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Abstract

Background: Comprehensive environmental risk characterization, encompass-
ing physical, chemical, social, ecological, and lifestyle stressors, necessitates
innovative approaches to handle the escalating complexity. This is especially true
when considering individual and population-level diversity, where the myriad
combinations of real-world exposures magnify the combinatoric challenges. The
GeoTox framework offers a tractable solution by integrating geospatial exposure
data from source-to-outcome in a series of modular, interconnected steps.
Results: Here, we introduce the GeoTox open-source R software package for
characterizing the risk of perturbing molecular targets involved in adverse human
health outcomes based on exposure to spatially-referenced stressor mixtures. We
demonstrate its usage in building computational workflows that incorporate indi-
vidual and population-level diversity. Our results demonstrate the applicability
of GeoTox for individual and population-level risk assessment, highlighting its
capacity to capture the complex interplay of environmental stressors on human
health.
Conclusions: The GeoTox package represents a significant advancement in
environmental risk characterization, providing modular software to facilitate
the application and further development of the GeoTox framework for quanti-
fying the relationship between environmental exposures and health outcomes.
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By integrating geospatial methods with cutting-edge exposure and toxicolog-
ical frameworks, GeoTox offers a robust tool for assessing individual and

population-level risks from environmental stressors. GeoTox is freely available
at https://niehs.github.io/GeoTox/.

Keywords: exposome, risk, population susceptibility, source-to-outcome

1 Introduction

Risk characterization of multiple environmental stressors including physical, chem-
ical, social, ecological, and lifestyle, is a top priority of the environmental health
sciences [1]. There are numerous technical factors contributing to the complexity of
the problem, including the infinite number of real-world exposure combinations and
the inter-individual biological complexity of humans. At the intersection of exposure
mixtures and biological complexity is the well-established result that most human dis-
eases occur due to high-dimensional interactions between exogenous environmental
exposures and endogenous biology such as genetics, epigenetics, and the microbiome
[2].

To address the challenge of complex chemical exposures the exposome concept
was introduced [3]. The exposome (exposomics) is measure of all environmental,
social, lifestyle, and ecological exposures across the life course of an individual [2].
The main-stream philosophy for quantifying the exposome is through individual bio-
logical measurements [4] such as chemical characterization, epigenetic alterations,
metabalomic derivations, and proteomic responses [5]. Advancements in biological and
-omic based quantification is happening quickly [6]; nonetheless, there are immense
analytical challenges ahead in large part due to (1) the spatiotemporal variability of
exposures, (2) the sheer magnitude and variety of exposures, (3) the specificity of
exposomic measurements to multiple endogenous and exogenous processes, and (4)
the temporal variability and specificity of biological responses.

Geospatial approaches offer an attractive approach to quantify the exposome
because external components such as the social and physical-chemical exposome are
more accurately quantified with geospatial models of exposure. Described by Rappa-
port and Smith [7] and supported by Vermeulen et al. [2], toxic effects are mediated
through chemicals that alter critical molecules, cells, and physiological processes inside
the body. In the same spirit, it is clear that phenotypic outcomes (e.g. disease) at the
individual or population level can only occur after a series of source, exposure, and
biological dynamics (Figure 1). We refer to this as the source-to-outcome-continuum.
It follows that if methods and data exist to quantify each step in the sequence, and
each step can be integrated into each neighboring step, then individual and population
outcomes can be quantified from spatiotemporally resolved environmental sources and
exposures.

Conveniently, data and methods do exist for quantifying the source-to-outcome-
continuum. The Adverse Outcome Pathway (AOP) [8] framework provides a linkage
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Fig. 1: Source-to-outcome-continuum: A schematic showing the necessary
sequence of events such that each step must occur for environmental exposures to
cause individual and population outcomes

