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Associations Between Lipid Traits and Breast Cancer Risk: A Mendelian Randomization Study in African Women 

ABSTRACT 

Blood lipids are associated with breast cancer. An increasing number of reports have attempted to explore the genetic connection between 

blood lipids and the risk of developing breast cancer. However, observational studies can be affected by confounding factors and reverse 

causation, which can compromise the reliability of the findings. We used univariate and multivariable two-sample mendelian 

randomization to explore the causal association between blood lipids and breast cancer. Summary-level data for lipid traits were obtained 

from the Africa Wits-INDEPTH partnership for Genomic Research (AWI-Gen) (N= 10,603, 58.5% of women). For breast cancer, we 

leveraged summary statistics from the most comprehensive Genome-wide Association Studies (GWAS) on breast cancer consisting of 

18,034 cases and 22,104 controls of women of African ancestry. Our analysis suggests that genetically predicted triglycerides had a 

potential protective effect on breast carcinoma (OR = 0.73, 95% CI = 0.56, 0.95, FDR = 0.001). We found no evidence that genetically 

elevated levels of TC, HDL, and LDL may be associated with the risk of breast cancer TC (OR = 1.04; 95% CI, 0.93, 1.18; FDR = 

0.029); HDL (OR = 1.29, 95% CI = 0.93, 1.79, FDR = 0.008); LDL (OR = 1.04, 95% CI = 0.90, 1.20, FDR = 0.036). Multivariate 

mendelian randomization analysis, which adjusted for the effects of TG, TC, LDL, and HDL, attenuated the observation of TG and 

breast cancer and also found no relationship between TC, HDL, LDL, and breast cancers. Furthermore, there was no evidence for a 

causal association between lipid traits and breast cancer subtypes. Our findings were robust in several sensitivity analyses. This study 

provides strong evidence that circulating TG may be associated with a decreased risk of breast cancer, while TC, LDL and HDL may 

not be related to the risk of breast cancer among African women. 

Introduction  

Breast cancer (BC) is the second leading cause of cancer-related deaths among women worldwide, and understanding the causes of the 

factors is crucial to develop effective treatments [1]. Over the last 20 years, the annual increase in BC incidence has increased by 

approximately 0.33%, representing an increase from 876,990 cases to 2,002,350 [2]. Currently, Africa has the highest age-standardized 
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breast cancer globally [3-5]. In particular, sub-Saharan African regions have the highest incidence rates [2, 4, 6, 7]. Given the best-

studied risk factors for breast cancer, metabolic and behavioral risks remain the leading contributors to breast cancer-related deaths 

worldwide [8-11]. Furthermore, women with BRCA1 and BRCA2 mutations are significantly at increased risk of developing breast 

cancer, and these mutations have become a major focus of research [12-15]. Understanding and addressing these risk factors, especially 

in populations with higher breast cancer rates such as those of African descent, is essential. This knowledge is a crucial step toward 

creating targeted prevention strategies and improving treatment outcomes for women affected. 

Cholesterol is a major metabolic factor associated with the risk of breast cancer, as elevated levels can contribute to tumor progression 

and metastasis [16-19]. Although growing experimental evidence suggests a possible link between plasma lipoprotein (the carriers of 

cholesterol) levels and breast cancer incidence [17-19], it is not clear whether cholesterol directly influences breast cancer susceptibility 

in African populations. This knowledge gap is largely due to the limited number of epidemiological studies and genome-wide association 

studies (GWASs) conducted among women of African ancestry [20]. Observational studies have reported contrasting relationships—

positive, negative, or null—between lipid levels and breast cancer risk [21-23]. For example, a comprehensive meta-analysis found that 

high-density lipoprotein (HDL) and low-density lipoprotein (LDL) can significantly increase Triple Negative and Luminal B BC, among 

African women, but they did not find an association with overall BC [22]. Another study reported an inverse association between breast 

cancer risk and increased levels of total cholesterol (TC), suggesting an interaction of circulating cholesterol levels with breast cancers 

[24].  However, these findings can be influenced by confounders that can obscure the relationship between cholesterol and breast cancer 

[25, 26]. Consequently, a high-powered causal inference analysis of lipids in BC is required. To our knowledge, there is no study that 

has systematically explored the potential genetic causation between serum lipid profiles and breast cancers in the African population. 

