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Abstract: 
 
 Loss-of-function variants (LoFs) disrupt the activity of their impacted gene. They 
are often associated with clinical phenotypes, including autosomal dominant diseases 
driven by haploinsufficiency. Recent analyses using biobanks have suggested that LoF 
penetrance for some haploinsufficient disorders may be low, an observation that has 
important implications for population genomic screening. However, biobanks are also 
rife with missing data, and the reliability of these findings remains uncertain. Here, we 
examine the penetrance of putative LoFs (pLoFs) using a cohort of »24,000 carriers 
derived from two population-scale biobanks: the UK Biobank and the All of Us Research 
Program. We investigate several possible etiologies for reduced pLoF penetrance, 
including biobank recruitment biases, annotation artifacts, missed diagnoses, and 
incomplete clinical records. Systematically accounting for these factors increased 
penetrance, but widespread reduced penetrance remained. Therefore, we hypothesized 
that other factors must be driving this phenomenon. To test this, we trained machine 
learning models to identify pLoFs with high penetrance using the genomic features 
specific to each variant. These models were predictive of penetrance across a range of 
diseases and pLoF types, including those with prior evidence for pathogenicity. This 
suggests that reduced pLoF penetrance is in fact common, and care should be taken 
when counseling asymptomatic carriers. 
 
  
Introduction: 
 

Exome and genome sequencing are now first-tier tests for rare disease 
diagnosis1–6. Given this success, there is growing interest in applying these 
technologies to asymptomatic patients7–17. The utility of sequencing for screening 
remains uncertain18–20. Generally, a screening test’s utility is quantified using its positive 
predictive value. For genetic testing, this statistic is driven both by the accuracy of the 
genotype call and its penetrance for the phenotype of interest, where penetrance is 
defined as the probability that a carrier will manifest the disease. Although imperfect, the 
accuracy of genotype calling is relatively high21,22. Alternatively, penetrance estimates 
for most genotypes are unknown; they can range anywhere from 0 (no associated 
disease risk) to 1 (certain disease manifestation). These estimates also vary with age 
and can be modified by additional factors, including polygenic background23–25 and 
environmental exposures26. For diagnostic applications, accurate penetrance estimates 
are less critical. Patients already express a disease phenotype, so laboratories typically 
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must only determine if variants are pathogenic (i.e. disease-associated) or benign27. 
Variant interpretation for screening applications is more complex. Laboratories and 
clinicians should be able to express how likely the variants are to cause disease in the 
future. This risk is of course inextricably tied to penetrance.  

Penetrance is notoriously difficult to estimate28. For a few pathogenic genotypes 
that are unusually common (typically due to founder events), accurate penetrance 
estimation is possible29–32. Generally, however, pathogenic genotypes are extremely 
rare. As a result, penetrance is unknown for most clinically relevant variants. Recently, 
population-scale biobanks with linked electronic health record (EHR) data have become 
widely available33–40, and these datasets have been used to estimate penetrance using 
a “genotype first” approach41. Here, pathogenic variant carriers are identified using the 
available genetic data, after which their phenotypic expression is assessed 
retrospectively using EHR data. These analyses have suggested widespread reduced 
penetrance for pathogenic variants42–44. This observation has important implications for 
genomic screening, as it suggests that the positive predictive value of genetic testing 
may be unacceptably low. That said, biobanks may have limitations as a resource for 
estimating penetrance, and biases related to recruitment, coupled with missing data, 
may lead to deflated estimates41,45.  

Here, we investigate the apparent penetrance for one of the simplest classes of 
potentially pathogenic mutations: putative loss-of-function (pLoF) variants in 
haploinsufficient disease genes. To do so, we uniformly processed the genomic data 
from two biobanks (the UK Biobank36 and the All of Us Research Program40; combined 
N>700,000), identifying »24,000 pLoF carriers at risk for 91 diseases. We then analyzed 
their relative frequencies across biobanks and diseases, demonstrating that the types 
and frequencies of pLoFs in these biobanks were likely shaped by recruitment biases. 
Nevertheless, biobank pLoFs had strong and replicable phenotypic effects, and 
consistent with prior analyses, penetrance was generally reduced.  We then 
investigated possible factors underlying the reduced penetrance, adjusting estimates 
accordingly. Examples include annotation artifacts, missed diagnoses, and censored 
clinical data. Accounting for all these factors increased estimates, but widespread 
reduced penetrance remained. Therefore, we hypothesized that many of these variants 
may in fact have intrinsically low penetrance, which may be a function of incomplete or 
“leaky” loss-of-function. To test this, we trained machine learning models to predict pLoF 
penetrance using variant-specific genomic features that may correlate with incomplete 
loss-of-function. These models were predictive of penetrance across a range of 
diseases and variant types, including those previously annotated to be pathogenic by 
diagnostic testing laboratories46. Consequently, LoF penetrance remains quite 
uncertain, and accurately communicating this uncertainty to asymptomatic carriers will 
be crucial for successful genomic screening. 
 
Results 
 
Biobanks are Likely Depleted of pLoFs with Severe Phenotypic Effects 
 
 Using the ClinGen database47, we identified 91 autosomal dominant/pseudo-
autosomal dominant Mendelian disorders for which haploinsufficiency is a likely 
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mechanism of disease (see Methods). This set of diseases covered a broad range of 
human pathophysiology, including neurodevelopmental disorders, congenital 
malformation syndromes, and diseases linked to tumor predisposition. Most (76%) 
typically present during childhood while the remainder occur during various stages of 
adulthood. The specific diseases analyzed in this study, along with their annotated 
information, are provided in Supplemental Table 1. Following annotation, we linked the 
diseases to their associated genes using the Online Mendelian Inheritance in Man 
database48 (117 in total). We then systematically identified all putative loss-of-function 
variants (pLoFs) within these genes in both biobanks, removing those that likely 
represent technical artifacts based on sequencing depth and quality scores (see 
Methods). In total, we identified 3,131 unique pLoFs in the UK Biobank (UKBB; total N= 
468,672) and 3,889 in the All of Us Research Program (AoU; total N= 245,376), 
resulting in a total of 6,247 unique pLoFs (773 occured in both). Additional details about 
the individual variants can be found in Supplemental Tables 2 (UKBB) and 3 (AoU). The 
distribution of pLoF carrier counts in both datasets are displayed in Figures 1A and B. 
Most variants were singletons (63% and 67% in the UKBB and AllofUs respectively), 
consistent with their likely negative impact on fitness and survival.  

Even though most individual variants were singletons, the total number of pLoFs 
per disease was highly variable, ranging over nearly three orders of magnitude (Figure 
1C). Moreover, the disease-specific pLoF frequencies were highly correlated across the 
biobanks (R2 = 0.84; P-value < 2.2´10-16). Many factors likely drive this shared 
variability, including properties specific to the populations that constitute each biobank 
and attributes of the diseases and variants themselves. For example, founder effects 
and genetic drift almost certainly contribute to the shared variability displayed in Figure 
1C. However, the demographic backgrounds for the two biobanks are quite distinct 36,40. 
The UKBB mostly contains subjects of European ancestry (»90%)36, while AoU is far 
more diverse40 (European fraction » 50%). Therefore, while founder variants likely drive 
some of the shared variability in per-disease pLoF frequencies, their contribution should 
be limited. Moreover, if genetic drift were driving the shared variability, the pLoF 
frequencies should correlate with the number of coding sites linked to each disease. 
While this was true (Figure 1D), the fraction of the variability explained by this 
phenomenon was only 23%, suggesting that other factors were likely involved. 

The per-disease pLoF frequency estimates, after correcting for coding sequence 
length, were positively correlated with typical disease onset in both biobanks, such that 
pLoFs linked to childhood-onset diseases were less common than those linked to adult-
onset disorders (Figure 1E). This suggested that the biobanks may be depleted of 
variants linked to childhood-onset diseases, likely due to recruitment biases that favor 
living and/or healthier adults. Notably, pLoF carriers in general were recruited at a 
younger age than their non-carrier counterparts (0.87 years on average, Wilcoxon 
Signed Rank Test Meta-Analysis P-value: 2.07´10-5; Figure 1F), consistent with a more 
pervasive recruitment bias that favors healthier individuals recruited prior to disease 
onset (see Supplemental Table 4 for all disease-specific results). This implies that 
biobanks that recruit younger subjects should harbor more pLoFs. The average 
recruitment age for AoU was 52 years compared to 57 years for the UKBB (T-test P-
value < 2.2´10-16), a consequence of the distinct recruiting strategies for two the 
studies49,50. Thus, it was not surprising to find that the overall pLoF carrier rates were 
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higher in AoU than the UKBB (4.5% vs 3.0%; P-value < 2.2´10-16), an effect that 
persisted after correcting for differences in ancestry (UKBB: 2.9%; AoU: 4.2%, see 
Methods). 

To avoid such biases, penetrance estimates would ideally be derived from 
prospective cohorts with millions of subjects, either starting from birth or even during 
pregnancy. Given that such studies are currently infeasible, biobanks likely represent 
the best opportunity for systematic penetrance estimation. Based on the above 
analyses, however, these datasets are likely depleted of pLoFs with severe phenotypic 
effects, at least compared to younger cohorts. As corollary, they are likely enriched for 
variants with low penetrance and/or milder phenotypic effects. This implies that 
aggregate estimates of penetrance derived from biobanks may be systematically 
deflated when compared to those obtained using other study designs. This is likely to be 
particularly true for diseases associated with high morbidity and mortality. This does not 
necessarily imply penetrance estimates from these datasets are meaningless, but care 
should be taken when applying biobank penetrance estimates to other populations.  
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Figure 1: Biobank datasets are likely depleted of pLoFs with severe phenotypic effects. (A, B): The carrier 
count distributions for the pLoF variants identified in the UK Biobank (UKBB; B) and the All of Us 
Research Program (AoU; B). (C): The disease-specific pLoF carrier frequencies (N=91) compared across 
the two biobanks: UKBB (x-axis) and AoU (y-axis). Correlation was assessed using Pearson’s method 
(R2). (D): The coding sequence (CDS) length was computed using the MANE Select transcript for the 
gene(s) linked to each disease (x-axis), and this was compared to the per-disease pLoF frequency (y-axis) 
using Pearson’s method (R2). (E): The collapsed pLoF frequencies were normalized by the CDS length (in 
megabases; MB) and plotted against the three onset classes. Correlation was assessed using Kendall’s 
rank correlation (denoted t). Error bars represent 95% bootstrapped confidence intervals. (F): Boxplots 
display the distribution over the differences in recruitment age for the pLoF carriers and their 
corresponding non-carrier controls (see Methods). This distribution is depicted for each biobank along with 
a boxplot that summarizes the results of a cross-biobank meta-analysis. The edges of the box define the 
interquartile range, while the notch indicates the median. The whiskers depict the total range. Statistical 
significance was assessed using a Wilcoxon signed rank test (two-sided).  
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pLoFs in Biobanks Have Detectable and Consistent Phenotypic Effects  
 

Although biobanks are likely depleted of pLoFs with severe phenotypic effects, 
many carriers in these datasets still manifest strong signs of disease expression. To 
illustrate, we constructed control groups for each disease by identifying biobank 
subjects that did not carry any rare variant (allele frequency £ 0.1%) in their associated 
genes (see Methods). We then systematically estimated the effects of the pLoF variants 
on haploinsufficient disease risk by comparing the disease prevalence among carriers 
and non-carriers using logistic regression. This analysis was limited to those diseases 
with at least 1 diagnosis in either the carriers or non-carriers across both biobanks 
(N=28). In a cross-biobank meta-analysis, the pLoF variants had a Bonferroni-corrected 
statistically significant effect on risk for over two-thirds (20/28) of the haploinsufficient 
diseases (see Supplemental Table 5 for the full set of results). Moreover, the risk 
estimates for the statistically significant associations were correlated across biobanks 
(R2 = 0.53; P-value = 1.27´10-4, see Figure 2A). 