between perturbation of a specific biological target, pathway or process by a stres-
sor, and an adverse outcome considered relevant to risk assessment. Many sources
of data can be used to support AOP development, with new approach methodolo-
gies (NAMs) such as high-throughput in-vitro assays, small organism models, and in
silico toxicology modeling approaches especially useful for probing specific targets.
Teeguarden et al. [9] proposed the Aggregate Exposure Pathway (AEP) as an expo-
sure analog to the AOP framework. The AEP framework aims to quantify the fate and
transport of environmental chemicals through different media and, when appropriate,
chemical transformations that occur in the environment. Additionally, the framework
articulates the adsorption, distribution, metabolism, and excretion of chemicals that
relate the external concentration and internal concentration of a chemical (or its
active metabolites). Most importantly, the AEP framework defines these internal con-
centrations as the Target Site Exposures (TSEs), which are analogous to molecular
initiating event (MIE) from the AOP framework. To summarize, the end process in
an AEP is the beginning process for the AOP thus providing explicit methods for
source-to-outcome-continuum modelling.

Recent work has demonstrated the potential for source-to-outcome-continuum
modeling in NAMs based risk assessment. For example, Hines et al. [10] estimated
a hazard index for humans, fish, and small mammals at hypothetical field site with
exposures to ClO−

4 and its degradation products. Price et al. [11] posit source-
to-outcome-continuum modeling as a more comprehensive approach for integrating
chemical interactions in human health risk assessment. In Eccles et al. [12], we intro-
duced a workflow, referred to as GeoTox, for characterizing the risk of perturbing
molecular targets involved in adverse human health outcomes based on exposure to
spatially referenced chemical mixtures by connecting the frameworks of the AEP and
AOP. The objectives of this paper build upon the GeoTox framework as follows:
(1) Develop open-source software to facilitate analysis of the geospatial toxicological
workflow that features best-practices in software development including continuous
integration, unit testing, ready tunability of key parameters, documentation, and (2)
Analyze and demonstrate case-studies with varying individual, population, multiple
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assays end-points that impact downstream risk. Our goal is that the GeoTox soft-
ware will allow researchers in the toxicological and geospatial research communities
to build and expand application of the GeoTox concept.

The remainder of this manuscript is as follows: In section 2 we provide a review of
the GeoTox framework (Section 2.1), an overview of the new, open-source GeoTox
package to facilitate usage across the environmental and toxicological risk assessment
community (Section 2.3), and proposed analyses for population, individual, and multi-
assay (Section 2.4) risk as quantified by internal molecular perturbation. Section 3
summarizes key results from the case studies. Section 4 provides a discussion on the
GeoTox code development and case study results, GeoTox , and lastly, section
5 summarizes the package features and places it in the context of new approach
methodologies development for improved exposomic risk characterization.

2 Materials and Methods

2.1 Review of GeoTox framework

Here, we provide a brief review of the GeoTox framework as described in Eccles
et al. [12] including its key steps and data requirements. Figure 2 shows the overall
workflow, where blue nodes represent an object and green, rounded nodes represent
a methodology or function required to go from one object to the next. Throughout
the manuscript, software names and functions are highlighted in code text. This

differentiates GeoTox the software from GeoTox the framework.
First, geospatial modeling is used to estimate an external, geospatial referenced

exposure concentrations due to presumed external sources. Eccles et al. [12] utilized
publicly available chemical transport model external exposure data, but all external
exposure assessment methods are possible including geostatistical models and per-
sonal monitoring. An important constraint is that publicly available or user-developed
geospatial exposure chemical parameters (e.g. CASN, SMILES) must also be avail-
able in the subsequent databases and model. For example, while ozone (O3) is an
established air pollutant with readily available geospatial exposure data, it is cur-
rently not amenable to PBPK models or high-throughput in vitro screening assays.
Next, behavioral and physiological modeling is used to estimate internal concentra-
tions from the presumed route of exposure. The standard source is the EPA Exposure
Factors Handbook [13], which provides population distributions of physiological fac-
tors such as inhalation rates by age, sex, and body weight. Next, physiologically-based
toxicokinetic (PBTK) models are used to estimate the internal, target organ concen-

tration. The R package, httk [14], is the standard used in GeoTox due to its
high-throughput nature and flexibility, but tailored PBTK models are also applicable.
Then, in-vitro-to-in-vivo-equivalent (IVIVE) modeling, also based on PBTK models,
is used to convert the human concentration to an in-vitro equivalent concentration.
With the external exposure data now comparable to the high-throughput screening
(HTS) assay data, individual and mixtures concentration-response modeling can be
performed. A key concept here is that the HTS assay(s) chosen informs on the molec-
ular target of interest through a molecular initiating event and is both biologically
and risk relevant (e.g. Related to a cancer or outcome mode of action). Lastly, a risk
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assessment metric is chosen for the risk assessment, resulting in the final risk map.
Eccles et al. [12] showed risk maps of the mixture response predicted by independent
action (IA) [15] and generalized concentration addition (GCA) [16] and the hazard
quotient (HQ)[17].

