC3 show gradual increases in balanced accuracy with 

increasing modality, improving on results obtained from previous studies. SOTA = State of the art, CMT = 

Multimodal Mixing Transformer. 

Use Case 1: Differential Dementia Diagnosis  

Unimodal: Using only T1-w MRI, our model achieved a balanced accuracy of 61.1±4.2% 

(confusion matrix in Fig. 4A; chance level 20%). As previously described, predictions for 

FTLD subclasses were aggregated into one class to facilitate comparison with the literature. 
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This resulted in 69.5± 2.6%. The Receiver Operating Characteristic (ROC) showed a robust 

area under the curve (AUC) for all classes, with the minimum AUC being 0.79 for AD versus 

all the other classes. However, this was accompanied by large confidence intervals (ROC 

curves color bands in Figure 4A). A t-SNE reduction of the generated features allowed the 

identification of clear clusters for svPPA and bvFTD. Still, nfvPPA was not well defined in the 

geometric space with major overlaps between bvFTD and CN. A partial overlap was also 

observed between AD and CN features. 

Clinical Standard: When adding cognitive, behavioral, and demographic Clinical Standard 

information, the model achieved a balanced accuracy of 75±3.8% (confusion matrix in Figure 

4B). Aggregation of predictions resulted in 90.1±2.0% balanced accuracy, marking a 

significant increase in disease classification accuracy compared to the unimodal approach. 

Sensitivity towards nfvPPA decreased due to substantial difficulty in distinguishing it from 

bvFTD. ROC analysis for the multimodal approach showed a marked improvement in AUC 

across all predicted classes, indicating better overall performance (Figure 4B). Note that 

nfvPPA retained a high AUC but in comparison with other syndromes, yielded the lowest AUC 

improvement. Additionally, the variability of performance across folds was qualitatively 

reduced. A t-SNE dimensionality reduction of the multimodal embeddings showed a complex 

space organization resulting from different modality values. The space showed clusters 

characterized by inferior variability compared to the unimodal scenario, particularly with AD 

being significantly better separated from CN. 

Error Analysis: We analyzed model misclassifications and discovered the model generated 

false negatives when cognitive performance was better in AD, nfvPPA, and bvFTD. Likewise, 

the opposite was also true (Fig. 4C). When age was considered, we found most of the AD 

misclassifications happening in subjects above 70 years old while most of the errors below this 

threshold were happening with FTLD (Fig. 4D). In terms of psychological assessments, we 

observed abnormal depression levels in cognitively normal volunteers, thereby resulting in 

misclassification as AD, nfvPPA, and bvFTD.  

Explainability: The Cross-Modal Fusion Norm (CMFN) analysis provided insights into how 

different modalities contributed to the classification (Fig. 4E-G, 5A). For cognitive assessment 

scores such as MoCA and MMSE, the model placed higher attention on lower scores. Higher 

scores were also attended to in cognitively normal volunteers (Figure 4F, 4G). Geriatric 

Depression Scale (GDS) scores also showed complex responses in that cognitively normal 
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people received more attention for low scores but, as the score increased, other dementia 

classes overtook the attention over CN (Fig. 4D) showing that the metric can capture a stratified 

response exhibited by the model. The NPI-Q and T1-w MRI data showed similar patterns, with 

higher attention given to svPPA and bvFTD classes (Fig. 5A). Furthermore, when CMFN was 

inspected in MRI features, we found that elevated attention was placed on features belonging 

to FTLD conditions while AD features received much less attention in comparison (Fig. 5A). 
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Figure 4. Results of Diagnosis Classification (UC1). Confusion Matrix, ROC Curves (Mean FPR, 

and TPR ±1SD computed across 5 validation folds), and t-SNE reduction of the final embeddings for the unimodal 

setting (A), and the Clinical Standard setting (B). D-E) Error Analysis showing how MMSE (D) and Age (E) are 

distributed among misclassified and correctly classified individuals for each condition. F-H) Cross-Modal Fusion 

Norm (CMFN) magnitude at each value of MoCA (F) MMSE (G) and Geriatric Depression Scale (H) colored by 

label. SD = Standard Deviation, CN = cognitively normal, AD = Alzheimer’s disease, nfvPPA = non-fluent variant 

primary progressive aphasia, svPPA = semantic variant primary progressive aphasia, bvFTD = behavioral variant 

frontotemporal dementia, MMSE = mini-mental state exam, MoCA = Montréal cognitive assessment, CDR = 

clinical dementia rating. 
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Figure 5. High Dimensional Attention Analysis on T1w MRI and NPI Features. Each sub-

figure comes in pairs: on the left the features are colored by condition (or label), and on the right the CMFN is 

highlighted. This frame enables the comparison of which condition received the most attention. (A) Analysis 

results for the Differential Diagnosis task, (B) for AD Staging, and (C) for MCI conversion where, however, the 

CMFN was affected by convergence issues in the early layers. NPI-Q = Neuropsychiatric Inventory 

Questionnaire, CMNF = Cross-Modal Fusion Norm, t-SNE = t-distributed Stochastic Neighbor Embedding. 

Use Case 2: AD-Staging  

Unimodal Approach: When the model input was limited to T1-weighted MRI data, the 

achieved balanced accuracy was 55.6±1.4% (chance level 33.3%), as reflected in the ROC 

curves (Fig. 6A), with specific challenges in detecting MCIs reliably. This was especially 

evident when looking at the t-SNE plots showing MCI overlapping with the other two classes 

(Fig. 6A). Note that MCI was not stratified into converters and non-converters to AD when 

training the model for this use case. 
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Clinical Standard. With the further inclusion of behavioral assessments and demographic 

data, the balanced accuracy increased to 60.9±2.6% (Fig. 6B). MCI sensitivity showed the 

biggest change since it improved from 10% to 40%. ROC analysis for this multimodal 

approach showed an improvement in AUC across all predicted stages, indicating a better 

overall performance (Fig. 6B).  

Invasive/Research: In the most comprehensive setup including all multimodal data available, 

the balanced accuracy reached 64.1±2.9%. This setup provided the highest accuracy and 

sensitivity (Fig 6C). ROC analysis further supported this finding, with the highest AUC values 

observed in this setup, indicating superior classification performance. It is important to frame 

the improvement within the context of the sparsity of CSF data, which averaged 80.6% 

missingness in our dataset. Interestingly, we found that the sensitivity to AD and CN remained 

nearly unchanged across unimodal and multimodal settings since, also in this last case, the 

primary driver in accuracy was found in MCI sensitivity which improved by 6% compared to 

the Clinical Standard (as can be inferred from the confusion matrices in Fig. 6A-C).  

Error Analysis: Though we trained our model in a three-class setting, we analyzed the 

differences in misclassifications in the pMCI and stable MCI (sMCI) populations separately to 

understand better when the model was failing (note that pMCI and sMCI correspond to 

converters and non-converters from MCI to AD in the literature48). We found differences in 

misclassification between the two groups: pMCI were overall more readily detected as MCI, 

with a sensitivity of 56%, however, 75% of misclassifications happened towards AD. On the 

other hand, sMCI proved to be harder to recognize, with a sensitivity of 47% and a 

disproportion in misclassifications (66%) towards the normal class. Misclassified cognitively 

normal participants were generally older and less educated in the case of MCI and AD 

predictions. Behaviorally, misclassified CN individuals had more severe GDS scores when 

misclassified as MCI and AD. Important differences across distinct prediction groups were 

especially found in biomarkers where observations predicted as AD had higher Tau, p-Tau, 

Plasma p-Tau 181, Plasma NFL and lower Aβ1-42, and CSF Aβ1-42/Aβ1-40; analogous but 

opposite patterns were observed for mistakes towards CN (lower Tau, p-Tau, higher Aβ1-42 and 