Mendelian randomization (MR) analysis is a widely used technique to determine whether specific genetic variants have a causal effect 

on a particular trait or disease [26, 28]. MR leverages genetic variants that are randomly assigned at conception as instrumental variables 

(IV) [29]. By analyzing these genetic variants in relation to an exposure and its outcome using GWAS data, MR can identify whether 

the exposure directly causes the outcome. This approach minimizes the influence of confounders and biases, providing clearer insights 
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into causal relationships [28]. In European populations, MR has been applied to establish causal links between various predictive factors 

and diseases, including lipid levels and risk of BC [30, 31]. For example, Orho-Melander and colleagues, using a small sample of 1,187 

BC cases, found that increased HDL cholesterol and reduced triglycerides (TG) might increase the risk of breast cancer, while no 

association with LDL was observed [31]. On the contrary, another study that analyzed larger GWAS datasets reported nominal positive 

associations between LDL cholesterol levels and overall breast cancer risk, as well as between HDL cholesterol levels and estrogen 

receptor-positive breast cancer [32]. More recently, Johnson et al. also identified associations between HDL and LDL cholesterol and 

an increased risk of breast cancer but Jiang and colleagues found no statistically significant associations between any lipid traits and 

breast cancer [33, 34]. 

Despite these promising findings, caution is warranted when generalizing these results to other populations, such as those of African 

ancestry, due to differences in genetic architecture between populations [35]. This highlights the need for further research to determine 

whether the causal relationships observed in European populations apply to other groups. In this study, we used MR to investigate 

whether genetically elevated lipid traits influence BC susceptibility, including both overall BC and specific subtypes, in African women. 

We leverage a recently published largest GWAS on breast cancer, which includes 18,034 cases and 22,104 controls from women of 

African ancestry, a dataset that has not yet been used in MR studies of breast cancer [36]. Briefly, we employed two-sample bidirectional 

MR to assess causal associations between circulating LDL, HDL, TC, and TG on the risk of total breast cancer, estrogen receptor-

positive (ER-positive) breast cancer, estrogen receptor negative (ER negative) breast cancer, and triple-negative breast cancer (TNBC). 

We found possible risk-decreasing effects of increased TG that may have implications for overall breast cancer prevention.  

Methods 

Overview of the Study Design  

The main analysis focused on the causal relationship of the lipid level with breast cancer and its molecular subtypes. Specifically, we 

investigated the causal effect of various blood lipids (TC, HDL, LDL, and TG), individually, on the development of breast cancer. These 
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included 16 MR analyses using summary-level data from large-scale meta-analyses of genome-wide association studies. In addition, a 

reverse analysis was performed to understand whether breast cancer has a possible causal influence on lipid levels. Subsequently, a 

multivariate analysis was performed to establish the independent effect of each lipid type on the outcomes of breast cancer. The three 

main assumptions underlying MR, as illustrated in Fig. 1, are: first, instrumental variables (IVs) must be strongly associated with the 

exposure being studied; second, these IVs must not be linked to any confounding factors that could influence the relationship between 

the exposure and outcome; and third, genetic instruments should influence the outcome only through exposure. Details of sources of 

data used in this manuscript are summarized in Table S1. To reduce population stratification, all analyses were restricted to only African 

population. 

 

 

 

 

 

 

 

 

 

 
Figure 1. Study Overview. MR depends on three key assumptions. The exposures in the study were serum lipids, 

while the outcomes were breast cancer and its subtypes. TC total cholesterol, HDL-C high density lipoprotein 

cholesterol, LDL-C low density lipoprotein cholesterol, TG total triglyceride. 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

 is the(which was not certified by peer review)The copyright holder for this preprint this version posted September 24, 2024. ; https://doi.org/10.1101/2024.09.23.24314169doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.23.24314169
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

GWAS data sources 

Instrumental variables for this study were derived from large-scale genome-wide GWAS conducted on individuals of African ancestry. 