External Sources

External Exposure

Internal Exposure

Target Organ Dose

In vitro Equivalent Concentration

Concentration Response

Geospatial Risk Map

Geospatial Modeling

Behavioral and Physiological Modeling

PBTK

IVIVE

Mixtures Modeling

Risk Assessment

Fig. 2: Flowchart of the GeoTox Framework. blue nodes represent an object and
green, rounded nodes represent a methodology or function required to go from one to
the next

2.2 FAIR Code Development

GeoTox is created with many software best-practices, including findable, accessible,
interoperable, and reproducible (FAIR) software development standards. The package
is accessible as the source code is made completely open-source, hosted at the NIEHS
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GitHub (code base: https://github.com/NIEHS/GeoTox; package website: https://
niehs.github.io/GeoTox/). The NIEHS GitHub repository and availability through
the Comprehensive R Archive Network (CRAN) ensure its potential for long-term
findability and accessibility.

GeoTox uses standardized style and linting through the lintr package [18]
providing syntax consistency. The object-oriented approach is compatible with the
tidyverse [19] syntax and style, allowing interoperability with R-based piping

workflows (i.e. x | > f()).

GeoTox was intentionally developed in a modular and extensible manner allow-
ing the authors and community members such as geospatial scientists and toxicologists
to contribute and build upon the code base. As an open-source project under the MIT
license, we provide a contributor’s guide, news file for updates, and an on-going list
of features or extensions that could be added by the authors or community members.
An important contributing guide rule is the enforcement of continuous integration
and continuous development (CI/CD) workflows on the GitHub repository. These
workflows enforce rules and automatic checks to the code base when the authors or
community members provide updates or new features. Additionally, we have created
standardized templates for bug reports and feature requests on the GitHub reposi-
tory. Together, these will aide in the on-going maintenance and further improvements
while minimizing the overall technical debt.

Lastly, the testthat package is used to enforce test-driven development (TDD)

in the creation and maintenance of GeoTox [20]. The unit tests verify that each
function performs as designed and help minimize the chances of bugs - particularly
semantic errors in which the program functions, but the calculation is not correct.
Performance differs between functions and data sources, but can be generally catego-
rized as expected successes, testing that the function does not return an error when
provided valid parameters, and expected failures, testing that the function recognizes
invalid parameters and returns an error.

2.3 GeoTox Package Overview

Here, we provide a general overview of the GeoTox package. Figure 3a shows the

key data requirements for the GeoTox analysis workflow. GeoTox is not a geospatial
exposure assessment tool, thus it is necessary to have georeferenced exposure data
for the chemicals of interest. The molecular or biological target such as a molecular
initating event or adverse outcome pathway key event anchors the framework as a
mechanistic-based risk mapping approach. While traditional in-vivo data can be used,
the examples here draw from the Integrated Chemical Environment (ICE) curated
high-throughput in-vitro screening (cHTS) [21]. Section 2.3.7 discusses the availability