CSF Aβ1-42/Aβ1-40) (Figures 6D, 6E). In all biomarkers, pMCI distributions were more similar 

to AD than the stable group. This behavior was also mirrored by the sMCI group, where 

mistake clusters for the CN and the AD groups showed opposite patterns in CSF and plasma 

biomarkers (Figures 6D, 6E). 
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Explainability: The CMFN indicated plasma and CSF biomarkers as the most impactful 

information, with Aβ1-42 being the most important. The CMFN analysis revealed distinct 

patterns for various biomarkers. For Aβ1-42, the CMFN was higher for AD and MCI at lower 

levels and higher for CN at higher levels (Figure 6F). CSF Tau, p-Tau, NFL, and plasma NFL 

showed higher attention for cognitively normal individuals at lower biomarker levels compared 

to AD and MCI, with the trend reversed at higher values (Figures 6G, 6H). The model also 

showed significant attention to the APOE genotypes, particularly (2,3) and (4,4). High-

dimensional attention analysis through t-SNE revealed that MRIs belonging to AD featured 

high CMFN, while the metric dropped in the middle region where the overlap between AD and 

CN was higher (Figure 5C).  
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Figure 6. Results of AD Staging Modelling (UC2). Confusion Matrix, ROC Curves (Mean FPR, and 

TPR ± 1SD computed across 5 validation folds), and t-SNE reduction of the final embeddings for (A) the 

unimodal, (B) Clinical Standard, and (C) Invasive/Research settings (C). Results show increased balanced 

accuracy (from A, 55.6% to B, 60.9%, to C, 64.1%) and an increase in MCI sensitivity (from A, 10% to B, 40% 

to C, 56%). Error Analysis shows Aβ1-42 (D) and plasma p-Tau (E) distributions among misclassified and correctly 

classified individuals. (F-H) CMFN magnitude for each value of Aβ1-42 (F) Tau (G) and Plasma NFL (H) by 

diagnosis. SD = Standard Deviation, CN = cognitively normal, sMCI = stable mild cognitive impairment, pMCI 

= progressive mild cognitive impairment, AD = Alzheimer’s disease, CSF = cerebrospinal fluid. 
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Use Case 3: MCI Conversion 

Unimodal Approach: Using only T1-w MRI for prognosis yielded moderate results regarding 

balanced accuracy (63±1.5%; chance level 50%) (Fig. 7A) and AUC (0.673) which were 

reflected in the t-SNE feature space where no clear separation emerged. 

Clinical Standard: Incorporating cognitive and behavioral scores alongside demographics 

notably boosted the model performance, yielding a 69±1.8% balanced accuracy (Fig. 7B). We 

also observed this improvement in the ROC Curve, which showed an improved AUC of 0.756.  

Invasive/Research: In line with other UCs, the accuracy and AUC peaked in the most 

comprehensive setting (Fig. 7C). Incorporating CSF, plasma, and APOE biomarkers allowed 

for improved confidence in the predictions which was reflected in the AUC (0.774) and 

balanced accuracy (70.8±2%). 

Error Analysis: Analyzing where the model struggled in predicting the conversion to future 

AD highlighted many possible reasons for misclassification. Regarding demographics, we 

observed that persons misclassified as pMCI had significantly higher age, and lower education 

and that cognition played a key role given that misclassified pMCI had cognitive scores 

towards the lower end of the distribution. CSF and plasma biomarkers revealed similar results 

since the biomarker profile of the misclassified subgroup overlapped with the one from the 

antagonist group (Fig. 7D, 7E). Finally, in all settings, we discovered a longer time to 

conversion between the observations of false negative pMCI, as shown in Figure 8. 

Explainability: We observed an anomalous behavior in the CMFN for demographic 

modalities where the model did not effectively make use of the information, causing local 

divergence in the early blocks. This resulted in an inflated CMFN that made the interpretation 

of important features impossible. The inflated CMFN issue primarily affected the modalities 

placed at the beginning of the CMT chain but gradually dissipated in later blocks. In the latter 

blocks, however, we observed that the CMFN was elevated in sMCI compared to pMCI. We 

observed the opposite pattern, however, for Aβ1-42 whereby lower levels were more attended 

in sMCI (Fig. 7 F-H).  
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Figure 7. Prediction of MCI conversion (UC3). (A) Confusion Matrix of performance and (B) 

comparison of generated embeddings across each setting. (C) ROC Curves, Mean FPR, and TPR ±1SD computed 

across 5 validation folds. (D-E) Error Analysis showing Aβ1-42 (D) and MMSE (E) distributions in misclassified 

and correctly classified individuals. (F-H) CMFN magnitude at each value of Aβ1-42 (F) p-Tau (G) and plasma 

NFL (H) colored by label. SD = Standard Deviation, AUC = Area under the curve, s/pMCI = stable/progressive 

mild cognitive impairment, CSF = cerebrospinal fluid, NFL = neurofilament light. 
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Figure 8. Sensitivity to AD progression in the prognostic application (MCI conversion). 
Multimodal models exhibit higher sensitivity for shorter timespans, which also show a decrease over time. The 

unimodal modelling approach shows a less steep decline though results show overall worse specificity. AD = 

Alzheimer’s disease.  
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Discussion  

Both preclinical and clinical data are complex in nature and are often siloed and difficult to 

integrate. To assess the validity of emerging Deep Learning (DL) technologies in addressing 

this in the context of dementia research and healthcare, we have applied a CMT architecture to 

three neurodegenerative diseases Use Cases (UCs) using data from the six open-source data 

sets. In UC1, we evaluated TelDem, first using an unimodal and then a multimodal modeling 

approach, in the differential diagnoses of cognitively normal adults, AD, and three subclasses 

of FTLD. In UC2, we evaluated the model in the prognostic staging of AD, comparing model 

performance firstly in an unimodal approach, secondly in a clinical standard approach, and 

finally in a multimodal approach. In UC3, we investigate disease progression, testing the 

model’s ability to distinguish between progressive and stable MCI. Overall, our results show 

that the addition of multiple modalities improves model accuracy compared to the modelling 

of unimodal data. 

Use Case 1 – Dementia Differential Diagnosis: Compared to other unimodal automated 

solutions49,50, TelDem achieved superior balanced accuracy (0.901) (CN vs AD vs FTLD) 

despite underperforming when only using MRI compared to previous studies51–53. The 

incorporation of multiple data modalities enhanced diagnostic accuracy by 14% and improved 

confidence of the predictions, with notable increases in the AUC across most diagnostic 

groups. This improvement highlights the system's ability to leverage diverse diagnostic data 

effectively, though it exhibited a multimodal trade-off, particularly in nfvPPA, where a more 

frequent confusion with the behavioral trait suggested an over-reliance on behavioral 

assessments for this diagnosis. While sensitivity decreased, the AUC remained the same 

however, which indicates that the model is still capable of ranking positive cases with the same 

decision threshold. Additionally, not all participants underwent MRI at all encounters, which 

could moderate sensitivity in situations where MRI is critical, such as nfvPPA. 

Several hypotheses could explain why the model struggled with the nfvPPA diagnosis. First, 

despite broad clinical and anatomical differences, both bvFTD and nfvPPA show focal 

neurodegeneration in the insulae54, longitudinal atrophy in dorsolateral and prefrontal 

regions55, and show elements of tau histopathology56. Secondly, nfvPPA shows locally 

unspecific and limited brain atrophy in comparison to svPPA, making detection with MRI 

challenging57. Including assessment of language comprehension could possibly improve 

nfvPPA classification. Additionally, nfvPPA had the least available data and while our model 
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can handle this, it is possible that a limited training size in conjunction with these other 

ambiguating factors played a role in model underperformance. 