These results indicate that pLoFs have strong and replicable effects on disease 
prevalence, but the analysis was limited to diseases with diagnostic codes in available 
in the EHR data. Most haploinsufficient diseases were not amenable to this analysis 
(N=63), as they lacked the diagnostic data needed to assess their risk. To overcome this 
limitation, we also quantified the disease expression of the pLoF variants using 
covariate-corrected Phenotype Risk Scores (PheRS)51,52. These scores measure the 
extent to which a subject is a phenotypic outlier based on their pattern of expressed 
disease-specific symptoms, which is possible even in the absence of a formal diagnosis 
(see Methods). Figures 2B (UKBB) and 2C (AoU) display the distributions over the 
median PheRS estimates for each disease, which were standardized using the PheRS 
distributions observed in non-carriers (Methods). Although the average relative increase 
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Figure 2: pLoFs have consistent average phenotypic effects in biobanks. (A): Average pLoF effects on 
disease prevalence are compared across the two biobanks (diseases with diagnoses available in both 
datasets; N=28). The datapoints represent the mean effect size (log-odds), while the bars indicate 
standard errors. Correlation was assessed using Pearson’s correlation coefficient (R2). (B, C): The 
median Phenotype Risk Score (PheRS) was computed using the pLoF carriers for each disease and 
standardized to the score distributions observed among non-carriers. These histograms display the 
statistical enrichment of positive PheRS scores among pLoF carriers in the UKBB (B; N=90) and AoU 
(C; N=90). Statistical significance was assessed using a Wilcoxon signed rank test (H0: median PheRS 
is symmetric about µ < 0). Blue color: diagnoses unavailable. Red color: diagnoses available. 
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in scores among the pLoF carriers was modest (Average Standardized PheRS = 0.22 in 
both biobanks), the PheRS estimates were systematically increased among carriers 
across the full set of diseases (60/90 in the UKBB, 68/90 in AoU; Wilcoxon Signed-Rank 
Meta-Analysis P-value = 2.88´10-11). Moreover, many individual diseases achieved 
dataset-wide (14/89) or at least marginal (37/89) significance in a cross-biobank meta-
analysis (see Supplemental Table 6 for full set of results). Therefore, the pLoF variants 
were associated with increased disease expression risk in at least a fraction of subjects 
for most diseases.  

 
Reduced pLoF Penetrance is Not Fully Explained by Annotation Artifacts 
 

Despite their evident effects on disease expression, the apparent penetrance of 
the pLoFs was not necessarily high. To estimate the average pLoF penetrance for each 
haploinsufficient disease, we measured their phenotypic expression using disease-
specific diagnostic codes, generating point estimates and 95% confidence intervals 
using a simple binomial model (see Methods). Figure 3A compares the disease-specific 
average pLoF penetrance (DS-AP) estimates across the two biobanks, again focusing 
on those diseases with diagnostic data available in both biobanks (N=28). Clearly, this is 
an imperfect estimate of penetrance, as it makes strong assumptions about the 
sensitivity of diagnoses for measuring disease expression. Nevertheless, the DS-AP 
estimates were correlated across biobanks (R2 = 0.66; P-value = 1.52´10-8), and 
consistent with previous analyses43, the median DS-AP estimates across diseases were 
reduced (1.7% ± Median Absolute Deviation=1.6% in UKBB; 3.3% ± 2.2% in AoU). Most 
studies that analyze pLoFs filter these variants to remove those that likely represent 
annotation artifacts53–56, which are variants that have no molecular impact but were 
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Figure 3: Reduced pLoF Penetrance is Not Fully Explained by Annotation Artifacts. (A): 
Disease-specific apparent penetrance (DS-AP) estimates for pLoFs (DS-APs, see 
Methods) were computed in each biobank using diagnoses only (N=28). The estimates 
from the two biobanks were compared, and their correlation was assessed using 
Pearson’s correlation coefficient (R2). (E): Boxplots comparing the distribution of DA-AP 
estimates before (gray) and after (red) filtering pLoFs for possible artifacts (see main text). 
Statistical significance was assessed using Wilcoxon signed rank tests (one-sided test; H0: 
difference in DS-AP after and before filtering is symmetric about µ < 0).  
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misannotated as LoFs by the variant prediction software. To account for these artifacts, 
we repeated this analysis after removing variants that impacted non-canonical 
transcripts (i.e. non-MANE Select57) and/or failed to meet a set of quality filters 
(assessed using the LOFTEE package54). Restricting the analysis to the filtered variants 
increased the DS-AP estimates in both biobanks (23/28 diseases in UKBB; 24/28 in 
AoU; Wilcoxon Signed Rank Test Meta Analysis P-value = 9.54 ´10-7; see Figure 2E). 
However, their median values remained below 10% (4.6% ± 3.7% in UKBB; 9.0% ± 
7.2% in AoU). Nevertheless, several diseases achieved apparent penetrance estimates 
exceeding 20% penetrance (ex: Hereditary Hemorrhagic Telangiectasia and 
Neurofibromatosis Type 1; see Supplemental Table 7 for details. Note: many penetrance 
estimates in AoU must be suppressed due to restrictions on data sharing).  
 
Reduced Penetrance Persists after Accounting for Missing Disease Diagnoses  
 
 Thus far, diagnoses have been used to measure disease expression and 
estimate penetrance. This is clearly an imperfect method, as some pLoF carriers may 
exhibit disease  expression without diagnoses45,58. Moreover, most haploinsufficient 
diseases lack disease-specific diagnostic codes that can be detected in EHR data. To 
overcome these issues, we developed an automated method to measure disease 
expression in every pLoF carrier using their recorded symptoms (see Figure 4A for 
illustration). Like the PheRS approach, this method computes the background symptom 
frequency distribution using the entire biobank (denominator in the right-hand-side of 
the equation in Figure 4A). To compute the probability of disease expression 
(conditional on being a pLoF carrier, left-hand-side of Figure 4A), the method compares 
the likelihood of the observed symptoms under a simple disease model (numerator in 
the right-hand-side) to this background distribution. This enables the method to compute 
a symptom-driven disease expression score for every pLoF carrier that accounts for 
their similarity to other affected carriers while comparing their expressed symptoms to a 
null background. This symptom-driven approach to measuring disease expression 
requires no labels and is thus unsupervised. However, it remains at risk for overfitting. 
Therefore, we trained the disease-specific expression models in the UKBB prior to 
validating them in AoU.  
 Evaluating the performance of the method is challenging, as no “gold-standard” 
disease expression dataset exists. Therefore, we used the haploinsufficient diseases 
with diagnostic data to validate the approach. Briefly, for those diseases with both 
symptom expression and diagnostic data, we used the symptom expression scores 
computed for each carrier to predict diagnoses, as they should be mostly concordant. 
Figure 4B depicts the results of this analysis using precision-recall curves. In these 
curves, each point on the line represents a distinct symptom-expression score. For each 
point, we identified those pLoF carriers with a symptom expression score that was at 
least as high. We then computed the fraction of LoF carriers within this set who 
harbored disease diagnoses (precision, y-axis) and compared this estimate to the total 
fraction of diagnosed LoF carriers detected within the subset (recall, x-axis). A perfect 
model would recover 100% of the diagnosed carriers with perfect precision (red-dotted 
lines). A random model could perform no better than the baseline disease diagnosis rate 
(gray dotted lines).    
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Clearly, the symptom-driven expression measurements predicted disease 
diagnoses significantly better than random (13-fold and 7.5-fold better in the UKBB and 
AoU, respectively; Randomization Test P-values < 0.0001, see Figure 4B). Moreover, 
there was not a substantial difference in model performance between the UKBB and 
AoU, although performance was certainly better in the UKBB (likely due to training 
bias). This suggests that symptom-driven expression scores are predictive of disease 
expression, at least according to diagnoses. To simply downstream analyses, we 
binarized the symptom-driven expression scores by selecting a single threshold for 
disease expression in each dataset. Those carriers with symptom scores above this 
threshold were deemed to have disease expression, while those with scores below the 
threshold were unexpressed. To determine this disease expression threshold, we chose 
the symptom scores that maximized the F1-measure for the curves shown in Figure 4B, 
where the F1-measure represents the harmonic mean of the precision and recall scores. 
Selecting a disease expression threshold in this manner is arbitrary without “gold-
standard” data. But by using the symptom-expression score that maximized the F1-
measure, we found no strong evidence for discordance between the symptom-driven 
measurements and those derived using diagnoses (McNemar’s Test P-values = 0.16 
and 0.12 in the UKBB and AoU respectively). 

To incorporate the symptom-driven measurements into penetrance estimates, we 
identified a pLoF as expressed if the carrier had a either disease diagnosis or if their 
symptom-driven score exceeded the F1 thresholds from Figure 4B. For the set of 28 
diseases analyzed in Figure 3, incorporating the symptom-driven expression 
measurements increased the median DS-AP estimates by 1.64-fold and 2.01-fold in the 
UKBB and AoU, respectively (Figure 4C). This is not surprising and is consistent with 
the hypothesis that many pLoF carriers were symptomatic but lacked formal disease 
diagnoses. In addition, this symptom-driven approach allowed us to analyze 51 
haploinsufficient diseases that lacked diagnostic information yet had symptoms that 
were shared across the two biobanks. For these diseases, the purely symptom-driven 
DS-AP estimates were correlated across biobanks (Figure 3E; R2 = 0.46; P-value = 1.22 
´10-8). Nevertheless, overall pLoF penetrance was reduced (median DS-AP: 4.8% ± 
3.5% and 9.2% ± 7.5% in the UKBB and AoU respectively), even for diseases with that 
had both diagnostic codes and symptom-driven expression data (5.2% ± 4.5% and 
10.9% ± 9.9% respectively). The symptom-driven DS-AP estimates are provided in 
Supplemental Table 8.  
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Reduced pLoF Penetrance Persists After Accounting for Gaps in EHR Data Coverage 
 
Another factor that could negatively impact penetrance estimation is the 

incomplete lifetime coverage of the EHR data in biobanks41,45. More specifically, these 
datasets capture only a fraction of their subjects’ lifespans, and the data coverage for 
individual participants can vary widely. Therefore, extensive missing clinical data, which 
can occur during any lifetime interval (e.g. childhood, late adulthood, etc.), can give the 
false appearance of reduced penetrance. Supplemental Figure 1 shows the distributions 
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Figure 4: Reduced Penetrance Persists after Accounting for Missing Disease Diagnoses. (A): A 
simple illustration of the symptom-driven expression model. (B): Symptom-driven expression 
scores predict rare disease diagnoses in both datasets. These panels display the precision (i.e. 
fraction of LoF carriers with diagnoses; y-axis) and the recall (i.e. total fraction of pLoF carriers 
detected; x-axis) for a model that uses symptom-driven expression scores to identify pLoF 
carriers with disease diagnoses. Each point on these curves represents a different expression 
score threshold for identifying carriers at-risk for diagnosis. The red stars denote the expression 
score (»0.97 in both datasets) that maximized the F1-measure (harmonic mean of 
precision/recall) for the predictions. Gray lines indicate the performance of a random model; 
red-dashed lines the performance of a perfect classifier. The left panel depicts performance in 
the UKBB (training dataset; N = 6,129 disease-carrier pairs), while the right panel depicts 
performance in AoU (validation dataset; N = 8,242 disease-carrier pairs). Additional details are 
in the text. (C): For those diseases with diagnoses available in both biobanks (N=28), the two 
boxplots compare the disease-specific penetrance estimates before (gray) and after (red) 
including the symptom-driven scores (see Methods). (D): For those diseases without diagnostic 
data (N=51), the symptom-driven disease-specific APs for the pLoF variants were compared 
across the two biobanks. Correlation was assessed using Pearson’s method (R2). 
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over the age at the time of recruitment (1A,1E), the age of the earliest clinical 
observation (1B, 1F), the total number of documented clinical encounters (1C,1G), and 
the total number of years elapsed between the first and last encounters (1D,1H) for the 
pLoF carriers in the UKBB and AoU, respectively. Based on these distributions, it seems 
likely that clinical data coverage for some pLoF carriers was too low to reliably 
determine their disease expression. To test this hypothesis, we first determined whether 
each pLoF carrier expressed any symptom consistent with their associated 
haploinsufficient disease, identifying those without symptoms as being completely 
asymptomatic. We then used the attributes from Supplemental Figure 1 as features in a 
set of regression models designed to predict asymptomatic carriers, independent of any 
variant or gene information. If the models were accurate, then prediction scores derived 
from these data coverage statistics could be used to remove pLoF carriers with too little 
clinical data to make meaningful contributions to penetrance. 

 

To perform this analysis, we separated the diseases into three groups based on 
their approximate onset (see Methods): childhood, young adulthood, and adulthood, as 
we expect that these onset classes to have different coverage requirements (e.g. 
childhood-onset conditions may be poorly assessed in individuals without clinical data 
extending below age 20). We then fit and assessed the performance of these models in 
both biobanks using 5-fold leave-one-out cross validation. The results are depicted in 
Figure 5A, where performance was assessed by comparing the model predictions to 
true asymptomatic status using receiver operating characteristic curves. For all three 
onset classes, the models were predictive of asymptomatic status, with some variability 
in performance across the different onset classes and biobanks.  