and integration of cHTS data in GeoTox and section 4 discusses other data sources
and potential future integration. Lastly, physiological and behavioral data is required
to estimate an internal exposure from the external geospatial exposure. Section 2.3.7
details the physiological data built into GeoTox functions from the EPA Exposure
Factors Handbook [13].
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Figure 3b shows the general functions in GeoTox that provide a simple, tidy-
friendly workflow. This overview workflow is provided in the package vignette titled
“GeoTox Introduction”. First, a GeoTox object is initialized. All of the subsequent
steps add components to the GeoTox object. The set boundaries function appends
the sf spatial objects to the GeoTox object. The simulate population function is a
wrapper that simulates and appends age, obesity, exposure, and steady-state plasma
concentration (Css) data. Next, the fit hill function calculates maximum likelihood
single chemical concentration-response estimates, which are then piped to the calcu-
late response function to predict chemical mixture risk metrics including independent
action [15] and generalized concentration addition [16] and the hazard quotient [17].
Optionally, the sensitivity analysis replicates the [12] Monte Carlo sensitivity analysis
where each input parameters is perturbed across its range of values while the remain-
ing parameters are held constant. Lastly, plot functions take the GeoTox object and
provide easy ggplot stylized plots for geospatial maps, concentration-response, and
sensitivity results.
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Geospatial
Exposure

cHTS

Physiological
and
Behavioral

(a) Required External Data Categories

GeoTox()

set boundaries()

simulate population()

fit hill()

calculate response()

sensitivity analysis()

plot()

Geospatial Risk Map

(b) Overall GeoTox Function Workflow

Fig. 3: GeoTox package data categories and function workflow. (A) The basic data
requirements for the GeoTox framework and package. (B) This workflow shows how
the package starts with intializing a geoTox object and moves through the framework
via package functions to produce a geospatial risk map.

2.3.1 GeoTox Object

The core development is the GeoTox object, a R-based S3 class object. S3 is R’s
simplest and most flexible version of object-oriented programming [22]. It’s simplicity
allows us to define the GeoTox object with flexible components that define each step in
a GeoTox framework analysis. sf spatial objects provide georeferenced information
to the GeoTox object and generic data frames and lists store information on each step
in the GeoTox analysis framework.

Figure 4 shows an example GeoTox object printed to the R console. The header
displays the geospatial regions and the simulated population within each region. Next,
we see the object components listed as fields with their name, class, and dimensions.
Details of each field are described in the following sections including the individual
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simulations based on the httk Monte Carlo population simulations from Ring et al.
[23].

GeoTox object

Assays: 229

Chemicals: 32

Regions: 100

Population: 500

Data Fields:

Name Class Dim

age list(integer) 100 x (500)

IR list(numeric) 100 x (500)

obesity list(character) 100 x (500)

C ext list(matrix) 100 x (500 x 32)

C ss list(matrix) 100 x (500 x 32)

Computed Fields:

Name Class Dim

D int list(matrix) 100 x (500 x 32)

C invitro list(matrix) 100 x (500 x 32)

resp list(data.frame) 100 x (114500 x 6)

sensitivity list(list) 5 x (100)

Other Fields: par, boundaries, exposure, css sensitivity, hill params

Fig. 4: GeoTox object printed to console

2.3.2 Concentration-Response Model Fitting

There are many R packages available for toxicological concentration-response model
fitting including drc [24], tcpl2 [25], and toxicR [26, 27]. For internal consistency
and completeness, we provide concentration-response model fitting for parametric hill
models using maximum likelihood estimation comparable to tcpl2 . The function

fit hill() takes a data frame consisting of concentration response data and fits a 2 or

3 parameter hill function. GeoTox package reference and vignettes describe how
the data frame input is organized to comply with the function syntax. The output is
stored in the GeoTox object as the hill params field and is accessed when piped into
the calculator functions (Section 2.3.4 for the subsequent analysis steps.
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2.3.3 Simulate Functions

Simulating through Monte Carlo sampling of empirical and estimated parameter dis-
tributions underlies the GeoTox framework to capture geospatially resolved individuals
and populations. Age, obesity, inhalation rates, and steady-state blood plasma con-
centrations of chemicals are covered in the GeoTox simulation functions. Following
the methods outlined in Eccles et al. [12], for a given region such as a US county, age
distributions and obesity prevalence are obtained via the US Census and the Centers
for Disease Control PLACES data [28], respectively. Inhalation rates are simulated
based on the age of the individuals and derived from Table 6.7 of the EPA Exposure
Factors Handbook [13]. In section 4 we discuss potential future integration with more
refined or user-defined inhalation rate data. Age and obesity simulation results are
input into the toxicokinetic parameter simulation. The httk package is used to sim-
ulate toxicokinetic parameters such as Css, the steady-state plasma concentration in
µṀ(mg

kg )
−1 [23]. Additionally, as the Css simulation can be time consuming for a large

sample size, we simulate a tractable number of individuals using httk (i.e. ≤ 1,000)
and then utilize bootstrap resampling for inference.