In the context of explainability, CMFN analyses revealed that T1-w MRI and the NPI-Q, which 

is specifically designed to assess psychopathology in dementia58, were the most critical in 

model decision-making for UC1. One explanation for this relates to the variety of behavioral 

and psychological symptoms that occur in dementia (BPSD)59,60 and how these characterize 

different dementia disorders61. For example, changes in eating habits are reported to be more 

frequent in FTLD than in AD62 while delusions occur more in AD63. However, it’s also 

important to highlight that BPSD symptomatology is not static64 and there may be overlap 

across FTLD subtypes. This dynamic nature of BPSD could have contributed the conflation of 

nfvPPA with bvFTD.  

Secondly, MRI was critical in differentiating FTLD subtypes, which is unsurprising given that 

MRI allows for the identification of AD-specific patterns of atrophy or of different subtypes of 

FTLD65,66. However, the model may have also relied on demographics and cognitive scores to 

classify AD as less attention was attributed to MRI for this diagnosis compared to FTLD. 

Interestingly, CMFN also showed that the CDR received less attention at intermediate values, 

which suggests that the model relied on this assessment to rule out dementia, rather than to 

distinguish between different subtypes. This is consistent with the literature, given evidence 

that the CDR has a limited utility in discriminating FTLD from AD67. For this reason, efforts 

to integrate more extensive neurological domains to the CDR are underway68. Moreover, model 

responses to the same information varied depending on the diagnosis. For example, CN 

participants and persons with dementia showed different response patterns in cognitive scores, 

suggesting the model can downweigh outlying pieces of information, such as low cognitive 

scores. For GDS ratings, we observed the opposite pattern where, for a total score of zero, CN 

participants received the most attention. Attention at higher scores was dominated by svPPA, 

bvFTD, and AD. 

Use Case 2 – AD Staging: Regarding UC2, our system underperformed in unimodal scenarios 

when solely using MRI to stage AD. While this could be attributable to the limited image 

resolution, multimodal modelling including demographics and behavioral scores boosted 

performance, reinforcing the importance of including broader clinical metrics in the diagnostic 

process. Including these biomarkers also improved both AUC and sensitivity. However, errors 

with this diagnosis were still a major source of inaccuracy. This outcome was nevertheless 
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anticipated due to the heterogeneous nature of MCI, which does not always manifest clearly in 

biomarker profiles69, possibly leading to the observed misclassification of pMCI as AD. While 

the inclusion of CSF and plasma biomarkers did show improvements in model performance, 

these gains were limited by the scarcity of these biomarkers in our dataset. While this would 

suggest that addition of these more fine-grained measures could help with classification, it is 

possible that increased availability could yield only minor improvements, given that diagnostic 

criteria for AD often rely heavily on cognitive readouts only70. Hence, while biomarkers 

provide valuable information that help with predicting cognitive decline, their potential to fully 

resolve misclassification remains constrained by both availability and the limitations of the 

current AD diagnosis71. 

Similar to UC1, we also aimed to explore model explainability. Our analysis through CMFN 

revealed that CSF data received, on average, the most attention with Aβ1-42 being the most 

discriminative along with its ratio. Conversely, Aβ1-40, tau, NFL, and gap43 were considered 

less. This aligns with evidence showing that (i) Aβ1-42 is more diagnostically relevant compared 

to Aβ1-40
72, that changes in CSF Aβ occur early in the course of preclinical AD73,74, and that 

Aβ is a reliable CSF-based diagnostic marker of AD75,76. MRI was also highlighted important 

with regards to model decision making but primarily in AD, suggesting that the model was 

relying on other information to exclude pathology. CMFN analyses also showed lower 

explainability with larger overlap between AD and CN. This may be due to MCI being an 

intermediate stage between normal cognition and AD77. Similar to cognitive scores in UC1, 

the model's attention responded variably to CSF biomarker levels, suggesting an ability to 

contextualize biomarker data within the broader diagnostic picture. The model also focused 

more on certain genotypes (e.g., APOE 2,3 and 4,4), which again is consistent with literature 

showing the role of APOE genotype, in particular, in influencing AD risk78,79.  

Use Case 3 – MCI Conversion: Predicting the progression of MCI to AD (UC3), our results 

suggest an enhanced prediction accuracy when using multimodal DL to integrativley model all 

available diagnostic data. Although the unimodal approach underperformed relative to 

benchmarks cited in other literature, our multimodal model returned an accuracy of over 60%. 

The integration of cognitive scores was particularly effective, boosting prediction confidence 

and overall accuracy from 61% to 69%. The addition of CSF markers and APOE genotyping 

further increased the sensitivity for detecting progression to AD, achieving a global balanced 

accuracy of 71%. This observation would again buttress the diagnostic role of CSF biomarkers 
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and could explain the small improvement from the clinical standard model to the full 

multimodal model as being a result of large amounts of unavailable CSF data.  

We also observed higher sensitivity for faster conversion using all multimodal data compared 

to unimodal MRI. In fact, our model proved able to sustain above 75% sensitivity and up to 

80% during the 35 months before receiving an AD diagnosis and stabilizing at around 30% six 

years before conversion. However, in the clinical standard scenario, sensitivity dropped faster 

suggesting that biomarkers indeed drove the gain. Interestingly, we did not observe the same 

drop in sensitivity when relying on unimodal MRI. We interpret this finding with caution, 

however, as it is likely due to an increased false-positive rate. Specifically, while the model 

demonstrated better sensitivity over longer periods, it did not perform as well over shorter 

periods, indicating that the increased sensitivity might be accompanied by a higher rate of 

incorrect predictions. In other words, the model identified stable individuals as likely to 

progress to AD when they were not, thus inflating the sensitivity metric at the cost of 

specificity. This is a known issue when relying solely on MRI data, for example, as many 

individuals with MCI exhibit brain atrophy suggestive of AD progression without progression 

within the expected timeframe80. This discrepancy could explain why the model did not achieve 

exceptionally high sensitivity at shorter prediction intervals. 

Misclassification: Additionally, we also aimed to understand cases in which our model did not 

accurately classify participants. For example, in UC3 we observed that some sMCI 

observations were erroneously predicted as pMCI. This observation would seem to challenge 

the accuracy of our model, these participants exhibited CSF Aβ1-42 levels and other biomarker 

profiles more closely resembling those of pMCI participants. This is notable given that 

diagnoses in the ADNI sample were made without reference to biofluid markers81. Previous 

research suggests that use of only cognitive scores can generate inconsistent results, with low 

memory scores, for example, being common in older individuals though varying significantly 

across different populations82,83. Our CMFN analysis shows that our model attributed high 

importance to CSF markers in its decision making, suggesting that these misclassifications may 

represent a more fine-grained labeling than that provided by the ADNI data set, rather than 

poor model performance per se.  

Limitations: These interpretations, however, should be considered in the light of several 

limitations. First, the absence of multimodal neuroimaging in our approach could limit the 

power of our modelling, particularly given recent landmark studies that have made impressive 
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strides forward in integrating and modelling multimodal imaging data84. Moreover, both Aβ 

and tau PET could be particularly informative in this regard given the associations of these 

metrics with cognitive decline and the robust predictive ability of PET-assessed tau 

accumulation for disease progression85–88. We chose only T1-w, however, first for feasibility, 

and second to better match the most widely available clinical routines. Second, we applied only 

cross-sectional predictions. Modeling of biomarkers longitudinally and capturing their 

multimodal interactions would likely enhance model performance, particularly in UC2 and 

UC3. We focused on cross-sectional data, however, as longitudinal modeling would 

unavoidably expand model complexity, thus obscuring interpretability and explainability. 

Third, CMFN analysis is possibly misleading when models are trained on less informative data, 

such as with the use of demographics in the early training stages of UC3. This likely resulted 

in a lack of divergence of initial blocks, inflating the CMFN norm. Hence, caution is needed 

when associating this metric with “feature importance”. Placing such variables later in the data 

integration sequence could reveal clearer patterns, suggesting that the order of data integration 

obscures model interpretability.  