Genetic instruments for lipid traits were obtained from two key studies: the African Partnership for Chronic Disease Research (APCDR) 

and the Africa Wits-IN-DEPTH Partnership for Genomics Studies (AWI-Gen), which together included up to 24,215 participants. For 

breast cancer outcomes, we used a recent GWAS dataset comprising 18,034 cases and 22,104 controls. The outcomes examined included 

general breast cancer (18, 034), ER positive breast cancer (n = 9,304), estrogen ER negative breast cancer (n = 4,924) and TNBC (n = 

2,860). These outcomes variables were defined by the African Ancestry Breast Cancer Genetic (AABCG) Consortium. Genotyping in 

these studies was performed using Illumina arrays or the Multi-Ethnic Genotyping Array (MEGA). Rigorous quality control (QC) 

procedures were applied to both datasets, including the removal of SNPs with missingness greater than 0.05, minor allele frequency 

(MAF) less than 0.01, and Hardy-Weinberg equilibrium (HWE) P-value less than 0.0001. Additional steps included imputation to the 

1000 Genomes Project reference panel and adjustments for age, study design, and the first five principal genetic components. Ethical 

approval and participant consent were obtained in the original studies. All lipid data sets are available for download from the IEU 

OpenGWAS database (https://gwas.mrcieu.ac.uk/datasets/), and breast cancer datasets can be accessed from 

https://www.ebi.ac.uk/gwas/studies. Additional information on GWAS can be found in the original studies [37, 38]. 

Extraction of SNPs associated with lipid traits 

We identified SNPs associated with each lipid trait from MRCIEU at a genome-wide significance threshold (p < 5 × 10-8). To ensure the 

independence of IVs, SNPs in the disequilibrium of the linkage (LD) with each other were removed using an LD pruning threshold of 

r2 = 0.001 and a kilobase (KB) threshold of 1000. The SNPs in the lipid datasets underwent screening, and consistency was ensured by 

harmonizing the direction of effect values between the exposure and outcome data. Ambiguous SNPs with incompatible alleles (e.g., A 

/ G vs. A/C) were excluded from the analysis. Palindromic SNPs with intermediate allele frequencies (between 0.45 and 0.55) were also 
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removed to minimize potential confounding effects that could violate the assumption of independence [39]. To assess the strength of 

selected SNPs, we calculated the F-statistic (F = beta2/se2) for each instrumental variable (IV). IVs with an F-statistic below 10 were 

considered weak instruments and therefore excluded from the analysis [40].  

Quality Control and Data Standardization 

Quality control of the breast cancer summary statistics was carried out following the guidelines outlined by Murphy et al. [41]. We 

utilized MungeSumstats, a Bioconductor R package, to standardize and process the summary statistics. MungeSumstats employs a series 

of automated quality control procedures to ensure data consistency and accuracy. Firstly, we standardized the column headers and 

checked the consistency of the data set, confirming that the alleles were correctly represented and aligned with the reference genome. 

Non-biallelic SNPs were removed, and any missing SNP IDs were imputed on the basis of base pair positions and chromosome numbers. 

Identified indels, as well as duplicated RSIDs and base pair positions, were excluded from the dataset. Next, we verified that the 

directionality of the effect alleles matched the reference genome. Any discrepancies in allele alignment were corrected by flipping the 

effect columns as needed. We also performed a change from hg38 to hg19 to align the summary statistics with the appropriate genomic 

coordinates, as the exposure dataset was stored in hg19. Further processing included renaming columns to accurately reflect minor or 

major allele frequencies and converting the summary statistics into the GenomicRanges format for better integration.  

Univariable Mendelian Randomization analysis 

We conducted two-sample MR analyses using inverse variance weighted (IVW), weighted-median (WM), and MR-Egger models to 

estimate the casual relationship between lipid traits (TG, TC, HDL, and LDL) and the risk of breast cancers [42-44]. We use the random 

effect IVW method as the main effect size estimator [45]. The IVW regression model combines genetic variant-specific causal estimates 

weighted by the inverse of their variances [42]. The approach assumes the validity of the genetic instruments under the assumptions of 

no heterogeneity and no horizontal pleiotropy and, therefore, provides robust estimates of the causal effects. In the case of heterogeneity 

but no horizontal pleiotropy, the weighted median method was applied [44]. This method provides reliable estimates of the causal effect 
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if at least half the weight comes from valid variants. However, when heterogeneity, or variation in causal estimates across genetic 

variants, and horizontal pleiotropy, where genetic variants influence multiple traits, were detected in our MR analyses, we performed 

the MR-Egger regression method for our analysis. Specifically, MR-Egger regression allows for an intercept term, which estimates the 

average pleiotropic effect across all variants used as instruments, to address biases induced by pleiotropy. Other MR algorithms, such 

as those for the simple median and simple mode described by Bowden, were also applied in this study to further assess the robustness 

of these findings. 