Using the predictions from these models, we removed all subjects from our 
analysis who were predicted to be asymptomatic based on limited clinical data coverage 

Supplemental Figure 1: Clinical data coverage among pLoF carriers in the UKBB and AoU. (A, E): 
Distribution over the age at the time of recruitment (A: UKBB; E: AoU). (B, F): Distribution over the age at 
the first clinical observation (B: UKBB; F: AoU). (C, G): Distribution over the total number of clinical visits 
(C: UKBB; G: AoU). (D, H): Distribution over the total number of elapsed years between the first and last 
clinical visits (D: UKBB; H: AoU).  
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at a false positive rate of 5% (see Methods). This process filtered out 17% and 35% of 
the pLoF carriers in the UKBB and AoU respectively. Figure 4B depicts the increase in 
DS-AP for the pLoFs within both datasets after correcting for clinical data coverage. DS-
AP estimates increased for most diseases in both biobanks (65/90 in the UKBB; 64/76 
in AoU; Wilcoxon Signed Rank Test Meta Analysis P-value < 2.2´10-16). Moreover, a 
handful of individual diseases acheived pLoF penetrance rates exceeding 50%, 
including Autosomal Dominant Polycystic Kidney Disease (Avg. Penetrance: 53% and 
70% in the UKBB and AoU, respectively) However, this was not universally true, even 
for diseases that typically present during childhood (average pLoF penetrance for 
Tuberous Sclerosis: 6.6% and 19.2% in the UKBB and AoU respectively). Moreover, the 
absolute increase in DS-AP was modest, with the median penetrance estimates 
increasing 1.3-fold from those depicted in Figure 4 for both biobanks. The set of DS-AP 
estimates after filtering for clinical data coverage are provided as Supplemental Table 9. 

 
 

 

 
Variant-Specific Genomic Features Are Predictive of pLoF Penetrance 
 

After removing annotation artifacts, imputing missed diagnoses, and correcting 
for incomplete clinical data coverage, pLoF penetrance estimates increased 
systematically. However, reduced penetrance remained common. None of the filters 
employed above were perfect, and residual artifacts, missed diagnoses, and incomplete 

Figure 5: Correcting for clinical data coverage does not substantially increase penetrance 
estimates. (A): The coverage statistics displayed in Supplemental Figure 1 were used to build 
models to predict whether the pLoF carriers (stratified by disease onset; x-axis) would be 
asymptomatic for their target phenotypes. Model performance was assessed using the area 
under the receiver operating characteristic curve (AUC; y-axis) using leave-one-out 5-fold 
cross validation (CV). All models consistently performed better than random (AUC=0.5). (B): 
Based on the results from (A), pLoF carriers predicted to be asymptomatic at a false positive 
rate of 5% were removed from the analysis (see Methods). These boxplots depict the DS-AP 
estimates before (gray) and after (red) this filtering. Statistical significance was assessed 
using a Wilcoxon signed rank test (one-sided test; H0: difference in DS-AP estimates after and 
before filtering are symmetric about µ < 0). 
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data could certainly account for some fraction of the reduced penetrance. However, it's 
certainly possible that some of the reduced penetrance was instead driven by pLoFs 
with incomplete loss-of-function. Generally, it is presumed that loss-of-function variants 
are approximately equivalent in terms of their molecular impact, but this may not be the 
case. Some may have deleterious effects but still result in some residual gene or protein 
activity. Such “leaky” expression could in turn drive variable penetrance. For example, 
incomplete non-sense mediated decay escape59,60 could allow for the partial expression 
of a transcript impacted by a stop-gain variant. Detecting such an effect for an individual 
variant is challenging, at least using biobank data. However, we hypothesize that 
variant-intrinsic genomic features (ex: SpliceAI scores for splicing variants61), which are 
often used to identify annotation artifacts, may also be predictive of penetrance. If true, 
then variant-intrinsic genomic features should be able to identify subsets of pLoFs with 
high penetrance, even among variants with prior evidence for pathogenic effects 
according to diagnostic testing data. 

To test this hypothesis, we constructed machine learning models62 that used 
multiple variant-intrinsic genomic features to predict disease expression in individual 
pLoF carriers, where expression was measured using both disease-specific symptoms 
and diagnoses (see Methods for full description). Because the interpretation of different 
variant types relied on different features, we constructed unique models for each of the 
following pLoF classes: stop-gain, frameshift, and splice change (see Methods). These 
models were trained to predict disease expression exclusively within the UKBB (see 
Supplemental Figure 2 for a summary of the UKBB model training results), yielding 
variant expression prediction models that could be independently validated in AoU. To 
validate their effectiveness, we used the models to predict the expression risk for every 
pLoF variant in AoU. We then selected subsets of AoU pLoFs according to their 
predicted expression probabilities. If variant-intrinsic features were predictive of 
penetrance, then the average apparent penetrance of the pLoFs within the subsets 
should increase as the scores become more selective. At the same, increasingly 
restrictive expression scores will retain fewer expressed pLoFs, meaning that the total 
fraction of expressed pLoFs captured by the subset will decrease.   

Figure 5A displays this tradeoff between average penetrance and retained 
fraction of expressed pLoFs over the range of machine learning (ML)-derived 
expression scores within the AoU validation dataset. For reference, we display this 
same tradeoff for the variants that pass the filter that we used in Figure 2 to remove 
annotations artifacts (MANE Select transcipts only57 with a high confidence LOFTEE 
flag54). A filter that only includes variants with non-conflicting pathogenic/likely-
pathogenic (P/LP) annotations in ClinVar46 is also displayed. Clearly, the machine 
learning predictions can select pLoFs with progressively increasing penetrance, and on 
average, the model prediction scores perform better than both the simple filter (ML 
Model Penetrance/Recall F1 measure = 0.26; MANE+LOFTEE F1 measure = 0.17; 
Bootstrapped P-value < 1.0´10-4) and prior P/LP annotations (ML Model Max. F1 
measure = 0.26; P/LP F1 measure = 0.19; Bootstrapped P-value < 1.0´10-4). In Figure 
5B, the results are stratified by variant type. The models were significantly predictive for 
all types (Randomization Test P-values < 1.0´10-4) but splice prediction was the most 
challenging (ML Model Avg. Penetrance Increase = 0.07). Figure 5C displays this same 
information, except now the results are stratified by disease onset. Even pLoFs in adult-
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onset haploinsufficient disease genes can be filtered to maximize penetrance (ML 
Model Avg. Penetrance Increase from Baseline = 0.09; Randomization Test P-value < 
1.0´10-4).  

  
Figure 5D displays this penetrance-recall tradeoff exclusively for variants 

classified as P/LP in ClinVar. The machine learning models remained strongly predictive 
of penetrance for this class of variants (ML Model Avg. Penetrance Increase from 
Baseline = 0.23; Randomization Test P-value < 1.0´10-4), with the most stringently 

Supplemental Figure 2: Training variant expression prediction models in the UKBB. 
(A): We evaluated the performance of two different machine learning frameworks 
for predicting disease expression using pLoF features: Logistic Regression (red) 
and Random Forests (blue). We assessed performance using the average increase 
in penetrance achieved by filtering pLoFs according to their expression scores. 
Random forest models consistently outperformed logistic regression in 5-fold leave-
one-out cross validation experiments for all three variant types considered in this 
study. (B, C, D): In these panels, the variant-intrinsic features used by each model 
to predict disease expression are displayed on the x-axis. The y-axis displays an 
approximate measurement of feature importance (the mean decrease in impurity 
achieved by each pLoF feature). Error bars indicate the standard errors. A: Stop-
gain; B: Frameshift; C: Splice Change.  
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filtered pLoFs approaching near complete penetrance. Based on this data, it's unlikely 
that missing clinical data is accounting for much of the apparent variability in 
penetrance, as it’s hard to imagine why differences in clinical data coverage would 
correlate with variant-specific genomic features independently of their effects on 
disease expression. Instead, there are two much more likely (and non-mutually 
exclusive) explanations for this result41. First, many P/LP variants may have variable 
penetrance, which correlates with their genomic features. Second, the annotations in 
ClinVar may be incorrect. Distinguishing between these two possibilities is difficult, as 
most of these variants occur in only 1-2 subjects. Nevertheless, these results suggest 
that binary pathogenicity labels have low utility when it comes to predicting penetrance.  
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Figure 6: Genomic features are predictive of penetrance. (A): This panel displays 
the tradeo4 between average apparent penetrance (y-axis) and the fraction of 
expressed pLoFs retained (x-axis) when using di4erent model-derived 
expression prediction scores to filter variants. For reference, the threshold that 
maximized F1 measure for the model is shown in red. The performance of a 
simple filter (MANE Select+High-Confidence LOFTEE flag) is shown as a gray 
square, while a filter that only includes variants with nonconflicting 
pathogenic/likely-pathogenic (P/LP) annotations in ClinVar is shown as a gray 
diamond. All error bars represent bootstrapped 95% confidence intervals. The 
dotted line indicates the performance of a random classifier. (B, C): These 
panels depict the same penetrance- recall results from (A), except now pLoFs 
are stratified by variant type (B) or typical disease onset (C). (F): This panel 
depicts penetrance-recall curve for those pLoFs with non-conflicting P/LP 
annotations in ClinVar. Significance was assessed using a randomization test.  
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Discussion 
 
Broad (exome and genome) sequencing has revolutionized the field of clinical 

genetics63. More rare disease patients are being diagnosed using these technologies, 
and this has improved our ability to provide timely counseling and treatment to the 
affected individuals and their families. As a result, there is growing interest in using 
broad genomic testing for population screening7–17. Here, the goal is to identify 
individuals at risk for a Mendelian disease prior to symptom onset. Theoretically, this 
could lead to better clinical outcomes through earlier diagnosis, surveillance and 
management. For genomic screening to succeed, it should at least have a quantifiable 
positive predictive value18–20, a statistic that directly depends on penetrance. Currently, 
penetrance is almost universally unknown except for a handful of unusually frequent, 
deleterious variants. As a result, Mendelian disease risk assessments will be imprecise 
for most asymptomatic carriers. This may have a limited impact on patient outcomes in 
many settings. However, the clinical decisions made using genomic screening will be 
life altering in some cases, and without penetrance information, such interventions may 
be unnecessarily applied to low-risk carriers.   

In this study, we investigated the penetrance of one of the simplest classes of 
clinically relevant genetic findings: putative loss-of-function variants (pLoFs) in 
haploinsufficient disease genes. Consistent with prior analyses42,43,58, we found that the 
apparent penetrance of these variants was reduced, with median values ranging from 5-
10% depending on the biobank (Figure 3). Accounting for the extensive amount of 
missing clinical data in biobanks increased penetrance estimates (Figures 4 and 5), but 
most pLoFs remained unexpressed. In diagnostic applications, detailed criteria for 
variant interpretation have been developed to mitigate the risk for false positive 
results27,64. The utility of these criteria for penetrance prediction, however, is largely 
unknown. In this analysis, even variants with prior evidence for pathogenicity based on 
diagnostic testing had reduced penetrance (Figure 6A), suggesting that the utility of 
these annotations for penetrance prediction is limited. Importantly, machine learning 
models that incorporated variant-intrinsic genomic features like mutational constraint65, 
splicing scores66, and predicted non-sense mediated decay escape59 were able to 
identify pLoFs with penetrance approaching 100% (Figure 6D), indicating that missing 
clinical data alone was unlikely to account for the reduced penetrance for many these 
variants. 

These results suggest that screening tests for these disorders that rely on current 
variant interpretation guidelines will have low positive predictive values. That said, 
improvements seem feasible. Decades of research into variant-intrinsic features like 
mutation patterns, evolutionary constraint, and functional impact has led to the 
development of computational tools that are used to predict the pathogenicity of 
individual pLoFs54,55,59,65,66, generally with the goal of eliminating annotation artifacts. 
However, the analyses performed in this study suggest that these tools may be effective 
at predicting variant penetrance, even in the absence of gene, disease, and carrier-
specific information. In addition, their effectiveness at this task suggest that these tools 
may be capturing some degree of “leaky” or incomplete loss-of-function, which has 
implications for rare variant analyses beyond penetrance prediction. That said, the real-
world clinical validity of these predictions remains unknown, and much work remains to 
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be done to ensure that penetrance predictions derived from biobanks and similar 
resources are replicable, calibrated, minimally biased, and broadly applicable to diverse 
genes, diseases, and populations. 