Fourth, we observed variability in reported metrics compared to other studies which could be 

due to data leakage. Leakage can bias evaluation of real-world model performance and recent 

literature suggests data leakage may explain why DL models achieve exceptional performance 

on one dataset but fail to replicate on another89. However, it must be noted that we deliberately 

specified our unimodal baselines to include features that showed less leakage through more 

robust methods90 or provided results based on independent datasets. Fifth, we did not account 

for medication use, which has been shown to modulate cognitive responses in ADNI and other 

similar data91. Future studies aiming to replicate our results should include this information to 

assess the degree to which medication use may affect model performance. Finally, we did not 

account for patient race or ethnicity. This is of critical importance in ensuring inclusion of 

people that are typically underrepresented in clinical research92. To ensure that TelDem is 

applicable to all patients, future studies should avail of ongoing efforts93 to include patients 

spanning a spectrum of racial, linguistic, and geographic backgrounds.  

Conclusion: DL applications represent an unprecedented opportunity to accelerate dementia 

research and patient care. Nevertheless, stringent validation of DL-based systems is required. 

Here, we have deployed, evaluated, and assessed a multimodal DL architecture in the context 

of three UCs. Our results show that multimodality (i.e. the addition of diverse modalities) 
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significantly improves disease classification, staging, and progression from MCI to AD, over 

unimodal modeling (the sole use of T1-w imaging). Moreover, model explainability revealed 

that CSF markers of Aβ contributed heavily to model decision-making, thus further supporting 

model validity. While additional research including Aβ and tau PET and more diverse patient 

data are needed, our results take a much-needed step in showing the advantages inherent to 

implementing DL research and clinical care. In conclusion, our results represent a new horizon 

for the efficient implementation of personalized treatments in dementia, thus providing a 

promising platform for enhancing research and patient care.  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 24, 2024. ; https://doi.org/10.1101/2024.09.23.24314186doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.23.24314186
http://creativecommons.org/licenses/by-nd/4.0/


 

31 

 

References 

 

1. Wimo, A. et al. The worldwide costs of dementia in 2019. Alzheimer’s and Dementia 19, 2865–2873 

(2023). 

2. Nichols, E. et al. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 

2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health 7, e105–e125 (2022). 

3. Gustavsson, A. et al. Global estimates on the number of persons across the Alzheimer’s disease continuum. 

Alzheimer’s and Dementia 19, 658–670 (2023). 

4. van Dyck, C. et al. Lecanemab in early Alzheimer’s Disease. New England Journal of Medicine vol. 388 

9–21 Preprint at https://doi.org/10.1056/nejmoa2212948 (2023). 

5. Sims, J. R. et al. Donanemab in Early Symptomatic Alzheimer Disease: The TRAILBLAZER-ALZ 2 

Randomized Clinical Trial. JAMA 330, 512–527 (2023). 

6. Budd Haeberlein, S. et al. Two Randomized Phase 3 Studies of Aducanumab in Early Alzheimer’s Disease. 

Journal of Prevention of Alzheimer’s Disease 9, 197–210 (2022). 

7. Huang, L. K., Kuan, Y. C., Lin, H. W. & Hu, C. J. Clinical trials of new drugs for Alzheimer disease: a 

2020–2023 update. Journal of Biomedical Science vol. 30 Preprint at https://doi.org/10.1186/s12929-023-

00976-6 (2023). 

8. Sperling, R. A. et al. The A4 study: Stopping AD before symptoms begin? Sci Transl Med 6, (2014). 

9. Osborne, O. M., Naranjo, O., Heckmann, B. L., Dykxhoorn, D. & Toborek, M. Anti-amyloid: An antibody 

to cure Alzheimer’s or an attitude. iScience 26, 107461 (2023). 

10. d‘Errico, P. & Meyer-Luehmann, M. Mechanisms of Pathogenic Tau and Aβ Protein Spreading in 

Alzheimer’s Disease. Frontiers in Aging Neuroscience vol. 12 Preprint at 

https://doi.org/10.3389/fnagi.2020.00265 (2020). 

11. Nelson, P. T. et al. Alzheimer’s disease is not ‘brain aging’: Neuropathological, genetic, and 

epidemiological human studies. Acta Neuropathologica vol. 121 571–587 Preprint at 

https://doi.org/10.1007/s00401-011-0826-y (2011). 

12. Jack, C. R. et al. A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers. 

Neurology 87, 539–547 (2016). 

13. Boyd, R. J., Avramopoulos, D., Jantzie, L. L. & McCallion, A. S. Neuroinflammation represents a common 

theme amongst genetic and environmental risk factors for Alzheimer and Parkinson diseases. Journal of 

Neuroinflammation vol. 19 Preprint at https://doi.org/10.1186/s12974-022-02584-x (2022). 

14. Dhana, K., Evans, D. A., Rajan, K. B., Bennett, D. A. & Morris, M. C. Healthy lifestyle and the risk of 

Alzheimer dementia: Findings from 2 longitudinal studies. Neurology 95, E374–E383 (2020). 

15. Grasset, L. et al. Explaining the association between social and lifestyle factors and cognitive functions: a 

pathway analysis in the Memento cohort. Alzheimers Res Ther 14, (2022). 

16. Yamazaki, Y., Zhao, N., Caulfield, T. R., Liu, C. C. & Bu, G. Apolipoprotein E and Alzheimer disease: 

pathobiology and targeting strategies. Nature Reviews Neurology vol. 15 501–518 Preprint at 

https://doi.org/10.1038/s41582-019-0228-7 (2019). 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 24, 2024. ; https://doi.org/10.1101/2024.09.23.24314186doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.23.24314186
http://creativecommons.org/licenses/by-nd/4.0/


 

32 

 

17. Fischer, L. & Molloy, E.N. et al. Precuneus activity during retrieval is positively associated with amyloid 

burden in cognitively normal older APOE4 carriers. biorXiv (2024) doi:10.1101/2024.07.18.604145. 

18. Asher, S. & Priefer, R. Alzheimer’s disease failed clinical trials. Life Sciences vol. 306 Preprint at 

https://doi.org/10.1016/j.lfs.2022.120861 (2022). 

19. Hampel, H. et al. Amyloid-related imaging abnormalities (ARIA): radiological, biological and clinical 

characteristics. Brain vol. 146 4414–4424 Preprint at https://doi.org/10.1093/brain/awad188 (2023). 

20. Sperling, R. A. et al. Amyloid-related imaging abnormalities in amyloid-modifying therapeutic trials: 

Recommendations from the Alzheimer’s Association Research Roundtable Workgroup. Alzheimer’s and 

Dementia 7, 367–385 (2011). 

21. Zetterberg, H. & Bendlin, B. B. Biomarkers for Alzheimer’s disease—preparing for a new era of disease-

modifying therapies. Molecular Psychiatry vol. 26 296–308 Preprint at https://doi.org/10.1038/s41380-

020-0721-9 (2021). 

22. Cummings, J. & Kinney, J. Biomarkers for Alzheimer’s Disease: Context of Use, Qualification, and 

Roadmap for Clinical Implementation. Medicina (Lithuania) 58, (2022). 

23. Cohen, S., Cummings, J., Knox, S., Potashman, M. & Harrison, J. Clinical Trial Endpoints and Their 

Clinical Meaningfulness in Early Stages of Alzheimer’s Disease. Journal of Prevention of Alzheimer’s 

Disease vol. 9 507–522 Preprint at https://doi.org/10.14283/jpad.2022.41 (2022). 

24. Weiner, M. W. et al. Recent publications from the Alzheimer’s Disease Neuroimaging Initiative: 

Reviewing progress toward improved AD clinical trials. Alzheimer’s and Dementia vol. 13 e1–e85 Preprint 

at https://doi.org/10.1016/j.jalz.2016.11.007 (2017). 

25. Ellis, K. A. et al. Addressing population aging and Alzheimer’s disease through the Australian Imaging 

Biomarkers and Lifestyle study: Collaboration with the Alzheimer’s Disease Neuroimaging Initiative. 