Multivariable Mendelian Randomization analysis  

Since lipid traits are genetically related, we use MVMR to assess the direct effects of lipid traits on breast cancer outcomes, following 

the method described by Sanderson et al. [46, 47]. Here, we retrieved genetic-associated variants for all the exposures across their 

summary datasets. The SNPs for all traits (TC, HDL, LDL and TG) were combined and we then filtered for genome-wide significance 

(P < 5 × 10−8) and for linkage disequilibrium (r2 < 0.001). To test for the presence of weak instruments, we evaluated the strength and 

validity of IVs. We also performed horizontal pleiotropy testing using conventional Q-statistic estimation. 

Sensitivity Analyses 

Heterogeneity among genetic variants was assessed using Cochrane's Q value of the IVW method, with p < 0.05 indicating significant 

heterogeneity [48]. We used the MR-Egger intercept to check whether horizontal pleiotropy influenced our results [49]. A p-value greater 

than 0.05 suggested that pleiotropy was not a significant factor. Furthermore, MR-PRESSO was used to detect and correct outliers in 

the analysis [50]. The MR-PRESSO approach is derived from the IVW method but includes the removal of genetic variants whose 

specific causal estimates deviate from those of other variants [50]. Nonetheless, a leave-one-out approach was employed to evaluate the 

effect of each exposure SNP on the outcome of the MR analysis [51]. We achieved this by removing variant one by one from the analysis 

and re-estimating the causal effect. The results were presented as odds ratios (OR) and 95% confidence intervals (CI), providing an 
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estimate of how lipid traits influence the probability of developing breast cancer [52]. P-value < 0.05 suggests that the observed 

association between lipid trait (risk factor) and the likelihood of developing breast cancer (outcome) is unlikely to be due to chance 

alone. To account for multiple tests in our analyses, we applied the false discovery rate (FDR) based on the Benjamini and Hochberg 

method (P value < 0.05/16 = 0.003125) [53]. All statistical analyses were performed in the R software version 4.2.2, using packages 

including TwoSampleMR, MVMR, MR-PRESSO and MendelianRandomization [54-56].  

Results 

Single-trait MR in BC 

In our study, we investigated the relationship between four lipid traits (i.e., TC, HDL-cholesterol, LDL-cholesterol and TGs), and breast 

cancer risk using data from the AWI-GEN study. In the forward analysis, we identified 16 SNPs, 8 SNPs, 14 SNPs and 6 SNPs associated 

with TC, HDL, LDL, and TG, respectively, at a genome-wide significance level (P < 5 × 10−8) (Table 1). In reverse analysis, 6 SNPs 

related to BC were selected as IVs.  F statistics for all selected traits exceeded 10, indicating that there was no evidence of weak 

instrument bias. These SNPs explained approximately 0.2, 0.4, 3.6 and 3.7% of the variance of TG, HDL, TC and LDL, respectively 

(Table 1). Information on SNPs for the exposure and outcome is listed in Table S1. 

Type GWAS ID Trait nSNPs F-statistics R2 (%) Sample size Population PMID Year 

Exposure ebi-a-

GCST90101747 

Total 

Cholesterol 

16 78.8 3.6 24612 African, 

females, males 

35546142 2022 

 
ebi-a-

GCST90101746 

High Density 

Lipoprotein 

8 35.7 0.4 24616 African, 

females, males 

35546142 2022 

 
ebi-a-

GCST90101745 

Low Density 

Lipoprotein 

14 169.5 3.7 24515 African, 

females, males 

35546142 2022 
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Table 1. Characteristics of the exposure variables.  nSNPs, number of SNPs 

In univariable MR analyses, triglyceride was found to be a protective factor against breast cancer. The IVW method indicated that 1-

standard-deviation increase in TG was associated with an approximately 0.7-fold decrease in the risk of overall breast cancer (OR = 

0.73, 95% CI = 0.56–0.95, FDR = 0.001; Fig 2, Table 2). To further confirm our results, we conducted additional MR analyses using 

various methods, including MR-PRESSO, IVW fixed effect method, MR-Egger, weighted median, and robust adjusted profile scores 

(RAPs) methods. The negative association was consistent across all these methods (Fig. 3 and S2).  