2.3.4 Calculator Functions

A series of self-described calculator functions are developed to perform the key
steps of the GeoTox pipeline. Starting from the beginning of the pipeline, the
calc internal dose() estimates the internal target organ dose of a chemical given inhala-
tion rate, body weight, and time. Currently, time defaults to 1 since the estimate
for blood plasma concentration is based on a steady-state assumption achieved in 1
day. Future methodological and package developments will explore non-steady state
assumptions. calc invitro concentration() estimates the in vitro equivalent concentra-
tion via a simple multiplication of the internal dose and the steady-state blood plasma
concentration. To calculate the total mixture response metrics used as the basis of
the risk assessment, the function calc response() estimates and returns the chemical
mixture responses using the IA, GCA, and the HQ.

2.3.5 Sensitivity Analysis Functions

Every stage in the GeoTox framework includes uncertainty that contribute to the
overall variability of the mapped mixture responses. The compute sensitivity() func-
tions wraps the Monte Carlo uncertainty analysis around each step of the analysis to
calculate and aide in visualization of the overall uncertainty. By default, a GeoTox
analysis function is chosen to vary freely while the remaining functions and their
respective parameters are fixed to a central value. This simple sensitivity functionality
in GeoTox will allow researchers to explore the sources and impacts of uncertainty
in their analysis and increase confidence in the risk mapping results with targeted
experiments.

2.3.6 Plotting Functions

Visualization is an important part of exploratory analysis and results dis-
semination in the GeoTox framework. Here, we provide easy and extensible
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plotting functions based on the GeoTox object. GeoTox provides a basic

plot() function that takes the GeoTox object as input and can create

ggplot based plots for geospatial exposure, plot(geoTox, type = “exposure”) ,

dose-response results, plot(geoTox, type = “hill”) , single and multi-assay

responses, plot(geoTox, type = “response”) , and sensitivity analysis results,

plot(geoTox, type = “sensitivity”) .

2.3.7 Package Data

The GeoTox package comes with a dataset, geo tox data, that is the basis for
vignettes demonstrating the package functionality. Importantly, the “GeoTox Package
Data” vignette shows the steps for downloading, processing, and creating the package
dataset, which can easily be modified to make adjustments to underlying exposure and
population data and will aide users in developing their own workflows based on novel
datasets. The package dataset contains external, geospatial air pollution exposure
data from the 2019 USEPA AirToxScreen, which utilizes the Community Multiscale
Air Quality (CMAQ) and AERMOD dispersion models to estimate annual average
hazardous air pollutants at the census tract level [29]. Chemical CAS numbers and
preferred names are standardized and linked using metadata from the EPA Comp-
Tox dashboard [30]. Population age and obesity distributions are used from the US
Census bureau and Center for Disease Control and Prevention PLACES data [28],
respectively. Additionally, the code base includes example for downloading data sets
curated for targeted toxicity endpoints by Integrated Chemical Environment (ICE)
REST API [21, 31].

2.4 Case Studies

We showcase GeoTox with three novel analyses that demonstrate single assay, multi-
assay, and individual risk characterization. The analyses follow the steps outlined in
our package vignettes available at the package website.

First, we replicate the Eccles et al. [12] analysis in North Carolina,
but utilize an H2AX histone modification genotoxicity assay (assay id:
TOX21 H2AX HTRF CHO Agonist ratio) which is a demonstrated in-vitro marker
for genotoxic effects and potential in-vitro replacement for in-vivo based cancer relative
potency factors [32]. This analysis highlights the extensibility of the GeoTox frame-
work to characterize risk at a precise biological level such as the molecular initiating
events or key events quantified by curated in-vitro assays.