Alzheimer’s and Dementia vol. 6 291–296 Preprint at https://doi.org/10.1016/j.jalz.2010.03.009 (2010). 

26. Boehm, K. M., Khosravi, P., Vanguri, R., Gao, J. & Shah, S. P. Harnessing multimodal data integration to 

advance precision oncology. Nature Reviews Cancer vol. 22 114–126 Preprint at 

https://doi.org/10.1038/s41568-021-00408-3 (2022). 

27. Shishegar, R. et al. Using imputation to provide harmonized longitudinal measures of cognition across 

AIBL and ADNI. Sci Rep 11, (2021). 

28. Turrisi, R., Squillario, M., Abate, G., Uberti, D. & Barla, A. An Overview of Data Integration in 

Neuroscience With Focus on Alzheimer’s Disease. IEEE J Biomed Health Inform 28, 1824–1835 (2024). 

29. Benjamens, S., Dhunnoo, P. & Meskó, B. The state of artificial intelligence-based FDA-approved medical 

devices and algorithms: an online database. NPJ Digit Med 3, (2020). 

30. European Medicines Agency & Heads of Medicines Agencies. Multi-Annual Artificial Intelligence Work 

Plan 2023-2028: HMA-EMA Joint Big Data Steering Group. (2023) 

doi:https://www.ema.europa.eu/en/documents/work-programme/multi-annual-artificial-intelligence-

workplan-2023-2028-hma-ema-joint-big-data-steering-group_en.pdf. 

31. Aisu, N. et al. Regulatory-approved deep learning/machine learning-based medical devices in Japan as of 

2020: A systematic review. PLOS Digital Health 1, e0000001 (2022). 

32. Kwak, M. G. et al. Self-Supervised Contrastive Learning to Predict the Progression of Alzheimer’s Disease 

with 3D Amyloid-PET. Bioengineering 10, (2023). 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 24, 2024. ; https://doi.org/10.1101/2024.09.23.24314186doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.23.24314186
http://creativecommons.org/licenses/by-nd/4.0/


 

33 

 

33. Behrad, F. & Saniee Abadeh, M. An overview of deep learning methods for multimodal medical data 

mining. Expert Systems with Applications vol. 200 Preprint at https://doi.org/10.1016/j.eswa.2022.117006 

(2022). 

34. Yu, Q. et al. An MRI-based strategy for differentiation of frontotemporal dementia and Alzheimer’s 

disease. Alzheimers Res Ther 13, (2021). 

35. Liscic, R. M., Storandt, M., Cairns, N. J. & Morris, J. C. Clinical and Psychometric Distinction of 

Frontotemporal and Alzheimer Dementias. Arch Neurol 64, 535–540 (2007). 

36. Mueller, S. G. et al. The Alzheimer’s disease neuroimaging initiative. Neuroimaging Clinics of North 

America vol. 15 869–877 Preprint at https://doi.org/10.1016/j.nic.2005.09.008 (2005). 

37. Ellis, K. A. et al. The Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging: Methodology 

and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer’s disease. 

Int Psychogeriatr 21, 672–687 (2009). 

38. Rascovsky, K. et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal 

dementia. Brain 134, 2456–2477 (2011). 

39. Gorno-Tempini, M. L. et al. Classification of primary progressive aphasia and its variants. Neurology 76, 

1006–1014 (2011). 

40. Miyagawa, T. et al. Utility of the global CDR® plus NACC FTLD rating and development of scoring rules: 

Data from the ARTFL/LEFFTDS Consortium. in Alzheimer’s and Dementia vol. 16 106–117 (John Wiley 

and Sons Inc., 2020). 

41. Mattsson, N. et al. CSF biomarker variability in the Alzheimer’s Association quality control program. 

Alzheimer’s and Dementia 9, 251–261 (2013). 

42. Liu, L. et al. Cascaded Multi-Modal Mixing Transformers for Alzheimer’s Disease Classification with 

Incomplete Data. Neuroimage 277, (2023). 

43. Vaswani, A. et al. Attention Is All You Need. ArXiv 1–15 (2017). 

44. Brodersen, K. H., Ong, C. S., Stephan, K. E. & Buhmann, J. M. The balanced accuracy and its posterior 

distribution. in Proceedings - International Conference on Pattern Recognition 3121–3124 (2010). 

doi:10.1109/ICPR.2010.764. 

45. Cardoso, M. J. et al. MONAI: An open-source framework for deep learning in healthcare. ArXiv 1–25 

(2022). 

46. Hao, R., Namdar, K., Liu, L., Haider, M. A. & Khalvati, F. A Comprehensive Study of Data Augmentation 

Strategies for Prostate Cancer Detection in Diffusion-Weighted MRI Using Convolutional Neural 

Networks. J Digit Imaging 34, 862–876 (2021). 

47. Van Der Maaten, L. & Hinton, G. Visualizing Data Using T-SNE. Journal of Machine Learning Research 

9, 2579-2605 (2008). 

48. Schroeter, M. L., Stein, T., Maslowski, N. & Neumann, J. Neural correlates of Alzheimer’s disease and 

mild cognitive impairment: A systematic and quantitative meta-analysis involving 1351 patients. 

Neuroimage 47, 1196–1206 (2009). 

49. Nguyen, H.-D., Clément, M., Mansencal, B. & Coupé, P. Interpretable differential diagnosis for 

Alzheimer’s disease and Frontotemporal dementia. ArXiv, 1-11 (2022). 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 24, 2024. ; https://doi.org/10.1101/2024.09.23.24314186doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.23.24314186
http://creativecommons.org/licenses/by-nd/4.0/


 

34 

 

50. Ma, D., Lu, D., Popuri, K., Wang, L. & Beg, M. F. Differential Diagnosis of Frontotemporal Dementia, 

Alzheimer’s Disease, and Normal Aging Using a Multi-Scale Multi-Type Feature Generative Adversarial 

Deep Neural Network on Structural Magnetic Resonance Images. Front Neurosci 14, (2020). 

51. Hu, J. et al. Deep Learning-Based Classification and Voxel-Based Visualization of Frontotemporal 

Dementia and Alzheimer’s Disease. Front Neurosci 14, (2021). 

52. Nguyen, H.-D., Clément, M., Planche, V., Mansencal, B. & Coupé, P. Deep grading for MRI-based 

differential diagnosis of Alzheimer’s disease and Frontotemporal dementia. ArXiv (2022). 

53. Bron, E. E. et al. Multiparametric computer-aided differential diagnosis of Alzheimer’s disease and 

frontotemporal dementia using structural and advanced MRI. Eur Radiol 27, 3372–3382 (2017). 

54. Mandelli, M. L. et al. Two insular regions are differentially involved in behavioral variant FTD and 

nonfluent/agrammatic variant PPA. Cortex 74, 149–157 (2016). 

55. Bejanin, A. et al. Longitudinal structural and metabolic changes in frontotemporal dementia. Neurology 95, 

E140–E154 (2020). 

56. Lampe, L. et al. Multiclass prediction of different dementia syndromes based on multi-centric volumetric 

MRI imaging. Neuroimage Clin 37, (2023). 

57. Danek, A., Landwehrmeyer, B., Ludolph, A., Anderl-Straub, S. & Otto, M. Predicting primary progressive 

aphasias with support vector machine approaches in structural MRI data. Neuroimage Clin 14, 334–343 

(2017). 

58. Kaufer, D. I. et al. Validation of the NPI-Q, a Brief Clinical Form of the Neuropsychiatric Inventory. J 

Neuropsychiatry Clin Neurosci 12, 233–239 (2000). 

59. Schwertner, E. et al. Behavioral and Psychological Symptoms of Dementia in Different Dementia 

Disorders: A Large-Scale Study of 10,000 Individuals. Journal of Alzheimer’s Disease 87, 1307–1318 

(2022). 