 

 

 

 

 

 

 

 

 

 
ebi-a-

GCST90101748 

Triglyceride 6 47.3 0.2 24600 African, 

females, males 

35546142 2022 

 
GCST90296719 Breast cancer 6 2073 0.8 18034 African, 

females 

38741014 2024 

Figure 2. Estimates of triglyceride levels on the risk of breast cancer. Note: FDR, False Discovery Rate; Pval, P-

value, CI, Confidence interval; IVW_random, random effect inverse-variance weighted; IVW_fixed, fixed effects 

inverse-variance weighted; MR-PRESSO, MR-pleiotropy residual sum and outlier; RAPS, robust adjusted profile 

score. 
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Figure 3. Estimates of triglyceride levels on the risk of breast cancer and its subtypes. Note: FDR, False Discovery 

Rate; CI, Confidence interval; TC, Total Cholesterol; HDL, High Density Lipoprotein; LDL, Low Density Lipoprotein; 

TG, Triglycerides; ER+, Estrogen Positive; ER-, Estrogen Negative; TNBC, Triple Negative breast cancer. Colored 

star indicates significant association 
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There was no evidence that TC was associated with the odds of overall breast cancer (OR = 1.04; 95% CI, 0.93–1.18; FDR = 0.029) 

(Table S2). Similarly, we did not observe any relationship with HDL or LDL-cholesterol, and the risk of breast cancer (Table S2). The 

effect directions from the other five methods were consistent with IVW (Table S2). Estimates of all causal associations between lipids 

and overall breast cancer are shown in Figure 2. In a reciprocal single-trait MR test, we did not observe a relationship between the 

genetically determined risk of BC in each lipid trait (Table S12).  
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Risk factors Overall Breast 

cancer 

ER+ breast 

cancer 

ER- breast 

cancer 

TN breast cancer 

 
OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) 

Total Cholesterol 

(mg/dL) 

    

Inverse variance 

weighted 

1.04 (0.93–1.18) 1.12 (0.94–1.34) 1.10 (0.92–1.33) 1.12 (0.89–1.41) 

Weighted median 1.06 (0.91–1.23) 1.14 (0.93–1.39) 1.14 (0.89–1.45) 1.17 (0.87–1.58) 

MR Egger 1.16 (0.92–1.47) 1.45 (1.07–1.98) 1.19 (0.82–1.72) 1.33 (0.84–2.12) 

Weighted mode 1.05 (0.89–1.24) 1.17 (0.95–1.44) 1.14 (0.88–1.49) 1.20 (0.88–1.63) 

Simple mode 1.01 (0.78–1.29) 1.00 (0.68–1.46) 1.20 (0.79–1.81) 1.18 (0.70–1.98) 

HDL Cholesterol 

(mg/dL) 

    

Inverse variance 

weighted 

1.29 (0.93–1.79) 1.17 (0.72–1.92) 0.91 (0.43–1.93) 1.39 (0.53–3.65) 

Weighted median 1.26 (0.85–1.86) 1.00 (0.60–1.65) 1.02 (0.52–2.00) 1.01 (0.43–2.41) 

MR Egger 1.96 (0.49–7.84) 0.66 (0.04–10.39) 6.26 (0.54–

72.38) 

26.75 (1.64–436.96) 

Weighted mode 1.21 (0.74–1.98) 0.94 (0.52–1.70) 1.13 (0.49–2.60) 0.90 (0.36–2.25) 

Simple mode 1.24 (0.80–1.91) 0.95 (0.49–1.85) 1.15 (0.49–2.69) 0.86 (0.29–2.56) 

LDL Cholesterol 

(mg/dL) 

    

Inverse variance 

weighted 

1.04 (0.90–1.20) 1.14 (0.96–1.35) 1.09 (0.92–1.29) 1.07 (0.84–1.37) 

Weighted median 1.05 (0.93–1.18) 1.16 (1.00–1.34) 1.09 (0.91–1.31) 1.09 (0.87–1.37) 