For now, it may be possible to predict the phenotypic outcomes for some rare 
genotypes with near complete penetrance67. In addition, when variant information is 
combined with orthogonal data like enzymatic activity and biomarkers, the prognostic 
accuracy may be very high68. Unfortunately, such assays are only available for a tiny 
fraction of genetic diseases. For most, the variants themselves are the only piece of 
prognostic information available. Prior evidence for pathogenicity may increase the 
positive predictive value of a particular variant, but based on the analyses presented 
here, prior pathogenic annotation labels are not synonymous with high penetrance, 
which is not unexpected. Access to high-quality outcome data for individual genotypes 
will certainly help, but given their intrinsically low frequency, it will likely remain difficult to 
estimate penetrance and predict phenotype outcomes in individual patients for the 
foreseeable future. Therefore, we suggest that caution be used when returning positive 
genomic findings to asymptomatic patients. Even with prior evidence of pathogenicity, 
risk estimates remain uncertain.  
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Methods 
 

Haploinsufficient Disease Curation and Annotation 
 
 We used the ClinGen47 Database (downloaded on July 25th, 2023) to identify 
Mendelian disorders that have strong evidence to support haploinsufficiency as a 
mechanism of disease (ClinGen Dosage Haploinsufficiency Assertion Evidence Level 
3). We then aligned these diseases to the Online Mendelian Inheritance in Man48 
database (downloaded on February 23, 2023) using simple string matching followed by 
manual curation. This yielded 91 autosomal dominant/pseudo-autosomal dominant 
diseases linked to 117 genes, which were manually annotated with their typical onset 
(Childhood, Young Adulthood, Adulthood) and general classification (Congenital 
Malformation, Isolated Neurodevelopmental, Complex Neurodevelopmental, Tumor 
Predisposition, and Other) by a board-certified clinical geneticist (author D. Blair) using 
clinical expertise and literature review. Afterwards, disease-specific diagnostic codes 
were annotated to these diseases by manually curating the terminologies69 used by the 
Observational Medical Outcomes Partnership Common Data Model70 (OMOP-CDM). 
Finally, the diseases were annotated with a set of Human Phenotype Ontology71 (HPO) 
symptoms using the data from several ontologies, including the HPO itself (downloaded 
on February 21, 2023), the Disease Ontology72 (downloaded on February 23, 2023) and 
OrphaNet73 (downloaded on February 23, 2023 using the HOOM74 module). The 
sequence and transcript information for each of the 117 genes was downloaded from 
the Ensembl75 database (Release 109; GRCh38 assembly) using the PyEnsembl76 
package. Additional gene and transcript information (exon-intron boundaries, 5' and 3' 
UTRs, full coding and amino acid sequences) was downloaded using gget77. The 91 
haploinsufficient diseases, along with their annotated information, are provided in 
Supplemental Table 1. 
 
Aligning HPO Symptoms to the OMOP-CDM Terminology 
 
 To identify HPO71 symptom diagnoses in the EHR data, we needed to align this 
ontology to the structured diagnostic data available in the electronic health records of 
each biobank. Because both biobanks encode their clinical data using the OMOP-
CDM70, we focused on aligning the HPO symptom terminology to the structured 
vocabulary used by this data model69. Unfortunately, aligning the HPO to other medical 
terminologies is largely an unsolved problem that lacks a consensus regarding best 
practices78. Therefore, we created a custom alignment by building on our previous 
work24 while implementing some new techniques.  

First, we created an alignment map between the HPO and SNOMED-CT79, as 
the latter represents the most comprehensive medical terminology available for the 
dissemination of EHR data. It is also fully incorporated into the concept terminology 
used by the OMOP-CDM. To create an HPO-to-SNOMED map, we followed the 
approach of McArthur et al.80, who created a similar map between the HPO and 
PheCodes81. First, we constructed a map linking HPO to SNOMED-CT terms if they 
shared a common concept in the UMLS Metathesaurus82. Second, we used an ontology 
alignment algorithm (SORTA83) to find all SNOMED-CT terms that mapped to an HPO 
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term with a similarity score of ³ 0.8 for at least 1 of their associated string pairs (both 
SNOMED-CT and HPO often provide multiple strings for each term). For terms with 
multiple aligned string pairs, we collated all the similarity scores across the different 
string pairs, storing both an average and maximum score.  

With an HPO-to-SNOMED map in place, the HPO terms themselves could be 
aligned directly to the concept terminology used by the OMOP-CDM, as a map from 
SNOMED-CT terms to the OMOP-CDM concepts is provided by Observational Health 
Data Sciences and Informatics (OHDSI) Collaborative69,84. However, it is important to 
note that one HPO term often mapped to multiple SNOMED-CT terms, which could then 
map to the OMOP terminology in multiple ways. Therefore, each HPO-OMOP alignment 
was often supported by multiple intermediary relationships. To summarize this 
phenomenon, we stored several pieces of information for each alignment that captured 
the quality of its supporting evidence. These included: the total number of intermediate 
relationships supporting the mapping, the fraction of these relationships that were 
supported by the UMLS, the fraction that achieved a SORTA string alignment similarity 
score ³ 0.8, the average SORTA score across intermediaries, and maximum score 
achieved. In total, this process generated 35,825 unique HPO-to-OMOP alignments. 

Because automated alignments like this tend to be rife with spurious results, one 
of the authors (D. Blair) manually reviewed 500 random mappings and annotated their 
medical accuracy. The accuracy was unsurprisingly variable, but overall, far better than 
random (average precision: 0.76). To further improve accuracy, we built a simple logistic 
regression classifier (implemented in sklearn85) to predict if an HPO-OMOP alignment 
was accurate. The model incorporated the alignment features described above as linear 
predictors (noting that the maximum achieved SORTA score was incorporated as 
interaction term with the total number of intermediate relationships). The model was 
trained on the 500 manually annotated alignments prior to being applied to the full 
dataset. In leave-one-out 5-fold cross validation experiments, the area under the 
receiver operator characteristic curve for the model predictions was 0.76 (standard 
error: 0.017), indicating that these predictions could provide a substantial improvement 
to alignment accuracy. Therefore, all »35,000 HPO-to-OMOP alignments were scored 
using the prediction model, and several false positive rate (FPR) thresholds were 
selected for downstream filtering. The complete set of HPO-to-OMOP Concept ID 
alignments (along with their features, manual annotations, machine learning scores, and 
whether they survived various FPR filtering thresholds) are provided as Supplemental 
Table 10. Finally, we experimented with various alignment FPR thresholds in 
downstream analyses. Overall, PheRS enrichment among pLoF carriers was highest 
when using the relationships that survived a 20% FPR threshold (data not shown). 
Therefore, this set of alignments was used for all the results reported in this manuscript.  
 
Sequence Data Quality Control, Variant Annotation, and Non-Carrier Cohort 
Identification 
 
 This study utilized the exome sequence (ES) data from the UK Biobank (UKBB)36 
and the whole genome sequence (WGS) data from the All of Us (AoU) Research 
Program40 to investigate the penetrance of putative loss-of-function (pLoF) variants in 
haploinsufficient disease genes. For the AoU dataset, the WGS samples undergo an 
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extensive quality control process, which ensures that samples meet several coverage 
and accuracy thresholds40. Therefore, all samples with WGS data that were not flagged 
by AoU’s quality control pipeline were analyzed in this study (N = 245,376). For the 
UKBB, less sample-level quality control was performed a priori. Therefore, the ES data 
from this biobank underwent additional quality control filters consistent with those 
performed in previous studies86. Briefly, all samples that showed evidence for genetic 
and self-reported sex discordance (N = 296), sample duplication (N = 56), excessive 
SNP array-short read sequencing genotype discordance (N = 513, including those that 
lacked array data), low read coverage for the haploinsufficient genes of interest (20x 
coverage at less than 90% of the base pairs; N = 92), and excessive missing genotypes 
(N = 329, again limited to the haploinsufficient genes of interest) were excluded from the 
analysis (total number of samples that failed quality control: 1,156). After excluding 
subjects that withdrew from the UKBB study, this dataset contained a total of 468,672 
subjects with both ES and EHR data.  
 Following sample-specific quality control filtering, variants from the exonic 
regions of the haploinsufficient disease genes were isolated from both datasets 
(performed using bcftools87 in the UKBB and hail88 in AoU), storing the variant 
genotyping calls in VCF files. Individual-level data was then stripped from these files, 
and the predicted molecular effect of each variant was annotated using VEP89 (Version 
110). Simultaneously, the variants were annotated with any previous interpretations 
documented within the ClinVar46 database (downloaded on May 13th, 2024). Finally, all 
pLoFs within these datasets were identified using the LOFTEE54 plug-in for VEP, which 
also provided a flag indicating the overall confidence in this assessment (high vs low 
confidence; HC vs LC). Using the output from VEP, each pLoF was annotated with the 
its most clinically significant impacted transcript57 (MANE Select, MANE Plus Clinical, 
Other), and the variants were also assigned to one of three pLoF classes: stop-gain, 
frameshift, and splice change.  
 Following annotation, we returned to the VCF files that contained the individual-
level genotype calls and isolated all pLoFs identified in the previous step. We then 
identified all carriers for each individual variant, removing those that did not meet a 
basic set of genotype-specific quality control filters86. For single nucleotide variants 
(SNVs), we assigned a no-call status to all carriers with a genotyping quality score < 30, 
sequencing depth < 7, and alternate allelic balance < 0.15. For insertion-deletion 
variants, we were more stringent and removed those calls with a quality score < 30, 
sequencing depth < 10, and alternate allelic balance < 0.2. In addition, we removed a 
variant from the analysis entirely if its call rate was <0.99 or if its carrier frequency was 
greater than 0.1% (after performing carrier-specific quality control). For the UKBB, we 
also a priori removed those variants that achieved an average read depth <10 for more 
than 10% of the samples in the dataset (per recommended best practices90). In total, 
this process identified 3,131 (Supplemental Table 2) and 3,889 (Supplemental Table 3) 
pLoFs carried by 14,010 and 11,022 subjects in the UKBB and AoU respectively. Note, 
some individuals harbored multiple pLoF variants within a single gene, suggesting the 
potential for in cis rescue versus sequencing artifacts. Such carriers were not excluded 
from basic pLoF frequency estimates (i.e. Figures 1) but were excluded from all other 
analyses. No further attempts were made to account in cis rescue events, and the 
extent of their impact on pLoF penetrance is a target for future work56. 
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Finally, for each haploinsufficient disease, we created a unique cohort of non-
carrier controls that were unlikely to be at risk for the disease of interest. To do so, we 
first identified all subjects in both datasets that carried any rare variant (allele frequency 
£ 0.1%, performed using plink291 or hail88) in the set of genes annotated to each 
disease. From the set of all possible control subjects, we then removed those that 
carried any rare variant in the target genes or had a no-call genotype at one of the 
pLoFs detected in those genes. The total number of non-carrier controls available for 
each disease was variable but exceeded 280,000 and 130,000 in all instances for the 
UKBB and AoU respectively.  
   
Recruitment Age Analysis 
 
 We hypothesized that the ascertainment biases intrinsic to biobank recruitment 
would result in differences in recruitment age between pLoF carriers and non-carriers. 
To test this, we first identified the recruitment age for every subject. For the UKBB, 
recruitment age is a specific entry in the dataset (Data-Field 21022). For AoU, we 
estimated recruitment age using the censored birthdate provided for each subject along 
with the date on which their genomic biospecimen was collected. The pLoF effects on 
recruitment age were estimated separately for each haploinsufficient disease using an 
ordinary least squares (OLS) regression model applied to the cohort of pLoF carriers 
plus their corresponding non-carrier controls: 
 

𝑌"⃗Recruitment	Age = 𝜇 + 	�⃗� × βpLoF + ϵ, (1) 
 
where �⃗� denotes a binary vector indicating pLoF carrier status, 𝛽pLoF indicates the 
disease specific pLoF effect on recruitment age, µ is an intercept term, and 𝜖 denotes a 
gaussian-distributed error term. Dataset-specific P-values were computed using a two-
sided Student’s T-test (using the statsmodels92 package in Python), and inference 
results (𝛽3pLoF, σ5pLoF) from the two biobanks were combined using a fixed-effects meta-
analysis93. Disease-wide effects were quantified by taking mean of the pLoF effect 
estimates across diseases, and the significance of the disease-wide bias in recruitment 
age was assessed using a two-sided Wilcoxon Signed Rank Test. Results were 
combined across biobanks again using a fixed-effects meta-analysis. Supplemental 
Table 4 contains the complete set of results for the recruitment age analysis.  
 