60. Taylor, J. P. et al. Visual hallucinations in dementia with Lewy bodies: Transcranial magnetic stimulation 

study. British Journal of Psychiatry 199, 492–500 (2011). 

61. Ducharme, S. et al. Recommendations to distinguish behavioural variant frontotemporal dementia from 

psychiatric disorders. Brain 143, 1632–1650 (2020). 

62. Ikeda, M., Brown, J., Holland, A. J. & Fukuhara, R. Changes in appetite, food preference, and eating habits 

in frontotemporal dementia and Alzheimer’s disease. J Neurol Neurosurg Psychiatry 73, 371–376 (2002). 

63. Kumfor, F. et al. Examining the presence and nature of delusions in Alzheimer’s disease and frontotemporal 

dementia syndromes. Int J Geriatr Psychiatry 37, (2022). 

64. Rouch, I. et al. One-Year Evolution of Behavioral and Psychological Symptoms of Dementia in Patients 

Initially Hospitalized in Cognitive Behavioral Units: The EVITAL Prospective Cohort. Journal of 

Alzheimer’s Disease 57, 147–155 (2017). 

65. Chouliaras, L. & O’Brien, J. T. The use of neuroimaging techniques in the early and differential diagnosis 

of dementia. Molecular Psychiatry vol. 28 4084–4097 Preprint at https://doi.org/10.1038/s41380-023-

02215-8 (2023). 

66. Yu, Q. et al. An MRI-based strategy for differentiation of frontotemporal dementia and Alzheimer’s 

disease. Alzheimers Res Ther 13, (2021). 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 24, 2024. ; https://doi.org/10.1101/2024.09.23.24314186doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.23.24314186
http://creativecommons.org/licenses/by-nd/4.0/


 

35 

 

67. Miyagawa, T. et al. Utility of the global CDR® plus NACC FTLD rating and development of scoring rules: 

Data from the ARTFL/LEFFTDS Consortium. in Alzheimer’s and Dementia vol. 16 106–117 (John Wiley 

and Sons Inc., 2020). 

68. Samra, K. et al. Extending the phenotypic spectrum assessed by the CDR plus NACC FTLD in genetic 

frontotemporal dementia. Alzheimer’s and Dementia: Diagnosis, Assessment and Disease Monitoring 16, 

(2024). 

69. Dong, A. et al. Heterogeneity of neuroanatomical patterns in prodromal Alzheimer’s disease: links to 

cognition, progression and biomarkers. doi:10.1093/aww335. 

70. Wollman, D. E. & Prohovnik, I. Sensitivity and specificity of neuroimaging for the diagnosis of 

Alzheimer’s disease. Dialogues Clin Neurosci 5, 89–99 (2003). 

71. Frisoni, G. B., Winblad, B. & O’Brien, J. T. Revised NIA-AA criteria for the diagnosis of Alzheimer’s 

disease: A step forward but not yet ready for widespread clinical use. International Psychogeriatrics vol. 

23 1191–1196 Preprint at https://doi.org/10.1017/S1041610211001220 (2011). 

72. Skoog, I. et al. Cerebrospinal fluid beta-amyloid 42 is reduced before the onset of sporadic dementia: A 

population-based study in 85-year-olds. Dement Geriatr Cogn Disord 15, 169–176 (2003). 

73. Hampel, H. et al. The Amyloid-β Pathway in Alzheimer’s Disease. Molecular Psychiatry vol. 26 5481–

5503 Preprint at https://doi.org/10.1038/s41380-021-01249-0 (2021). 

74. Blennow, K. et al. Clinical utility of cerebrospinal fluid biomarkers in the diagnosis of early Alzheimer’s 

disease. Alzheimer’s and Dementia vol. 11 58–69 Preprint at https://doi.org/10.1016/j.jalz.2014.02.004 

(2015). 

75. Shaw, L. M. et al. Cerebrospinal fluid biomarker signature in alzheimer’s disease neuroimaging initiative 

subjects. Ann Neurol 65, 403–413 (2009). 

76. Andreasen, N. et al. Cerebrospinal Fluid-Amyloid (1-42) in Alzheimer Disease Differences Between Early-

and Late-Onset Alzheimer Disease and Stability During the Course of Disease. JAMA Neurol 673–680 

(1999). 

77. Bradfield, N. I. & Ames, D. Mild cognitive impairment: narrative review of taxonomies and systematic 

review of their prediction of incident Alzheimer’s disease dementia. BJPsych Bull 44, 67–74 (2020). 

78. Uddin, M. S. et al. APOE and Alzheimer’s Disease: Evidence Mounts that Targeting APOE4 may Combat 

Alzheimer’s Pathogenesis. Molecular Neurobiology vol. 56 2450–2465 Preprint at 

https://doi.org/10.1007/s12035-018-1237-z (2019). 

79. Kim, J., Basak, J. M. & Holtzman, D. M. The Role of Apolipoprotein E in Alzheimer’s Disease. Neuron 

vol. 63 287–303 Preprint at https://doi.org/10.1016/j.neuron.2009.06.026 (2009). 

80. Davatzikos, C., Bhatt, P., Shaw, L. M., Batmanghelich, K. N. & Trojanowski, J. Q. Prediction of MCI to 

AD conversion, via MRI, CSF biomarkers, and pattern classification. Neurobiol Aging 32, 2322.e19-

2322.e27 (2011). 

81. Petersen, R. C. et al. Alzheimer’s Disease Neuroimaging Initiative (ADNI) Clinical characterization. 

Neurology 74, 201–209 (2010). 

82. Katsanos, A. H. et al. World-wide variations in tests of cognition and activities of daily living in participants 

of six international randomized controlled trials. Cereb Circ Cogn Behav 5, (2023). 

83. Edmonds, E. C. et al. Susceptibility of the conventional criteria for mild cognitive impairment to false-

positive diagnostic errors. Alzheimer’s and Dementia 11, 415–424 (2015). 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 24, 2024. ; https://doi.org/10.1101/2024.09.23.24314186doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.23.24314186
http://creativecommons.org/licenses/by-nd/4.0/


 

36 

 

84. Xue, C. et al. AI-based differential diagnosis of dementia etiologies on multimodal data. Nat Med (2024) 

doi:10.1038/s41591-024-03118-z. 

85. C. Macedo, A. et al. The Use of Tau PET to Stage Alzheimer Disease According to the Braak Staging 

Framework. Journal of Nuclear Medicine 64, 1171–1178 (2023). 

86. Therriault, J. et al. Biomarker modeling of Alzheimer’s disease using PET-based Braak staging. Nat Aging 

2, 526–535 (2022). 

87. Groot, C. et al. Tau Positron Emission Tomography for Predicting Dementia in Individuals With Mild 

Cognitive Impairment. JAMA Neurol (2024) doi:10.1001/jamaneurol.2024.1612. 

88. Tanner, J. A. & Rabinovici, G. D. Relationship Between Tau and Cognition in the Evolution of Alzheimer’s 

Disease: New Insights from Tau PET. Journal of Nuclear Medicine 62, 612–613 (2021). 

89. Yagis, E. et al. Effect of data leakage in brain MRI classification using 2D convolutional neural networks. 

Sci Rep 11, (2021). 

90. Wen, J. et al. Convolutional neural networks for classification of Alzheimer’s disease: Overview and 

reproducible evaluation. Med Image Anal 63, (2020). 

91. Risacher, S. L. et al. Association between anticholinergic medication use and cognition, brain metabolism, 

and brain atrophy in cognitively normal older adults. JAMA Neurol 73, 721–732 (2016). 

92. Lim, A. C. et al. Quantification of race/ethnicity representation in Alzheimer’s disease neuroimaging 

research in the USA: a systematic review. Communications Medicine 3, (2023). 