MR Egger 1.07 (0.83–1.36) 1.21 (0.91–1.61) 1.10 (0.85–1.43) 1.23 (0.85–1.77) 

Weighted mode 1.05 (0.93–1.18) 1.16 (0.99–1.36) 1.09 (0.90–1.33) 1.12 (0.87–1.44) 

Simple mode 1.00 (0.76–1.32) 1.07 (0.74–1.57) 1.08 (0.75–1.55) 0.71 (0.38–1.33) 

Triglycerides (mg/dL) 
    

Inverse variance 

weighted 

0.73 (0.56–0.95) 0.79 (0.56–1.11) 0.73 (0.49–1.09) 0.69 (0.40–1.20) 
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Weighted median 0.71 (0.53–0.96) 0.81 (0.55–1.19) 0.73 (0.46–1.17) 0.89 (0.47–1.67) 

MR Egger 0.60 (0.32–1.15) 0.58 (0.23–1.43) 0.88 (0.32–2.41) 0.60 (0.11–3.22) 

Weighted mode 0.71 (0.48–1.04) 0.91 (0.51–1.62) 0.73 (0.40–1.35) 1.02 (0.39–2.65) 

Simple mode 0.70 (0.47–1.05) 0.97 (0.52–1.81) 0.73 (0.40–1.32) 0.99 (0.35–2.80) 

Table 2. MR results for the relationship between Lipid traits and breast cancers. The MR analysis was performed 

through the TwoSampleMR packages (version 0.6.6) in R (version 4.2.2). All statistical tests were two-sided. P < 

0.05 was considered significant. OR, odds ratio; CI, confidence interval; ER+, Estrogen Positive; ER-, Estrogen 

Negative; TN, Triple Negative. 
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The sensitivity analysis did not indicate significant heterogeneity between the SNPs, as shown by the Cochran Q test (Table 3). The MR 

Egger intercept P-values were all above 0.05, showing no evidence of horizontal pleiotropy (Table 3). Additionally, our leave-one-out 

analysis revealed that no single SNP significantly influenced overall casual estimates (Figs. S5-S8, Table S5-S8). Scatter plots for MR 

analyses are presented in Figs. S1–S4. Finally, the results of the MR-PRESSO analysis did not show outliers (Table 3). 

  
Heterogeneity test Pleiotropy test MRPRESSO   

IVW MR-Egger MR-Egger Intercept global test 

exposure outcomes Q Q_df Q_pval Q Q_df Q_pval intercept SE P P 

TC Overall BC 8.793 9 0.457 7.762 8 7.762 -0.013 0.013 0.340 0.540 

HDL Overall BC 0.494 2 0.781 0.123 1 0.726 -0.028 0.046 0.652 - 

LDL Overall BC 6.803 4 0.147 6.664 3 0.083 -0.005 0.020 0.818 0.479 

TG Overall BC 0.542 3 0.910 0.138 2 0.933 0.019 0.029 0.590 0.935 

TC ER+ BC 12.452 9 0.189 8.616 8 0.376 -0.032 0.017 0.096 0.220 

HDL ER+ BC 2.959 2 0.228 2.517 1 0.113 0.039 0.092 0.747 0.220 

LDL ER+ BC 6.324 4 0.176 5.686 3 0.128 -0.013 0.023 0.602 0.364 

TG ER+ BC 3.281 3 0.350 2.572 2 0.276 0.031 0.041 0.535 0.439 

TC ER- BC 3.930 9 0.916 3.724 8 0.881 -0.009 0.020 0.662 0.924 

HDL ER- BC 4.455 2 0.108 1.264 1 0.261 -0.130 0.082 0.358 - 

LDL ER- BC 1.388 4 0.846 1.365 3 0.714 -0.003 0.021 0.889 0.919 

TG ER- BC 0.563 3 0.905 0.403 2 0.817 -0.018 0.046 0.728 0.918 

TC TNBC 3.568 3 0.312 3.514 2 0.173 -0.028 0.030 0.409 0.634 

HDL TNBC 4.553 2 0.103 0.011 1 0.917 -0.198 0.093 0.279 - 

LDL TNBC 4.957 4 0.292 3.798 3 0.284 -0.028 0.030 0.409 0.525 

TG TNBC 3.568 3 0.312 3.514 2 0.173 -0.018 0.046 0.728 0.349 

 