Carrier Rate Analysis 
  
 Let 𝐶1 = 1 indicate that the ith biobank subject is a carrier for at least one pLoF. 
Based on this definition, the pLoF carrier rate in each biobank is given by: 

Carrier	Rate = ∑ 3!"
!#$
4

. 
To correct carrier rates for genetic ancestry differences, we used the predicted ancestry 
labels provided by the All of Us Research program, which were assigned using a 
machine learning model trained on a set of reference samples with known ancestry40. 
We reproduced these ancestry assignments in UKBB using this same procedure. To 
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correct carrier rates for ancestry differences, we included these ancestry labels as 
covariates in a logistic regression model to predict carrier status: 

𝑷?𝐶@𝜌, 𝑨, �⃗�D = 𝐹(𝜌 + 𝑨 × �⃗�), (1) 
where 𝑨 denotes a matrix of predicted ancestry labels (for this project, predicted 
ancestry labels include African/African American, Admixed American, East Asian, South 
Asian, Middle Eastern, and European), �⃗� denotes the vector of their individual effects, 
and 𝐹(𝑋) denotes the logistic function. The parameter 𝜌 represents the baseline pLoF 
carrier rate after adjusting for ancestry.  
 
Haploinsufficient Disease Prevalence and Penetrance Analysis 
 
 The simplest way to measure pLoF phenotypic expression was using disease 
diagnoses. Let 𝐷""⃗  denote a binary vector of length N, where in N is the number of pLoF 
carriers for some haploinsufficient disease of interest plus the number of non-carrier 
controls. Let 𝐷1 = 1 denote that the ith subject was diagnosed with the disease of 
interest at least once in their EHR data, where diagnoses were identified using a set of 
manually annotated OMOP-CDM concept codes (see above). Finally, let �⃗� denote a 
binary vector indicating the pLoF carrier status for the N subjects. We estimated the 
biobank-specific pLoF effect sizes (log-odds ratios; denoted 𝛾pLoF) using one of two 
approaches. For the more common diseases (∑ 𝐷1 ≥ 104

156 ), we incorporated covariates 
into the analysis using the following log-linear model: 
 

𝑷?𝐷""⃗ @𝜇, 𝐺, 𝛾pLoF, 𝑿, �⃗�D = 𝐹?𝜇 + �⃗� × 𝛾pLoF + 𝑿 × �⃗�D, (2) 
 
where 𝐹 denotes the logistic function, 𝜇 is an intercept term, 𝑿 is a matrix of covariates, 
and �⃗� is a vector of covariate effect size parameters. For the current study, we 
incorporated the following covariates into our analysis: recruitment age, birth sex, and 
the first 16 principal components of the genetic relatedness matrix. Model fitting was 
performed using Firth-penalized maximum-likelihood estimation94, and statistical 
inference was conducted using a likelihood ratio test. Even with Firth penalization, 
model inference returned spurious results when 𝐷""⃗  was extremely sparse. Therefore, for 
very rare diseases (∑ 𝐷1 < 104

156 ), we constructed 2 × 2 contingency tables from 𝐷""⃗  and 
�⃗� and estimated the pLoF log-odds ratio and its corresponding standard error using the 
statsmodels92 software package in Python. P-values were estimated using Fisher’s 
exact test95.  Finally, we performed cross-biobank meta-analyses of the pLoF effect 
sizes using the Cochran-Mantel-Haenszel Test for stratified contingency tables (again 
implemented in the statsmodels92 package). Supplemental Table 5 contains a 
summary of the results of our disease-specific prevalence association analysis. 
 To estimate the disease-specific pLoF apparent penetrance (DS-AP) estimates 
using diagnoses, we assumed a symmetric beta prior distribution over the DS-AP 
estimates with hyper-parameter 𝜃 = 0.5. Assuming disease diagnoses among pLoF 
carriers follow a Bernoulli process, the posterior distribution over the DS-AP is: 
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DS-AP	~	𝐵𝑒𝑡𝑎 [𝜃 +\𝐷1 × 𝐺1 , 𝜃 +\(1 − 𝐷1) × 𝐺1

4

156

4

156

^,	 

 
such that the average DS-AP estimate (denoted DS-AP________) is simply: 
 

DS-AP________	 =
𝜃 + ∑ 𝐷1 × 𝐺14

156

2𝜃 + ∑ 𝐺14
156

. (3) 

	 
In practice, DS-AP________ estimates were obtained in each biobank independently, allowing 
them to be compared across datasets (ex: Figure 3B).  
 
Phenotype Risk Score Analysis 
 
 Most haploinsufficient diseases lack structured diagnostic codes that can be 
used to identify their presence or absence in EHR data. In such instances, it can be 
difficult to determine if a subject is in fact expressing disease symptoms. Phenotype 
Risk Scores51,52 (PheRS’s) were developed to address this issue. These scores 
measure the extent to which a subject represents an outlier in phenotype space. Their 
effectiveness relies on a critical assumption: Mendelian disease patients should express 
constellations of symptoms that are highly atypical when compared to their unaffected 
counterparts. Although this is sometimes true, it is not the case for all diseases. 
Moreover, non-Mendelian disease patients can become phenotypic outliers as well, for 
example, if they develop unusual complications from a common disease or multiple 
common diseases at once. Therefore, PheRS’s are an imperfect method for assessing 
phenotypic expression, particularly if the goal is to separate Mendelian from non-
Mendelian disease subjects based on symptom expression alone. Nevertheless, they 
are useful for determining if a pLoF carrier is potentially symptomatic. 
 Let 𝑆1 denote a binary vector of length K, where is K is the number of symptoms 
annotated to the Mendelian disease of interest. Let 𝑆1,8 = 1 indicate that the kth 
symptom was diagnosed at least once in the ith subject’s EHR data. Finally, let 𝑃?𝑆1@𝜃D 
denote the probability of observing the set of symptoms diagnosed in the ith patient, 
where 𝜃 represents a set of parameters that define a background symptom expression 
probability model. The Phenotype Risk Score for the ith subject (denoted PheRS1) is 
given by: 
 

PheRS1 = −	log	g𝑃?𝑆1@𝜃Dh. (4) 
 
This formula is equivalent to the surprisal, or information content, of the diagnosed 
symptom set according to the model defined by 𝜃, and it provides a measurement for 
how unusual or atypical this set of diagnosed symptoms is. For the approach to be 
effective, we must of course define the symptom expression probability model. 
Consistent with prior studies51,52, we assumed that the kth symptom occurs 
independently of the others according to a Bernoulli process defined by the parameter 
𝜃8. Therefore,  
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 𝑃?𝑆1,8@𝜃8D = 𝜃8

9!,& × (1 − 𝜃8)6:9!,& . 
 
To estimate the background model parameters, we assumed that the Mendelian 
disease cases were sufficiently rare in the general population such that their risk of 
biasing the symptom-specific parameter estimates (denoted 𝜃j8) was negligibly low. 
Therefore, we estimated each symptom expression parameter independently using the 
maximum likelihood estimator for a Bernoulli process: 
 

𝜃j8 =
∑ 𝑆1,84
156

𝑁
, (5) 

 
where N denotes the total number of subjects in the biobank. After estimating this 
expression model, the PheRS1 score for each subject becomes: 
 	

PheRS1 =\−log?𝜃j8D × 𝑆1,8 − log?1 − 𝜃j8D × ?1 − 𝑆1,8D.
;

856

(6)	

	
In practice, we further adjusted the raw PheRS’s for confounding covariates 
(recruitment age, birth sex, and the first 16 components of the genetic relatedness 
matrix) using ordinary least squares regression. 
 After computing the covariate-adjusted disease-specific PheRS’s for every 
subject in both biobanks, we then compared the distribution of these scores between 
pLoF carriers and their non-carrier controls. To assign statistical significance, we used a 
one-sided Brunner-Munzel Non-Parametric Hypothesis Test (implemented in scipy95), 
which evaluated the null hypothesis that the PheRS’s observed in the pLoF carriers 
were stochastically less than those observed in controls. A fixed effects meta-analysis 
was performed using the effect size and standard error estimates produced by the 
Brunner-Munzel Tests performed in each biobank. Finally, for the histograms in Figures 
2B and 2C, the median PheRS’s in the pLoF carriers were converted to modified Z-
scores using the medians and median absolute deviations estimated within non-carrier 
controls. The complete set of PheRS results for all diseases are given in Supplemental 
Table 6.  
 
Estimating Symptom-Driven Disease Expression Scores 
 
 PheRS’s can suggest that a subject is a phenotypic outlier, but these scores do 
not necessarily provide an accurate assessment of whether a Mendelian disease is 
being expressed or not. For example, consider autosomal dominant polycystic kidney 
disease (ADPKD). Clearly, a pLoF carrier who has bilateral renal cysts complicated by 
chronic kidney disease is expressing the phenotype, but what if a carrier only 
experiences proteinuria? Proteinuria is certainly a symptom of ADPKD, so this carrier’s 
PheRS score will be greater than 0. But proteinuria is an incredibly common symptom in 
the general population. Therefore, just because an ADPKD pLoF carrier experiences 
proteinuria at some point in their life doesn’t mean that they are expressing ADPKD.  
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 To overcome this issue, we formulated the following symptom-driven disease 
expression model. As before, let 𝑃?𝑆1@𝜃D denote the probability that a set of symptoms 
𝑆1 is being expressed according to some general background distribution. In addition, let 
𝑃?𝑆1@𝛿D denote the probability that this symptom set is instead expressed within an 
individual affected by a Mendelian disease (where the parameter set 𝛿 defines the 
expression model). Finally, let 𝐸1 = 1	indicate that the disease of interest is being 
expressed in the ith carrier. Consistent with the diagram in Figure 4A, the probability of 
disease expression in the ith pLoF carrier is given by: 
 

𝑃?𝐸1 = 1@𝑆1 , δ, θ, πD = 𝐹 r	log s
𝜋 × 𝑃?𝑆1@𝛿D

(1 − 𝜋) × 𝑃?𝑆1@𝜃D
uv , (7) 

 
where 𝜋 is the prior probability of disease expression among all carriers and 𝐹 is the 
logistic function. 
 For this symptom-driven expression model to be effective, both the disease-
specific expression model (i.e. 𝑃?𝑆1@𝛿D) and the expression prior probability (i.e. 𝜋) must 
be either known a priori or estimated from the data. Estimating 𝜋 from the data is 
relatively straightforward, but the disease-specific expression model may be incredibly 
complex and is largely unknown. Moreover, the independence assumption invoked for 
PheRS estimation is unlikely to hold for Mendelian diseases, as it is the co-occurrence 
of multiple unusual symptoms that typically defines a Mendelian disease. 
 To overcome these issues, we assumed that 𝑃?𝑆1@𝛿D follows a completely 
arbitrary distribution over symptoms sets. More specifically, let 𝛿 define a multinomial 
distribution over all possible expressed symptom sets (i.e. all possible sets except the 
empty set), such that the distribution is defined by a parameter set with cardinality 2; −
1, where K denotes the total number of symptoms annotated to some disease of 
interest. Clearly, even for modest values of K, the dimensionality of the model becomes 
unwieldly, so we made the simplifying assumption that the possible set of symptoms is 
much smaller than 2; − 1 (i.e. many of the multinomial distribution parameters are equal 
to 0). Practically, we assumed that only 𝑀Obs + 1 symptom sets were possible, where 
𝑀Obs	denotes the number of unique symptoms sets observed across all biobank 
participants. The +1 term allows for the addition of a generic symptom set that accounts 
for any non-empty set that was not observed in the biobank, which enables the model to 
be trained in one biobank yet still be applicable to another. Note, the total complement 
of observed symptom sets in either biobank was very sparse compared to the 
cardinality of all possible sets, typically numbering in the 10s or 100s. 
 With this assumption in place, the Mendelian disease symptom expression model 
was defined as: 
 

𝑃?𝑆1 = 𝑠@𝛿D = \ 𝛿? × 𝟏(𝑠 ≡ 𝒮𝓂)
AObsB6

?56

 

where 𝟏(𝑠 ≡ 𝒮𝓂) is an indicator function that returns 1 if and only if the observed 
symptom set 𝑠 is identical to the symptom set whose expression probability is defined 
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by 𝛿? (denoted 𝒮𝓂 in the equation above). The symptom expression model defined in 
Eqn. 7 can then be used to specify the following likelihood for the observed symptom 
data: 
 

𝑃(𝑺|E, θ, δ, 𝜋) =� \ g𝜋 × 𝑃?𝑆1@𝛿Dh
C! × g(1 − 𝜋) × 𝑃?𝑆1@𝜃Dh

6:C!