Second, we demonstrate a new advancement in the GeoTox framework that allows
the incorporation of multiple assay end-points into the geospatial risk mapping work-
flow. Utilizing the GeoTox package, we characterize the county-level, annual air
toxic carcinogenic risk based on 200+ assays from the key characteristics of carcino-
gens (KCC) [33]. The assays included are based on the following KCC modes of action:
KCC2, Genotoxic Effects; KCC4, Epigenetic Alterations; KCC5, Oxidative Stress;
KCC6, Chronic Inflammation; KCC8, Receptor Mediated Effects; and KCC10, Cell
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Proliferation/Death/Energetics. GeoTox incorporates another level of summariza-
tion at the assay level such that multi-assay risk is quantified as the “p total quantile
of the q assay-level quantiles”.

Lastly, we demonstrate the extensibility of GeoTox to analyze and visual-
ize individual-level risk that may vary across populations. Population variability in
GeoTox is based upon the inter-individual variability introduced in the httk pack-
age to accomodate individual varibility in toxicokinetic processing via Monte Carlo
simulations[23]. Here, we visualize the individual variability of multiple-assay based
GeoTox risk. We discuss how human experimental or epidemiological data can be used
to characterise risk based on the GeoTox framework.

3 Results

3.1 Case Study 1: State-wide results from a single in vitro assay

Here, we present county-level, single-assay risk mapping results based on the H2AX
histone modification genotoxicity assay (assay id: TOX21 H2AX HTRF CHO Agonist
ratio), a potential in-vitro replacement for cancer relative potency factors. All three of
the case study results include the intersection of chemicals available in the geospatial
exposures, assay information, and valid toxicokinetic parameters. The dose-response
results in figure 5A show 7 chemicals with valid hit-calls to the H2AX histone modifi-
cation assay and valid toxicokinetic parameter information, which is easily produced

with a package call to plot(geoTox, type = “hill”) . Figure 5B shows the GCA

median response mapped to the county level, which is produced with the default

call to plot(geoTox) . Median GCA mixture responses show risk to these 7 chem-

icals and this potential cancer target is low when compared to the range of the
dose-response functions in figure 5A. The highest risk areas are generally rural coun-
ties along the Interstate-95 corridor and near the Virginia border, which indicates a
rural confluence of volatile, gas-phase air pollutant exposure and population toxicoki-
netic characteristics. It is important to note that the chemical space available in this
analysis is a small fraction of the overall exposomic chemical space. Lastly, Figure
5C highlights the simplicity of analyzing sensitivity analysis results with a call to

plot(geoTox, type = “sensitivity”) . This analysis highlights the ease of repro-

ducing the analysis from Eccles et al. [12] and producing plots for evaluating chemical
response, geospatially mapped risk, and parameter sensitivity.

3.2 Case Study 2: State-wide results from multiple assays

New advancements in the GeoTox framework and GeoTox package allow the incor-
poration of multiple assay end-points into the geospatial risk mapping work-flow,
which facilitate a more complete mechanistic risk mapping by incorporating multi-
ple biological end-points or modes of action. Figure 6 shows the summarized risk,
quantified by the GCA-based hazard quotient (GCA.HQ.10), for all key characteris-
tics of carcinogens (KCC). The rows show the assay-level summarization by the 10,
50, and 90 quartiles (A-10, A-Med, A-90), respectively. Assay-level calculations are
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Fig. 5: Single assay results and plots produced by the GeoTox package. (A) Fitted
dose-response plots for the 2-parameter hill model of the 7 chemicals with hit-calls on
the H2AX histone modification genotoxicity assay. (B) Median generalized concentra-
tion addition (GCA) response or effect (GCA-Eff) mapped to the county level. (C)
Sensitity analysis results shown as smoothed kernel densities by analysis parameter.