 

 

Table 3. MR results on heterogeneity and horizontal pleiotropy. Note. Q Cochran Q statistics; SE Standard Error; P 

P-value; TC, Total Cholesterol; HDL, High Density Lipoprotein; LDL, Low Density Lipoprotein; TG, Triglycerides  
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MR with outcome stratified by ER status 

We performed MR analysis to test the relationship between genetically influenced lipids and BC risk stratified by ER-positive, ER-

negative and TNBC status. In these stratified analyses, we found no association between TC, HDL, LDL, and TG and all the three 

subtypes of BC (Table S3-S5). A heterogeneity test found no evidence to reject the null hypothesis of homogeneity between cancer 

subtypes (e.g., HDL: Cochran Q = 2.959, P = 0.228; Table 3). Therefore, we did not observe any substantive differences in the 

relationship of any lipid trait to ER+, ER− or TNBC.  

Multivariable MR  

To test whether the association between lipid traits and breast cancer risk remains robust in the presence of other lipid factors (total 

cholesterol, high-density lipoprotein and low-density lipoprotein), we performed a MVMR analysis. In this approach, we used the four 

lipid traits as exposures and assessed their independent impact on the risk of breast cancer. We compared the IVs used for the lipid traits 

and identified eight overlapping IVs. Of these, 7 were shared between TC and LDL, while 1 IV overlapped between TG and HDL (Fig. 

4). We excluded overlapping SNPs, retaining 9, 7, 7, and 5 unique IVs for TC, LDL, HDL, and TG, respectively (Fig. 4). These unique 

IVs were then used in the MVMR analysis to assess the independent effects of each lipid trait on the risk of BC. We did not observe 

significant relationships between genetically influenced HDL, LDL, TC, and TG with BC (HDL: OR = 0.113, 95% CI = 0.001-14.950, 

P = 0.415; LDL: OR = 3.048, 95% CI = 0.396-23.361, P = 3.048; TC: OR = 1.716, 95% CI = 0.416–7.059, P = 0.483; TG: OR = 6.359, 

95% CI = 0.050-81.530, P = 0.398) (Table S10). Additionally, no association was detected when we considered the molecular subtypes 

(Table S10).  A test for heterogeneity revealed no significant among the IVs (P > 0.05) (Table S11). Interestingly, our results were 

consistent with the univariable MR except for TG whose negative causal association with overall BC was abrogated after accounting 

for the interrelationships between these lipid traits (Table S10). 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

 is the(which was not certified by peer review)The copyright holder for this preprint this version posted September 24, 2024. ; https://doi.org/10.1101/2024.09.23.24314169doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.23.24314169
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

  

 

 

 

 

 

 

 

 

Discussion 

To our knowledge, this is the first study using MR techniques to examine the causal relationship between plasma lipid levels and breast 

cancer risk among African populations, including molecular subtypes—ER+, ER- and TNBC. In the present study, we found that 

genetically elevated triglyceride levels were associated with a reduced risk of overall breast cancer. Our results are in line with other 

scientific reports [32-34, 57-61]. In experimental research, there is a claim that triglycerides could protect against breast cancer by 

Figure 4. Overlap of instrumental variables between lipid traits. TC, Total Cholesterol; HDL, High Density 

Lipoprotein; LDL, Low Density Lipoprotein; TG, Triglycerides  
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shielding cells from fatty acid damage [62]. This protective effect was seen in other types of cancer, such as clear cell renal cell carcinoma 

(ccRCC) [63]. However, it is important to note that this finding contrasts with some other research. For instance, studies that included 

menopausal status in the analysis discovered an increase in TG levels which in turn elevated breast cancer risk [64-67]. This striking 

difference indicates that menopausal status could markedly influence the relationship between triglycerides and the risk of breast cancer. 

Another observation was that the association between TG and BC was attenuated in the multivariate analysis. These changes possibly 

mean that TG levels might not independently affect breast cancer risk [60]. Additionally, we also found no significant associations 

between total cholesterol, LDL, or HDL and breast cancer risk. Even when we stratified by molecular subtypes, the results remained 

unchanged. These results were consistent in various sensitivity analyses. 