93. Weiner, M. W. et al. Increasing participant diversity in AD research: Plans for digital screening, blood 

testing, and a community-engaged approach in the Alzheimer’s Disease Neuroimaging Initiative 4. 

Alzheimer’s and Dementia vol. 19 307–317 Preprint at https://doi.org/10.1002/alz.12797 (2023). 

  

 

 

  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 24, 2024. ; https://doi.org/10.1101/2024.09.23.24314186doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.23.24314186
http://creativecommons.org/licenses/by-nd/4.0/


 

37 

 

*Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative 
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complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-

content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf  
** Data used in the preparation of this article was obtained from the Australian Imaging Biomarkers and Lifestyle 

flagship study of ageing (AIBL) funded by the Commonwealth Scientific and Industrial Research Organisation 
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Supplementary Materials: 

 

1. Figures 

 

 

 

 

 

 

Supplementary Figure 1. Description of the 5-Fold valuation process. Five models were trained 

on different data from different participants in a k-fold cross-validation setup. Then average accuracy and standard 

deviations were collected from the different models on the respective validation folds. Finally, explainability 

metrics and post hoc analyses were conducted on each validation fold and aggregated to provide a dataset-level 

analysis. 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 2. Distribution of CDR Scores in FTLDNI Dataset. We used the 

distributions described in the original CDR plus NACC FTLD as a reference and compared this to our input CDR 

values. Given the similarity between the original version and the version used in our modeling, we conclude that 

the score matches the classic formulation of the CDR global score, thereby reducing the chances of biasing our 

model.   
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2. Tables 

 

Supplementary Table1: Characteristics and distribution of endpoints of studies’ 

participants across datasets. 

 
ADNI  

(n=9138) 

AIBL 

(n=1689) 

FTLDNI 

(n=1106) 

Age 
74.75 ± 7.46 

missing: 0% 

75.93 ± 6.76 

missing: 0.1% 

64.83 ± 7.41 

missing: 0% 

Sex 

'F': N=4961, 

'M': N=4176 

missing: 0% 

'F': N=876, 

'M': N=813 

missing: 0% 

'F': N=532, 

'M': N=574, 

missing: 0% 

Years of education 
16.04 ± 2.75 

missing: 0% 
̶ 

16.52 ± 2.51 

missing: 2.4% 

MCI conversion time 

(months) 
27.71 ± 24.44 25.42 ± 11.45 ̶ 

MMSE  

(total score) 

26.84 ± 3.76 

missing: 6.8% 

27.47 ± 3.75 

missing: 0.2% 

25.73 ± 5.90 

missing 13.7% 

MoCA  

(total score) 

23.86 ± 4.46 

missing: 83.0% 
̶ 

25.73 ± 5.90 

missing: 54.2% 

Geriatric Depression Scale 

(total score) 

1.61 ± 1.86 

missing: 18.7% 
̶ 

2.73 ± 3.24 

missing: 25.5% 

CDR  

(global score) 

0.42 ± 0.42 

missing: 7.5% 

0.21 ± 0.41 

missing: 0.4% 

0.21 ± 0.41 

missing: 20.2% 

WMS IV - Logic Memory II 

(Total Number of Story 

Units Recalled) 

8.60 ± 6.19 

 

missing: 24.7% 

9.41 ± 5.39 

missing: 1% 
̶ 

WMS IV - Logic Memory I 

(Total Number of Story 

Units Recalled) 

10.59 ± 5.53 

missing: 24.5% 

10.98 ± 4.87 

missing: 1.4% 
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APOE 

(3,3): N=4330, 

(3,4): N=2909, 

(4,4): N=821, 

(2,3): N=685, 

(2,4): N=192, 

(2,2): N=20 

 

missing: 2.0% 

(3,3): N=850, 

(3,4): N=469, 

(4,4): N=201, 

(2,3): N=98, 

(2,4): N=40, 

(2,2): N=4 

 

missing: 1.6% 

̶ 

 

Amyloid-1-42 (CSF) 

912.03 ± 439.52 

 

missing: 73.5% 

 

̶ 

 

̶ 

Amyloid-1-40 (CSF) 

16813.19 ± 

4507.24 

 

missing: 93.0% 

̶ ̶ 

Tau (CSF) 

256.69 ± 84.97 

 

missing: 73.7% 

̶ ̶ 

P-Tau (CSF) 

23.94 ± 9.09 

 

missing: 73.7% 

̶ ̶ 

NFL (CSF) 

1466.19 ± 

1036.36 

 

missing 95% 

̶ ̶ 

Gap43 (Plasma) 

4989.20 ± 

2218.84 

 

missing: 90.2% 

̶ ̶ 
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NT1 Tau (Plasma) 

2.28 ± 0.60 

 

missing: 94.4% 

̶ ̶ 

pTau181 (Plasma) 

15.59 ± 7.21 

 

missing 76.4% 

̶ ̶ 

NFL (Plasma) 

36.43 ± 13.54 

 

missing 76.3% 

̶ ̶ 

T1w MRI 

N=9124 

 

missing: 0.15% 

N=1118 

 

missing: 33.8% 

N=1039 

 

missing: 6.06% 
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Supplementary Table 2: Characteristics and distribution of endpoints of studies’ 

participants across diagnoses. 

 
AD  

(n=1931) 

CN 

(n=4781) 

sMCI 

(n=2767) 

pMCI 

(n=1030) 

bvFTD 

(n=264) 

nfvPPA 

(n=137) 

svPPA 

(n=147) 

Age 

75.78 ± 

7.64 

missing: 

0% 

74.15 ± 

7.38 

missing: 

0% 

74.39 ± 

7.94 

missing: 

0% 

74.52± 

7.49  

 

missing: 

0% 

62.53 ± 

5.78 

 

missing: 

0% 

68.26 ± 

7.39 

 

missing: 

0% 

63.59 ± 

6.20 

 

missing: 

0% 

Sex 

'F': 

N=1072, 

'M': 

N=859 

missing: 

0% 

'F': 

N=2396, 

'M': 

N=2385 

missing: 

0% 

'F': 

N=1554, 

'M': 

N=1212, 

missing: 

0% 

'F': 

N=616, 

'M': 

N=414, 

missing: 

0% 

'F': 

N=90, 

'M': 

N=174 

 

missing: 

0% 

'F': 

N=74,  

 

'M': 

N=63 

 

missing 

0% 

'F': 

N=62, 

 

'M': 

N=85 

 

missing 

0% 

Years of 

education 

15.46 ± 

2.86 

missing: 

8.2% 

16.61 ± 

2.47 

missing: 

26.7% 

16.0 ± 

2.83 

missing: 

7.0% 

15.89 ± 

2.64 

 

missing: 

6.2% 

15.85 ± 

2.86 

 

missing: 

1.9% 

16.05 ± 

2.64 

 

missing: 

1.5% 

16.44 ± 

2.64 

 

missing: 

2.0% 

MMSE  

(total 

score) 

21.58 ± 

4.56 

missing: 

4.3% 

29.00 ± 

1.24 

missing: 

4.7% 

27.76 ± 

2.12 

missing: 

8.8% 

26.26 ± 

2.63 

 

missing: 

7.3% 

22.34 ± 

6.80 

 

missing: 

9.5% 

24.57 ± 

5.63 

 

missing: 

19.7% 

22.17 ± 

6.86 

 

missing: 

16.3% 

MoCA  

(total 

score) 

16.36 ± 

5.21 

missing: 

92.4% 

26.47 ± 

2.54 

missing: 

78.8% 

22.98 ± 

3.35 

missing: 

84.9% 

20.66 ± 

2.88 

 

missing 

96.6% 

16.84 ± 

7.33 

 

missing: 

47.3% 

19.67 ± 

6.45 

 

missing: 

57.7% 

16.49 ± 

5.76 

 

missing: 

53.7% 

Geriatric 

Depression 

Scale 

(total 

score) 

1.99 ± 

2.04 

missing: 