C!∈E,6

F

156

, (8) 

 
where 𝑺 denotes the matrix of diagnosed symptom sets across the 𝑉 pLoF carriers. By 
estimating the model parameters (denoted 𝜃j, 𝛿3, and	𝜋�) through likelihood maximization, 
the posterior probability over disease expression (defined in Eqn. 7) can be estimated.   
 For many diseases, the total number of pLoF carriers was small, making it 
difficult to simultaneously estimate both the disease-specific and background 
expression models simultaneously. Therefore, the background expression models used 
for PheRS estimation were used to define 𝑃?𝑆1@𝜃jD (see Eqn. 5 for estimation 
procedure). As a result, only the disease expression prior 𝜋 and the parameters defining 
the disease-specific expression model (denoted 𝛿) needed to be estimated. To 
regularize these estimates in the face of sparse data, we assumed that these 
parameters were drawn from uniform Beta and Dirichlet distributions respectively. The 
model specified in Eqn. 8 was then fit by maximizing a lower-bound on the marginal 
likelihood using variational Bayesian inference96. The posterior distributions over the 
individual expression probabilities, denoted 𝑃?𝐸1 = 1@𝑆1 , 𝛿3, 𝜃j, 𝜋�D for the ith carrier, were 
generated automatically during inference. In practice, we fit the disease-specific 
expression models (i.e. 𝑃?𝑆1@𝛿D)  only within the UKBB (given its larger sample size), as 
such models remain at risk for overfitting even though inference is technically 
unsupervised. After fitting in the UKBB, the parameters estimated in this biobank were 
used to predict expression probabilities in AoU. Note, this procedure eliminated 15 
diseases from our analysis, as these disorders did not share diagnosed symptoms 
across bioanks. 
 The previously described model generated expression probabilities for every 
eligible pLoF carrier. However, it did not ensure that these probabilities were calibrated 
to disease expression risk. In other words, if 𝑃?𝐸1 = 1@𝑆1 , 𝛿3, 𝜃j, 𝜋�D 	= 	0.5, it was hard to 
determine what this meant from a disease expression perspective. To place these 
probabilities on a coherent scale, we turned to the set of diseases that have both 
diagnostic and symptom data available in both biobanks. If the symptom-driven model 
produced coherent expression probabilities, then these scores should be predictive of 
which pLoF carriers harbor Mendelian disease diagnoses. 

To test this hypothesis, we used the symptom-driven expression probabilities to 
predict Mendelian disease diagnoses among pLoF carriers, computing the precision 
and recall scores across all possible symptom-driven expression probability thresholds. 
The results of this analysis are displayed in Figure 4B. Clearly, the symptom-driven 
expression probabilities performed better than random in both datasets. In addition, the 
performance of the expression probabilities was relatively consistent across the two 
biobanks, although performance was better in the UKBB. To a select a symptom 
expression threshold for downstream analyses, we identified the expression probability 
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score that maximized the F1 measure (harmonic mean of the precision and recall) for 
the predictions shown in Figure 4B. This threshold was nearly identical across the two 
biobanks (0.975 and 0.972 in the UKBB and AoU respectively). Importantly, after 
defining disease expression according to this threshold, the symptom-driven expression 
predictions were statistically indistinguishable from the disease diagnoses themselves 
(McNemar’s Test for paired nominal data, implemented in statsmodels92).  

In all downstream analyses, we treated disease expression as a binary outcome. 
More specifically, we considered a pLoF to be expressed if the carrier harbored a 
Mendelian disease diagnosis (i.e. 𝐷1 = 1, assuming diagnostic data was available) or if 
their symptom-driven expression probability (denoted 𝑃?𝐸1 = 1@𝑆1 , 𝛿3, 𝜃j, 𝜋�D) exceeded the 
F1 thresholds described above. Treating disease expression as binary enabled us to 
estimate DS-AP’s using the same methods that were used for simple diagnoses (see 
Eqn. 3 for details). It also greatly simplified the machine learning analyses, as models 
for binary prediction are well-established. Additional work is needed to effectively 
incorporate the uncertainty that is inherent to measuring Mendelian disease expression 
into the types of analyses performed in this study. 
 
Strategy for Removing Samples with Incomplete Clinical Data Coverage 
 
 Biobanks are rife with incomplete clinical data, as the EHR is an imperfect 
representation of a patient’s phenotype. Moreover, biobank subjects are enrolled into 
these studies well into adulthood, and there is no guarantee that the records captured 
by the study represent their complete clinical history. Supplemental Figure 1 illustrates 
the extensive variability in data coverage that was observed within the UKBB and AoU. 
Given the limited data available for many of these subjects, phenotypic imputation was 
unrealistic. Therefore, we devised a method to flag and remove subjects from our 
analysis that had unacceptably low clinical data coverage. 
 Let 𝐴 denote a binary vector of asymptomatic indicators, where 𝐴1	 = 1 indicates 
that the ith pLoF carrier had no evidence for disease expression based on disease-
specific diagnostic code(s) and/or documented symptoms (i.e. had no disease-relevant 
diagnoses). Moreover, let 𝑾 denote a matrix of clinical data coverage statistics. For this 
analysis, we used the following four statistics to define data coverage: Age at First 
Clinical Encounter, Age at Recruitment, Total Number of Documented Clinical 
Encounters, and Age at Last Clinical Encounter. These four statistics provided a basic 
summary of a patient’s interaction with the healthcare system, at least according to the 
information in the biobanks. Finally, let 𝑏"⃗  denote a vector of coverage statistic effect size 
parameters. We modeled the probability of phenotypic non-expression (i.e. 
asymptomatic status) conditional on clinical data coverage using the following log-linear 
model: 

𝑷?𝐀""⃗ @𝜇,𝑾, 𝑏"⃗ D = 𝐹?𝜇 +𝑾× 𝑏"⃗ D 
where 𝐹 denotes the logistic function and 𝜇 is the intercept term. Because different 
diseases will have different coverage requirements (depending on their onset, 
pathophysiology, etc), we fit three versions of this model in both biobanks by grouping 
diseases together based on their typical onset. 
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 More specifically, each version of the model was repeatedly fit in both biobanks 
using leave-one-out 5-fold cross validation (model fitting was performed using the 
LogisticRegression function available in sklearn85 using the default 
hyperparameters). For each iteration, 80% of the onset-grouped pLoF carriers were 
used to estimate the parameters for the disease non-expression model. The remaining 
20% were used for validation. Model performance was assessed using the area under 
the receiver operating characteristic curve. All models performed better than random, 
but there was considerable variability in their performance across typical onset and 
biobanks. To flag pLoF carriers with insufficient clinical data, we identified the 5% false 
positive rate threshold in each validation subset. If a subject in a validation subset had a 
non-expression probability that exceeded this threshold, they were flagged for removal 
from downstream analyses. As discussed in the main text, this ad hoc procedure 
removed a substantial fraction of pLoF carriers from both datasets (17% and 35% in the 
UKBB and AoU respectively). Moreover, the average pLoF penetrance estimates 
increased systematically after filtering. Nevertheless, the absolute increase in 
phenotypic expression that occurred because of this filtering was low.  
 
Predicting pLoF Phenotypic Expression using Variant-Specific Features  
 
 Let 𝑉"⃗ 1 denote a vector of genomic features that characterize the pLoF variant 
carried by the ith subject. Examples of such features include its relative position within 
the amino acid sequence97 or its deleteriousness based on computational prediction 
tools65,66. The goal of this analysis is to predict the probability of phenotypic expression 
directly from the set of features that are unique to the pLoF carried by the ith subject: 
 

𝑃?𝐸1 = 1@𝑉"⃗ 1 , θD = ℱ?𝑉"⃗ 1; θD 
 
where ℱ is some function that maps the vector 𝑉"⃗ 1 	onto disease expression probability 
space via a parameter set 𝜃.	 Practically, different models can accomplish this goal. For 
this study, we constructed ℱ using the random forest algorithm62 implemented in the 
sklearn85, which builds predictive models via an ensemble of individual decision trees. 
Model fitting was performed by minimizing the logarithmic loss function of the prediction 
model when applied to a cohort of training carriers (training algorithm hyperparameters: 
min_samples_leaf=5, min_samples_split=10, n_estimators=500).  Note, we 
also considered simpler methods for constructing ℱ (i.e. penalized logistic regression) 
but found that they performed systematically worse than this ensemble learning 
approach (see Supplemental Figure 2), likely due to the latter’s ability to capture non-
linear effects. 

Any predictive model built using machine learning is at risk for overfitting, 
particularly models with many free parameters like random forests. To minimize the risk 
for overfitting, machine learning model inference was performed exclusively in the 
UKBB, after which the models were independently evaluated in AoU. In addition, only 
completely asymptomatic pLoF carriers were included as negative cases in the UKBB 
training dataset to avoid confounding the model with carriers who were weakly 
symptomatic but did not reach the severity threshold required to designate them as 
phenotypically expressed. Given that the two biobanks were recruited from the 
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populations of two different countries, the risk that the validation dataset was 
contaminated with subjects from the training dataset was very low.  

Finally, different types of pLoF variants have distinct features that likely impact 
their risk for expression55. Therefore, distinct phenotypic expression models were 
constructed for each of the three variant types analyzed in this study (stop gain, 
frameshift, and splice change). The remainder of this section describes the variant-
specific features that were used to build phenotype expression prediction models for 
each class of pLoFs. These features rely heavily on the ideas from prior studies55,97,98. 

 
Variant Class Agnostic Features: 

• CADD Score65: The Combined Annotation-Dependent Depletion (CADD) score 
predicts the deleteriousness of individual variants using a single numerical score 
derived from a wide range of variant-specific features, including but not limited to 
evolutionary conservation, DNA sequence motifs, and predicted impact on 
biochemical activity. Uniquely, CADD does not build these scores by training on a 
set of variants known to cause human disease. Instead, the scores are inferred 
by fitting a machine learning model to a set of evolutionarily neutral variants 
(proxy-negative cases) and a set of simulated mutations, which may or may not 
be deleterious (proxy-positive cases). This makes CADD well-suited for the 
analysis conducted in this study, as the score should not be polluted with 
information from prior ClinVar annotations.  

• LOFTEE Confidence Flag54: The LOFTEE plug-in for VEP89 not only identifies 
putative loss-of-function variants but also assigns them a confidence flag (low or 
high) based on several variant-specific features (e.g. distance from end of 
transcript, ancestral alleles, etc.; see https://github.com/konradjk/LOFTEE for 
details) 

• Transcript Type57: All variants were assigned to one of three transcript types 
(MANE Select, MANE Plus Clinical, Other) based on the most clinically relevant 
transcript that was predicted to be impacted. 

 
 
Stop-Gain Variant Features: 

• Predicted Non-sense Mediate Decay (NMD) Escape60: It is well known that some 
stop-gain variants escape non-sense mediated decay, enabling the expression of 
a potentially functional but truncated transcript. To predict NMD escape, we used 
the decision tree developed in Lindeboom et al59. Note, we did not encode 
predicted NMD Escape using a binary annotation (Present, Absent) but instead 
included the reason for the predicted escape into the model (No NMD Escape 
Present, Last Exon, First Exon £ 150nt from Start, Large Exon, £50nt from Last 
Exon-Exon Junction). 

• Predicted Fraction of Amino Acids Lost97: If a variant escapes NMD, this feature 
computes the fraction of the amino acid sequence predicted to be lost. For stop-
gain variants, this is simply it’s relative distance from the N-terminus (according 
to the MANE Select57 transcript).  

• Possible Methionine Rescue (Translation Re-initiation)55: If a stop-gain variant 
occurs early enough in the amino acid sequence, then translation can potentially 
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be rescued by another methionine residue that occurs just downstream. The 
exact criteria needed to be met for this to occur are unknown and may be 
variable across proteins. For this analysis, a stop gain variant had to meet the 
following criteria to flag for possible methionine rescue: 1) located in the first 
exon and 2) have a downstream methionine for alternate translation initiation that 
truncated <10% of the total protein length. 
 

 
Frameshift Variant Features 

• Last Coding Exon55: This is a simple binary feature that indicates if the frameshift 
variant occurred in the last exon. 

• Predicted Fraction of Amino Acids Impacted97: This feature computes the relative 
fraction of amino acids predicted to be lost by an expressed frameshift. Like stop-
gain variants, this feature captures the relative distance from N-terminus of the 
protein for the last normal amino acid.  

• Possible Methionine Rescue55: This feature is computed in the same fashion for 
frameshift and stop gain variants. 