summaries over the individual-level metrics (e.g. hazard quotient or assay response)

simulated via Monte Carlo sampling from the httk package. The columns show the
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total summarization, which is the p-th quantile of the assay-level quantiles. This rep-
resents a summarization of multiple end-points or modes of action. Here, we chose
fifth and tenth quantiles of the hazard quotient as they are conservative risk esti-
mates that avoid the lowest point of departures which are likely capturing cytotoxicity
and not the true mode of action [34]. Multi-assay analysis also allows investigation
of risk by mode of action or adverse outcome pathways. Figures S1 and S2 in the
supporting information show the muti-assay summaries by the KCC for genotoxic-
ity and oxidative stress, respectively. Figure S3 shows the kernel densities of hazard
quotients for each assay where each assay is grouped by the KCC mode of action.
This analysis highlights the extensibility of the GeoTox framework and the new devel-
opment of the GeoTox package by demonstrating mechanistically-informed risk
mapping from multiple modes of action. For example, further investigations into
mechanistically-informed risk can be easily conducted via the GeoTox package by
visualizing combinations of the assay-level and total summarization by adjusting the
assay quantiles and summary quantiles parameters, respectively.

Total-5th Quantile Total-10th Quantile

A-10
A-M

ed
A-90th

GCA.HQ.10

0e+00

1e-06

2e-06

3e-06

Multi-Assay Summaries: All KCC Assays

Fig. 6: Multi-assay risk summaries mapped across North Carolina counties using the
GCA based hazard quotient. Rows are the individual assay level summarization of
10th, 50th, and 90th quantiles, respectively. The columns are the total summarization
as the 5th and 10th quantile, respectively.
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3.3 Case Study 3: Characterization of population variability in
risk estimated from diverse individuals

The GeoTox package is extensibile for estimating and geospatially mapping
individual-level risk from chemical mixtures that manifests through individual toxi-
cokinetic variability. This case study highlights how individual toxicokinetic charac-
teristics give rise to the estimated population risks. Figure 7 highlights three North
Carolina counties from figure 6 that nominally represent high (Brunswick County,
FIPS = 31019), medium (Wake County, FIPS = 37183), and low (Ashe County,
FIPS = 37009) risk from the multi-assay risk summarization based on the median or
90th quantile assay and 10th quantile total summarization. We show the individual
level metrics as jittered points inside kernel density estimates of the hazard quotient,
grouped by weight status (i.e. normal vs obese), county, and by the H2AX histone
modification genotoxicity assay and multi-assay metrics. In the high risk county, we
see that normal weight individuals’ multi-assay hazard quotient is shifted upwards
compared to the medium and low counties. Additionally, the multi-assay hazard quo-
tient for obese individuals in the high risk county has more variability (i.e. a broader,
flatter density) than the obese individuals in the medium and low risk counties. In
this example, individuals are simulated from underlying populations, but real-world
epidemiological cohort data can used as long as geospatial location information and
toxicokinetic parameters are known for the individuals. If individual-level spatial infor-
mation is available such as a residential addresses, then that information can be added

to the GeoTox object through the set boundaries() function where the region

parameter is an sf point object.
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Fig. 7: Kernel densities of the hazard quotient responses grouped by obesity status
and assay response. The jittered dots represent the individual responses. The rows
are three North Carolina counties nominally representing (descending) high, medium,
and low risk, respectively.

4 Discussion

We present the GeoTox package for source-to-outcome-continuum modeling
that integrates geospatial exposure data, toxicokinetic models, and curated high-
throughput screening data in a modular, interconnected, and reproducible manner.
The package accommodates individual and population level geospatial and toxicoki-
netic information. The modularity is intentional, so that users can study factors
impacting their step(s) of interest. Further, this provides for integration with key

models, such as httk , alternative dose-response estimation approaches [27, 35], and
geospatial exposure models, as they continue to advance.

The GeoTox package implementation was designed to facilitate analysis of
population-level variability and susceptibility to adverse effects from combined expo-
sures to chemical mixtures. The population-level parameters impacting risk are
bestowed through individual-level simulations from the httk package. As signals of

variability can arise from several factors, GeoTox includes explicit parameters for
factors including genetics (simulated css), life stage (age), physiology (inhalation rate),
concurrent stressors (exposure), and co-morbidities (obesity). For complete analysis,
provisions for sensitivity analysis of all parameters are also built-in. This allows com-
parison of simulated scenarios with parameters based on real (i.e. epidemiologically
studied) populations.