27.2% 

1.03 ± 

1.51 

missing: 

36.3% 

1.85 ± 

1.84 

missing: 

24.6% 

1.81 ± 

1.79 

 

missing: 

35.7% 

4.05 ± 

3.60 

 

missing: 

26.1% 

2.96 ± 

3.03 

 

missing: 

28.5% 

4.85 ± 

3.79 

 

missing: 

36.1% 
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CDR  

(global 

score) 

0.95 ± 

0.49 

missing: 

4.8% 

0.03 ± 

0.13 

missing: 

7.5% 

0.46 ± 

0.16 

missing: 

9.5% 

0.53 ± 

0.17 

 

missing: 

7.3% 

1.40 ± 

0.71 

 

missing: 

4.5% 

0.59 ± 

0.56 

 

missing: 

4.4% 

0.91 ± 

0.54 

 

missing: 

10.2% 

WMS IV - 

Logic 

Memory II 

(Total 

Number of 

Story 

Units 

Recalled) 

1.35 ± 

2.54 

 

missing: 

24.7% 

13.03 ± 

4.13 

missing: 

20.5% 

7.90 ± 

4.79 

missing: 

26.2% 

3.79 ± 

3.67 

 

missing: 

35.5 

̶ ̶ ̶ 

WMS IV - 

Logic 

Memory I 

(Total 

Number of 

Story 

Units 

Recalled) 

4.03 ± 

3.29 

missing: 

23.9% 

14.20 ± 

3.84 

missing: 

20.4% 

10.16 ± 

4.31 

missing: 

26.1% 

7.33 ± 

3.61 

 

missing: 

35.4% 

̶ ̶ ̶ 

APOE 

(3,3): 

N=559, 

(3,4): 

N=859, 

(4,4): 

N=384, 

(2,3): 

N=47, 

(2,4): 

N=51, 

(2,2): 

N=4 

missing: 

1.4% 

(3,3): 

N=2428, 

(3,4): 

N=1054, 

(4,4): 

N=112, 

(2,3): 

N=546, 

(2,4): 

N=85, 

(2,2): 

N=19 

                  

missing: 

1.6% 

(3,3): 

N=1435, 

(3,4): 

N=807, 

(4,4): 

N=198, 

(2,3): 

N=203, 

(2,4): 

N=51, 

(2,2): N=1 

                  

missing: 

2.6% 

 

(3,3): 

N=340, 

(3,4): 

N=469, 

(4,4): 

N=164, 

(2,3): 

N=24, 

(2,4): 

N=33, 

(2,2): 

N=0 

                  

missing: 

0% 

 

̶ ̶ ̶ 
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Amyloid-

1-42 (CSF) 

613.89 ± 

257.11 

 

missing: 

76.2% 

 

1047.08 

± 391.32 

 

missing: 

84.4% 

 

 

908.02 ± 

391.09 

 

missing: 

80.2% 

 

678.80 ± 

255.25 

 

missing: 

73.8% 

̶ ̶ ̶ 

Amyloid-

1-40 (CSF) 

16770.82 

± 

4764.81 

 

missing: 

97.2% 

16607.53 

± 

4078.15 

 

missing: 

92.7% 

 

16270.73± 

4568.60 

 

missing: 

95.8% 

 

17579.74 

± 

4020.97 

 

missing: 

98.2% 

̶ ̶ ̶ 

Tau (CSF) 

295.38 ± 

69.69 

missing: 

82.9% 

229.09 ± 

70.18 

 

missing: 

81.7% 

237.76 ± 

74.38 

 

missing: 

79.0% 

276.22 ± 

74.37 

 

missing: 

80.5% 

̶ ̶ ̶ 

P-Tau 

(CSF) 

28.40 ± 

7.60 

 

missing: 

82.7% 

20.54 ± 

6.96 

 

missing: 

81.8% 

22.04 ± 

7.86 

 

missing: 

78.9% 

26.63 ± 

8.11 

 

missing: 

80.5 

̶ ̶ ̶ 

NFL 

(CSF) 

1375.24 

± 344.55 

 

missing 

95.9% 

1057.09 

± 377.31 

 

missing 

97.9% 

1269.81± 

383.57 

 

missing 

97.6% 

1300.45 

± 363.73 

 

missing 

92.5% 

̶ ̶ ̶ 

Gap43 

(Plasma) 

5560.02 

± 

1881.73 

 

missing: 

94.5% 

4596.43 

± 

1865.51 

 

missing: 

94.1% 

4436.70 ± 

1895.26 

 

missing: 

88.8% 

5353.33 

± 

1768.72 

 

missing: 

90.9% 

̶ ̶ ̶ 
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NT1 Tau 

(Plasma) 

2.31 ± 

0.54 

 

missing: 

94.7% 

2.24 ± 

0.64 

 

missing: 

94.9% 

2.31 ± 

0.54 

 

missing: 

96.4% 

2.38 ± 

0.60 

 

missing: 

95.8% 

̶ ̶ ̶ 

pTau181 

(Plasma) 

19.50 ± 

5.73 

 

missing 

85.4% 

13.28 ± 

6.12 

 

missing 

85.1% 

14.20 ± 

6.45 

missing 

72.8% 

16.85 ± 

6.01 

 

missing 

84.4% 

̶ ̶ ̶ 

NFL 

(Plasma) 

41.89 ± 

5.73 

 

missing 

76.3% 

33.49 ± 

11.66  

 

missing 

85.1% 

32.99 ± 

12.06  

 

missing 

72.9% 

37.57 ± 

10.50 

 

missing: 

84.3% 

̶ ̶ ̶ 

T1w MRI 

N=1873 

missing: 

3% 

N=4332 

missing: 

9.39% 

N=2701 

missing: 

2.39% 

N=1005 

 

missing: 

2.43% 

N=247 

 

missing: 

6.44% 

N=122 

 

missing: 

10.95% 

N=136 

 

missing: 

7.48% 
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3. State of the art (SOTA) - Comparisons to existing literature: 

To compare our results to existing literature, we collected the balanced accuracies reported 

by the below studies. When the balanced accuracy score was not provided, we relied on 

sensitivity and specificity to compute the metric by summing the sensitivity and specificity 

metrics and dividing number that by 2.   

1. Folego, G., Weiler, M., Casseb, R. F., Pires, R. & Rocha, A. Alzheimer’s Disease 

Detection Through Whole-Brain 3D-CNN MRI. Front Bioeng Biotechnol 8, (2020). 

2. Pan, D. et al. Early Detection of Alzheimer’s Disease Using Magnetic Resonance 

Imaging: A Novel Approach Combining Convolutional Neural Networks and Ensemble 

Learning. Front Neurosci 14, (2020). 

3. Zhang, F. et al. A Single Model Deep Learning Approach for Alzheimer’s Disease 

Diagnosis. Neuroscience 491, 200–214 (2022). 

4. Wen, J. et al. Convolutional Neural Networks for Classification of Alzheimer’s 

Disease: Overview and Reproducible Evaluation. Med Image Anal 63, (2020). 

5. Basaia, S. et al. Automated classification of Alzheimer’s disease and mild cognitive 

impairment using a single MRI and deep neural networks. Neuroimage Clin 21, (2019). 

6. Bron, E. E. et al. Multiparametric computer-aided differential diagnosis of Alzheimer’s 

disease and frontotemporal dementia using structural and advanced MRI. Eur Radiol 27, 3372–

3382 (2017). 

7. Nguyen, H.-D., Clément, M., Planche, V., Mansencal, B. & Coupé, P. Deep grading 

for MRI-based differential diagnosis of Alzheimer’s disease and Frontotemporal dementia. 

ArXiv (2022). 

8. Hu, J. et al. Deep Learning-Based Classification and Voxel-Based Visualization of 

Frontotemporal Dementia and Alzheimer’s Disease. Front Neurosci 14, (2021). 
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