Generally, research on the association between serum cholesterol levels and breast cancer risk has produced conflicting results. Although 

some studies suggest positive connection [68, 69], others provide an inverse relationship [24, 58, 70]. But our study did not find any 

significant changes in total cholesterol levels among breast cancer cases. Several studies have not reported no significant link between 

cholesterol levels and breast cancer risk [59, 71-73]. However, these inconsistencies in research outcomes can be attributed to various 

factors such as lifestyle, age, and racial disparity of the study participants [74-76]. Another explanation could be the metabolic status of 

patients, as conditions such as diabetes mellitus, insulin resistance, and obesity can influence cholesterol profiles and contribute to the 

development and progression [77-79]. 

Cholesterol is transported in the body by LDL and HDL, and dysregulated levels of these lipoproteins have been implicated in breast 

cancer [80-82]. Studies using cell lines and animal models have shown that LDL can promote breast cancer cell survival, proliferation, 

and migration [83, 84]. In particular, Gallagher and colleagues demonstrated that elevated circulating LDL contributes to the growth of 

triple-negative and HER2-overexpressing breast cancers [85]. However, our MR study, along with several observational studies, did not 

find an association between LDL and breast cancer risk [86-88]. Interestingly, one study found that genetically higher LDL-C was 

associated with an increased risk of breast cancer [32, 33], but other researchers using similar methods did not find any significant 
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connection [30, 31]. This suggests that the link between LDL and breast cancer risk is still unclear and more research is needed to resolve 

these mixed findings. 

In the context of HDL, we found no association between HDL-C levels and breast cancers, which is consistent with the findings of other 

studies [31, 61, 70, 88]. In particular, Orho-Melander, using MR, did not observe any effect of HDL-C on the risk of breast cancer in 

women of European ethnicity [31]. However, other meta-analyses and prospective studies have reported a linear association between 

HDL-C and breast cancer risk [33, 30, 57, 58, 89-91]. Additionally, some research suggests that serum HDL-C may protect against 

breast carcinogenesis, particularly among postmenopausal women [24, 59, 70]. Our findings differ from these earlier studies, which 

might be due to the weaker effects observed in our summary data, as this could lead to reduced statistical power. Another factor may be 

our inability to account for not only menopausal status but also weight and BMI which are known to interact significantly with 

cholesterol levels and risk of breast cancer [92, 93].  

Strength and Limitations 

This study possesses several significant strengths. First, it is the first study to use MR to determine the genetic association between lipids 

and breast cancer in African women. We included the largest GWAS to date for breast cancer among African women, consisting of 

18,034 cases and 22,104 controls. The four lipid traits obtained from the AWI-GEN study were associated with strong IVs, as indicated 

by F-statistics well above the conventional threshold of 10 which satisfies the first assumption for MR analysis. Additionally, the 

population for both the exposure and outcome datasets consists entirely of African individuals, reducing potential biases related to 

population stratification. Using IVW, WM, MR-Egger, and Cochran Q tests, we tried our best to control pleiotropic effects, a major 

concern in MR studies. The significant negative association between triglycerides and overall breast cancer observed in the IVW model 

was consistent between the WM and MR-Egger models and the MPRESSO algorithms. These findings suggest that elevated TG levels 

may potentially offer a protective effect against breast cancer in African women. As we have highlighted the strengths, there are also 

limitations to our study. The sample size, particularly for the lipid traits, was relatively small, which may have reduced the statistical 
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power to detect associations. Moreover, due to the limited number of GWAS studies conducted among African populations, we were 

unable to account for potential confounders such as BMI, obesity, and other factors known to influence breast cancer pathogenesis. 

Additionally, the study focused exclusively on data from individuals of African ancestry, which could limit the generalizability of the 

findings to other populations. Finally, more research is needed to explore the mechanisms by which elevated triglyceride levels may 

reduce the risk of overall breast cancer among individuals of African descent. 

Conclusions 

Our study revealed that genetically elevated triglyceride levels were associated with a reduced risk of overall breast cancer in African 

women. Given the mixed findings in the existing literature and the unique characteristics of our study population, further research is 

essential to better understand the complex relationships between lipid profiles and breast cancer risk. 
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