New research will naturally expand and improve upon the parameters that impact
the accuracy and uncertainty in GeoTox . For instance, improvements in chemi-
cal specific toxicokinetics will lead to comparable improvements in the geospatially
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mapped risk estimates. Additionally, expanding the chemical space for geospatial expo-
sure maps will complete the exposomic landscape that the framework and package
can reasonably capture. The current parameters impacting individual variablity in
toxicokinetic processing are age, sex, and obesity. However, it was known that individ-
ual genetics such as single-nucleotide polymorphisms (SNPs) can impact toxicokinetic
processing. For example, aldehyde dehydrogenase 2 (ALDH2) and aldehyde dehydro-
genase 1B (ADH1B) are known variants that greatly impact alcohol metabolism and
occurs often in East Asian ancestry [36]. Ginsberg et al. [37] describe six polymorphic
enzymes that impact xenobiotic metabolism, which could impart individual-level vari-
ability in dose-response to environmental pollutants. Ford et al. [38] have proposed
in-vitro NAM for quantifying individual-level variability to chemical responses and
highlight the potential for single variants genome wide to impact the individual-level
toxicity. If it is known how these variants impact toxicokinetic parameters such as hep-
atic clearance, then it will endow the framework with the ability to capture individual
SNP related differences in risk.

With the introduction of multi-assay or multiple mechanistic endpoint analysis,
GeoTox will support next-generation risk assessment (NGRA) approaches that uti-
lize NAMs to reduce our reliance on in-vivo animal models, but still incorporate
multiple-levels of biological activity and function. Our case study on mapping the total
risk quantified by the KCC modes of action provides a straightforward approach to
evaluate risk using NAMs that includes multiple routes or modes of toxicity as recom-
mended by Schmeisser et al. [34]. Moreover, our analysis by each KCC category shows
that population-level risk can vary based on the mechanistic endpoint. The simplicity
of the analysis and plotting functions allow further exploration of causes and poli-
cies around mode-of-action variability in population-level chemical responses. Future
NGRA developments that can be integrated into GeoTox include risk metrics that
utilize a more complete or sophisticated mechanistic pathway information.

Arguably the most important aspect of GeoTox is our adherence to FAIR
practices in software development that will enable an extensible, reproducible, doc-
umented, and maintained resource for the geospatial risk assessment community.
GeoTox was developed and is maintained according to test-driven development
principles, with a series of unit and integration tests ensuring that each function
operates correctly on its own and within the cumulative workflow. With adherence
to FAIR data principles GeoTox is a tested, reliable, and accessible tool which
aims to reduce the barriers associated with integrating geospatial information into
NGRA or providing geospatial analysts with news tools to integrate health analysis
into their previously pure geospatial analyses. As with any sound science or soft-
ware, minor fixes and methodological improvements will be incorporated through
the continuous integration and development process. We provide the user community
the forum to report problems and request new features through the code repository
(https://github.com/NIEHS/GeoTox/issues).
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5 Conclusion

We present GeoTox , an open-source, tested, reproducible, and extensible soft-
ware designed for source-to-outcome-continuum modeling. The software provides
researchers and practitioners with a tool for integrating geospatial information into
NGRA. Our case studies demonstrate its functionality for geospatially mapping the
combined chemical mixture risk quantified by (1) a single assay, AOP key event, or
mechanistic endpoint, (2) multiple assay response or disease outcome mode of actions,
and (3) individual-level assay-based dose-response. The software was designed with
modularity and extensibility such that users can utilize any aspect of the workflow or
extend its capabilities for addressing novel environmental, spatial, and human health
research questions. We believe there is vast potential to utilize GeoTox to elucidate
novel genomic and environmental risk questions at both the population and individual
level. And most critically, the software is developed with computational best-practices
such that it will me maintained and evolve with the needs of the community in
addressing complex human health problems.

6 List of Abbreviations

• AEP Aggregate Exposure Pathway
• AOP Adverse Outcome Pathway
• cHTS curated high-throughput screening
• GCA Generalized Concentration Addition
• httk high-throughput toxicokinetics
• KCC Key Characteristics of Carcinogens
• NGRA Next Generation Risk Assessment
• SNP Single Nucleotide Polymorphism
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