• Note, NMD escape is certainly possible for frameshift variants with the added 
complexity that the escape is occurring on a frameshifted sequence. It’s possible 
that additional features based on NMD escape would improve frameshift 
penetrance prediction, but additional work is needed to determine when these 
rules may apply.  
 

Splice Change Variant Features 
• SpliceAI Score66: SpliceAI is a deep learning model that predicts changes in the 

splicing probabilities at different sites induced by a genetic variant relative to the 
splicing probabilities for the reference sequence (assuming some specific 
transcript model). For the current analysis, we re-computed SpliceAI scores 
using the Ensembl transcripts for each gene (Release 109), allowing for a 
maximum 500bp between the variant and impacted site. For expression 
prediction, the maximum SpliceAI score (maximum difference in splicing 
probability between the reference and mutated transcript) was included as 
feature. Note, several additional features were derived for splice variants based 
on the SpliceAI output. These are outlined in detail below. 

• Predicted Fraction of Amino Acids Lost97: Like the other variant classes, we 
computed the fraction of amino acids that would theoretically be lost based on 
the splice site location assuming that it was expressed rather than undergoing 
NMD. Determining the exact location of the last normal amino acid for splice 
variants can be challenging. Therefore, we set the last normal amino acid to be 
the residue just proximal to the impacted splice site in the transcript model. This 
could clearly be improved (ex: by considering in-frame splice rescue events, 
exon skipping, etc), but this will be the focus of future work.  

• Splice Mutation Type: Pathogenic splice mutations can impact transcript structure 
in complex ways, sometimes inducing multiple changes simultaneously. For the 
sake of simplicity, we used the SpliceAI output to assign each mutation to one of 
five classes based on the highest SpliceAI score observed for the variant: Donor 
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Gain, Donor Loss, Acceptor Gain, Acceptor Loss and Indeterminate (i.e. 
maximum SpliceAI score = 0.0 or NaN). 

• Outside Coding Region: Some splice sites occur in exons that lie outside the 
coding region. Although they could result in loss-of-function, many of these may 
be tolerated. Therefore, we included a binary feature that flagged splice variants 
predicted to impact only non-coding exons. 

• Last Coding Exon55: This feature indicates whether a splice mutation is predicted 
to impact the last coding exon. Like the other variant classes, such mutations 
should be more likely to be tolerated.  

• Persistent Original Splice Site Score: Sometimes, SpliceAI predicts that the 
original splice site remains intact with some non-zero probability, which may be 
indicative of leaky wild type expression. Therefore, we computed the difference 
between the SpliceAI score for the original and derived sites. Generally, this is 
simply equivalent to the global SpliceAI score, but other times, a variant 
increases the splicing probability for the wildtype splice site along with the 
derived site. This feature accounts for this phenomenon.  

• In-frame Exon Rescue55: If the exon impacted by a splice change has a 
nucleotide length that is a multiple of 3, then it can theoretically be skipped 
without disrupting the reading frame. This phenomenon was accounted for in the 
model using a binary feature (Present, Absent). 

• Possible Methionine Rescue55: For splice variants, this is a less likely rescue 
mechanism. Nevertheless, given that a variant impacted the first exon, we 
allowed for possible methionine rescue assuming that there was a methionine 
residue in the second exon that truncated less than 10% of the amino acid 
sequence. 

• In-frame Intron Retention55: If the intron to be spliced out has a nucleotide length 
that is a multiple of 3, then it can potentially be retained without impacting the 
transcript reading frame. This phenomenon is accounted for in the model using a 
binary feature (Present, Absent).  

• Cryptic Rescue Score55,98: Many times, when SpliceAI predicts a primary splice 
site change, a secondary change is predicted to occur simultaneously that could 
negate the impact of the primary. More specifically, if a genetic variant is 
predicted cause a donor (acceptor) loss event in a transcript, there can be a 
complementary donor (acceptor) gain event just upstream/downstream of the 
predicted loss site but with a lower SpliceAI score. If this event remains in-frame 
with the original transcript, then the impact of the mutation may be minimal, as 
this complementary site could compensate for the loss. Alternatively, many donor 
(acceptor) gain events occur in-frame with the original donor (acceptor) site. So 
as long the downstream acceptor (upstream donor) site remains intact, then the 
impact of the variant may be insignificant. This Cryptic Rescue Score 
summarizes both possible rescue events using the output from SpliceAI. For 
primary splice site loss events (donor or acceptor), the Cryptic Rescue Score is 
simply the SpliceAI score for the in-frame gain event (assigned 0.0 if no in-frame 
gain is predicted). For primary in-frame gain events (donor or acceptor), the 
Cryptic Splice Score is harder to define. For this analysis, we used the 
corresponding splice site loss score (ex: a loss score of 1.0 should indicate that 
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this predicted in-frame gain is preferentially being used) but acknowledge that 
this very much imperfectly captures the phenomenon. Clearly, more work is 
needed to effectively capture the complexity of splice mutation rescue events.    
 

Additional Statistical Methods 
 
 Unless otherwise noted, the statistical analyses described in the main text and/or 
figure legends were performed using the implementations (sometimes with slight 
modification) available in the following Python packages: scipy95, sklearn85, 
statsmodels92, and pandas99. Bootstrapped hypothesis testing was performed by 
generating empirical distributions for the target parameter estimates using re-sampling 
with replacement (10,000 re-samples for all tests). Randomization tests were performed 
similarly. All meta-analyses were performed using a fixed-effects model based on the 
standard normal distribution93.  
 
 
Data Availability 
 
The genomic and electronic health data used for this analysis are publicly available but 
have strict data use agreements. The process for obtaining access to these biobanks 
can be found on their respective websites: https://www.researchallofus.org/register/ (All 
of Us Research Program) and https://www.ukbiobank.ac.uk/enable-your-
research/register (UK Biobank). Haploinsufficient disease annotations are provided in 
Supplemental Table 1. The custom HPO-to-OMOP concept alignments generated in this 
study are provided as Supplemental Table 10. All other databases used in this analysis 
are freely available in the public domain. 
 
Software Availability 
 
All software packages used to conduct this study are open source and available in the 
public domain. Any custom software packages or scripts created for the purpose of this 
study will be made available prior to formal publication. 
 
Acknowledgements 
 
The All of Us Research Program is supported by the National Institutes of Health, Office 
of the Director: Regional Medical Centers: 1 OT2 OD026549; 1 OT2 OD026554; 1 OT2 
OD026557; 1 OT2 OD026556; 1 OT2 OD026550; 1 OT2 OD 026552; 1 OT2 
OD026553; 1 OT2 OD026548; 1 OT2 OD026551; 1 OT2 OD026555; IAA #: AOD 
16037; Federally Qualified Health Centers: HHSN 263201600085U; Data and Research 
Center: 5 U2C OD023196; Biobank: 1 U24 OD023121; The Participant Center: U24 
OD023176; Participant Technology Systems Center: 1 U24 OD023163; 
Communications and Engagement: 3 OT2 OD023205; 3 OT2 OD023206; and 
Community Partners: 1 OT2 OD025277; 3 OT2 OD025315; 1 OT2 OD025337; 1 OT2 
OD025276. In addition, the All of Us Research Program would not be possible without 
the partnership of its participants. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 7, 2024. ; https://doi.org/10.1101/2024.09.23.24314008doi: medRxiv preprint 

https://www.ukbiobank.ac.uk/enable-your-research/register
https://www.ukbiobank.ac.uk/enable-your-research/register
https://doi.org/10.1101/2024.09.23.24314008
http://creativecommons.org/licenses/by/4.0/


 
This research was conducted using the UK Biobank Resource under Application 
Number 99922, which uses data provided by patients and collected by the NHS as part 
of their care and support. We are extremely grateful to the participants of the UK 
Biobank, without whom this research would not have been possible.  
 
This work was supported by grants from the National, Heart, Lung and Blood Institute 
(K38HL164956) and the George Banks and Sarah Ellen Huntington Memorial Fund.  
 
References 
 
 1.  Srivastava S, Love-Nichols JA, Dies KA, Ledbetter DH, Martin CL, Chung WK, Firth 

HV, Frazier T, Hansen RL, Prock L, Brunner H, Hoang N, Scherer SW, Sahin M, 
Miller DT. Meta-analysis and multidisciplinary consensus statement: exome 
sequencing is a first-tier clinical diagnostic test for individuals with 
neurodevelopmental disorders. Genet Med. 2019;21(11):2413–2421. PMCID: 
PMC6831729 

2.  Scocchia A, Wigby KM, Masser-Frye D, Del Campo M, Galarreta CI, Thorpe E, 
McEachern J, Robinson K, Gross A, Ajay SS, Rajan V, Perry DL, Belmont JW, 
Bentley DR, Jones MC, Taft RJ. Clinical whole genome sequencing as a first-tier 
test at a resource-limited dysmorphology clinic in Mexico. npj Genomic Med. 
Nature Publishing Group; 2019 Feb 14;4(1):1–12.  

3.  Manickam K, McClain MR, Demmer LA, Biswas S, Kearney HM, Malinowski J, 
Massingham LJ, Miller D, Yu TW, Hisama FM. Exome and genome sequencing for 
pediatric patients with congenital anomalies or intellectual disability: an evidence-
based clinical guideline of the American College of Medical Genetics and 
Genomics (ACMG). Genetics in Medicine. 2021 Nov 1;23(11):2029–2037.  

4.  Yaron Y, Ofen Glassner V, Mory A, Zunz Henig N, Kurolap A, Bar Shira A, Brabbing 
Goldstein D, Marom D, Ben Sira L, Baris Feldman H, Malinger G, Krajden Haratz 
K, Reches A. Exome sequencing as first-tier test for fetuses with severe central 
nervous system structural anomalies. Ultrasound in Obstetrics & Gynecology. 
2022;60(1):59–67.  

5.  van der Sanden BPGH, Schobers G, Corominas Galbany J, Koolen DA, Sinnema M, 
van Reeuwijk J, Stumpel CTRM, Kleefstra T, de Vries BBA, Ruiterkamp-Versteeg 
M, Leijsten N, Kwint M, Derks R, Swinkels H, den Ouden A, Pfundt R, Rinne T, de 
Leeuw N, Stegmann AP, Stevens SJ, van den Wijngaard A, Brunner HG, Yntema 
HG, Gilissen C, Nelen MR, Vissers LELM. The performance of genome sequencing 
as a first-tier test for neurodevelopmental disorders. Eur J Hum Genet. 2023 
Jan;31(1):81–88. PMCID: PMC9822884 

6.  Cirillo L, Becherucci F. The evolving role of first-tier exome sequencing in medical 
diagnostics. Nephrol Dial Transplant. 2024 Mar 27;39(4):560–563. PMID: 
37858299 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 7, 2024. ; https://doi.org/10.1101/2024.09.23.24314008doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.23.24314008
http://creativecommons.org/licenses/by/4.0/


7.  Bodian DL, Klein E, Iyer RK, Wong WSW, Kothiyal P, Stauffer D, Huddleston KC, 
Gaither AD, Remsburg I, Khromykh A, Baker RL, Maxwell GL, Vockley JG, 
Niederhuber JE, Solomon BD. Utility of whole-genome sequencing for detection of 
newborn screening disorders in a population cohort of 1,696 neonates. Genet Med. 
2016 Mar;18(3):221–230. PMID: 26334177 

8.  Bailey DB, Gehtland LM, Lewis MA, Peay H, Raspa M, Shone SM, Taylor JL, 
Wheeler AC, Cotten M, King NMP, Powell CM, Biesecker B, Bishop CE, Boyea BL, 
Duparc M, Harper BA, Kemper AR, Lee SN, Moultrie R, Okoniewski KC, Paquin 
RS, Pettit D, Porter KA, Zimmerman SJ. Early Check: translational science at the 
intersection of public health and newborn screening. BMC Pediatr. 2019 Jul 
17;19(1):238. PMCID: PMC6636013 

9.  Foss KS, O’Daniel JM, Berg JS, Powell SN, Cadigan RJ, Kuczynski KJ, Milko LV, 
Saylor KW, Roberts M, Weck K, Henderson GE. The Rise of Population Genomic 
Screening: Characteristics of Current Programs and the Need for Evidence 
Regarding Optimal Implementation. Journal of Personalized Medicine. 
Multidisciplinary Digital Publishing Institute; 2022 May;12(5):692.  

10.  Buchanan AH, Lester Kirchner H, Schwartz MLB, Kelly MA, Schmidlen T, Jones 
LK, Hallquist MLG, Rocha H, Betts M, Schwiter R, Butry L, Lazzeri AL, Frisbie LR, 
Rahm AK, Hao J, Willard HF, Martin CL, Ledbetter DH, Williams MS, Sturm AC. 
Clinical outcomes of a genomic screening program for actionable genetic 
conditions. Genet Med. 2020 Nov;22(11):1874–1882. PMCID: PMC7605431 

11.  Casalino S, Frangione E, Chung M, MacDonald G, Chowdhary S, Mighton C, 
Faghfoury H, Bombard Y, Strug L, Pugh TJ, Simpson J, Arnoldo S, Aujla N, Bearss 
E, Binnie A, Borgundvaag B, Chertkow H, Clausen M, Dagher M, Devine L, Di Iorio 
D, Friedman SM, Fung CYJ, Gingras AC, Goneau LW, Kaushik D, Khan Z, 
Lapadula E, Lu T, Mazzulli T, McGeer A, McLeod SL, Morgan G, Richardson D, 
Singh H, Stern S, Taher A, Wong I, Zarei N, Greenfeld E, Hao L, Lebo M, Lane W, 
Noor A, Taher J, Lerner-Ellis J. Genome screening, reporting, and genetic 
counseling for healthy populations. Hum Genet. 2023 Feb;142(2):181–192. 
PMCID: PMC9638226 

12.  Chen T, Fan C, Huang Y, Feng J, Zhang Y, Miao J, Wang X, Li Y, Huang C, Jin W, 
Tang C, Feng L, Yin Y, Zhu B, Sun M, Liu X, Xiang J, Tan M, Jia L, Chen L, Huang 
H, Peng H, Sun X, Gu X, Peng Z, Zhu B, Zou H, Han L. Genomic Sequencing as a 
First-Tier Screening Test and Outcomes of Newborn Screening. JAMA Netw Open. 
2023 Sep 5;6(9):e2331162. PMCID: PMC10474521 

13.  Green RC, Shah N, Genetti CA, Yu T, Zettler B, Uveges MK, Ceyhan-Birsoy O, 
Lebo MS, Pereira S, Agrawal PB, Parad RB, McGuire AL, Christensen KD, 
Schwartz TS, Rehm HL, Holm IA, Beggs AH, BabySeq Project Team. Actionability 
of unanticipated monogenic disease risks in newborn genomic screening: Findings 
from the BabySeq Project. Am J Hum Genet. 2023 Jul 6;110(7):1034–1045. 
PMCID: PMC10357495 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 7, 2024. ; https://doi.org/10.1101/2024.09.23.24314008doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.23.24314008
http://creativecommons.org/licenses/by/4.0/


14.  Stone K. The Generation Study — Knowledge Hub [Internet]. GeNotes. [cited 2024 
Aug 20]. Available from: 
https://www.genomicseducation.hee.nhs.uk/genotes/knowledge-hub/the-
generation-study/ 

15.  Stark Z, Scott RH. Genomic newborn screening for rare diseases. Nat Rev Genet. 
2023 Nov;24(11):755–766. PMID: 37386126 

16.  Chung WK, Kanne SM, Hu Z. An Opportunity to Fill a Gap for Newborn Screening 
of Neurodevelopmental Disorders. Int J Neonatal Screen. 2024 Apr 16;10(2):33. 
PMCID: PMC11036277 

17.  Baple EL, Scott RH, Banka S, Buchanan J, Fish L, Wynn S, Wilkinson D, Ellard S, 
MacArthur DG, Stark Z. Exploring the benefits, harms and costs of genomic 
newborn screening for rare diseases. Nat Med. 2024 Jul;30(7):1823–1825. PMID: 
38898121 

18.  Woerner AC, Gallagher RC, Vockley J, Adhikari AN. The Use of Whole Genome 
and Exome Sequencing for Newborn Screening: Challenges and Opportunities for 
Population Health. Front Pediatr. 2021;9:663752. PMCID: PMC8326411 

19.  Horton R, Wright CF, Firth HV, Turnbull C, Lachmann R, Houlston RS, Lucassen A. 
Challenges of using whole genome sequencing in population newborn screening. 
BMJ. British Medical Journal Publishing Group; 2024 Mar 5;384:e077060. PMID: 
38443063 

20.  Turnbull C, Firth HV, Wilkie AOM, Newman W, Raymond FL, Tomlinson I, 
Lachmann R, Wright CF, Wordsworth S, George A, McCartney M, Lucassen A. 
Population screening requires robust evidence—genomics is no exception. The 
Lancet. Elsevier; 2024 Feb 10;403(10426):583–586. PMID: 38070525 

21.  Zhao S, Agafonov O, Azab A, Stokowy T, Hovig E. Accuracy and efficiency of 
germline variant calling pipelines for human genome data. Sci Rep. Nature 
Publishing Group; 2020 Nov 19;10(1):20222.  

22.  Olson ND, Wagner J, McDaniel J, Stephens SH, Westreich ST, Prasanna AG, 
Johanson E, Boja E, Maier EJ, Serang O, Jáspez D, Lorenzo-Salazar JM, Muñoz-
Barrera A, Rubio-Rodríguez LA, Flores C, Kyriakidis K, Malousi A, Shafin K, Pesout 
T, Jain M, Paten B, Chang PC, Kolesnikov A, Nattestad M, Baid G, Goel S, Yang H, 
Carroll A, Eveleigh R, Bourgey M, Bourque G, Li G, Ma C, Tang L, Du Y, Zhang S, 
Morata J, Tonda R, Parra G, Trotta JR, Brueffer C, Demirkaya-Budak S, Kabakci-
Zorlu D, Turgut D, Kalay Ö, Budak G, Narcı K, Arslan E, Brown R, Johnson IJ, 
Dolgoborodov A, Semenyuk V, Jain A, Tetikol HS, Jain V, Ruehle M, Lajoie B, 
Roddey C, Catreux S, Mehio R, Ahsan MU, Liu Q, Wang K, Ebrahim Sahraeian 
SM, Fang LT, Mohiyuddin M, Hung C, Jain C, Feng H, Li Z, Chen L, Sedlazeck FJ, 
Zook JM. PrecisionFDA Truth Challenge V2: Calling variants from short and long 
reads in difficult-to-map regions. Cell Genom. 2022 Apr 27;2(5):100129. PMCID: 
PMC9205427 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 7, 2024. ; https://doi.org/10.1101/2024.09.23.24314008doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.23.24314008
http://creativecommons.org/licenses/by/4.0/


23.  Fahed AC, Wang M, Homburger JR, Patel AP, Bick AG, Neben CL, Lai C, 
Brockman D, Philippakis A, Ellinor PT, Cassa CA, Lebo M, Ng K, Lander ES, Zhou 
AY, Kathiresan S, Khera AV. Polygenic background modifies penetrance of 
monogenic variants for tier 1 genomic conditions. Nat Commun. 2020 Aug 
20;11(1):3635.  

24.  Blair DR, Hoffmann TJ, Shieh JT. Common genetic variation associated with 
Mendelian disease severity revealed through cryptic phenotype analysis [Internet]. 
2021 Aug p. 2021.08.26.21262300. Available from: 
https://www.medrxiv.org/content/10.1101/2021.08.26.21262300v1 

25.  Kingdom R, Beaumont RN, Wood AR, Weedon MN, Wright CF. Genetic modifiers 
of rare variants in monogenic developmental disorder loci. Nat Genet. 2024 
May;56(5):861–868. PMCID: PMC11096126 

26.  Tukker AM, Royal CD, Bowman AB, McAllister KA. The Impact of Environmental 
Factors on Monogenic Mendelian Diseases. Toxicol Sci. 2021 Mar 2;181(1):3–12. 
PMCID: PMC8599782 

27.  Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, 
Lyon E, Spector E, Voelkerding K, Rehm HL. Standards and Guidelines for the 
Interpretation of Sequence Variants: A Joint Consensus Recommendation of the 
American College of Medical Genetics and Genomics and the Association for 
Molecular Pathology. Genet Med. 2015 May;17(5):405–424. PMCID: PMC4544753 

28.  Kingdom R, Wright CF. Incomplete Penetrance and Variable Expressivity: From 
Clinical Studies to Population Cohorts. Front Genet. 2022;13:920390. PMCID: 
PMC9380816 

29.  Risch NJ, Bressman SB, Senthil G, Ozelius LJ. Intragenic Cis and Trans 
Modification of Genetic Susceptibility in DYT1 Torsion Dystonia. Am J Hum Genet. 
2007 Jun;80(6):1188–1193. PMCID: PMC1867106 

30.  Chen S, Parmigiani G. Meta-Analysis of BRCA1 and BRCA2 Penetrance. J Clin 
Oncol. 2007 Apr 10;25(11):1329–1333. PMCID: PMC2267287 

31.  Hoffmann TJ, Sakoda LC, Shen L, Jorgenson E, Habel LA, Liu J, Kvale MN, Asgari 
MM, Banda Y, Corley D, Kushi LH, Quesenberry CP, Schaefer C, Van Den Eeden 
SK, Risch N, Witte JS. Imputation of the Rare HOXB13 G84E Mutation and Cancer 
Risk in a Large Population-Based Cohort. PLoS Genet. 2015 Jan 
28;11(1):e1004930. PMCID: PMC4309593 

32.  Menozzi E, Schapira AHV. Exploring the Genotype–Phenotype Correlation in GBA-
Parkinson Disease: Clinical Aspects, Biomarkers, and Potential Modifiers. Front 
Neurol [Internet]. Frontiers; 2021 Jun 24 [cited 2024 Aug 28];12. Available from: 
https://www.frontiersin.org/journals/neurology/articles/10.3389/fneur.2021.694764/f
ull 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 7, 2024. ; https://doi.org/10.1101/2024.09.23.24314008doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.23.24314008
http://creativecommons.org/licenses/by/4.0/


33.  Roden DM, Pulley JM, Basford MA, Bernard GR, Clayton EW, Balser JR, Masys 
DR. Development of a large-scale de-identified DNA biobank to enable 
personalized medicine. Clin Pharmacol Ther. 2008 Sep;84(3):362–369. PMCID: 
PMC3763939 

34.  Kvale MN, Hesselson S, Hoffmann TJ, Cao Y, Chan D, Connell S, Croen LA, 
Dispensa BP, Eshragh J, Finn A, Gollub J, Iribarren C, Jorgenson E, Kushi LH, Lao 
R, Lu Y, Ludwig D, Mathauda GK, McGuire WB, Mei G, Miles S, Mittman M, Patil 
M, Quesenberry CP Jr, Ranatunga D, Rowell S, Sadler M, Sakoda LC, Shapero M, 
Shen L, Shenoy T, Smethurst D, Somkin CP, Van Den Eeden SK, Walter L, Wan E, 
Webster T, Whitmer RA, Wong S, Zau C, Zhan Y, Schaefer C, Kwok PY, Risch N. 
Genotyping Informatics and Quality Control for 100,000 Subjects in the Genetic 
Epidemiology Research on Adult Health and Aging (GERA) Cohort. Genetics. 2015 
Aug 1;200(4):1051–1060.  

35.  Carey DJ, Fetterolf SN, Davis FD, Faucett WA, Kirchner HL, Mirshahi U, Murray 
MF, Smelser DT, Gerhard GS, Ledbetter DH. The Geisinger MyCode community 
health initiative: an electronic health record-linked biobank for precision medicine 
research. Genet Med. 2016;18(9):906–913. PMCID: PMC4981567 

36.  Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, Motyer A, Vukcevic 
D, Delaneau O, O’Connell J, Cortes A, Welsh S, Young A, Effingham M, McVean G, 
Leslie S, Allen N, Donnelly P, Marchini J. The UK Biobank resource with deep 
phenotyping and genomic data. Nature. Nature Publishing Group; 2018 
Oct;562(7726):203–209.  

37.  Belbin GM, Cullina S, Wenric S, Soper ER, Glicksberg BS, Torre D, Moscati A, 
Wojcik GL, Shemirani R, Beckmann ND, Cohain A, Sorokin EP, Park DS, Ambite 
JL, Ellis S, Auton A, Bottinger EP, Cho JH, Loos RJF, Abul-Husn NS, Zaitlen NA, 
Gignoux CR, Kenny EE. Toward a fine-scale population health monitoring system. 
Cell. Elsevier; 2021 Apr 15;184(8):2068-2083.e11. PMID: 33861964 

38.  Kurki MI, Karjalainen J, Palta P, Sipilä TP, Kristiansson K, Donner KM, Reeve MP, 
Laivuori H, Aavikko M, Kaunisto MA, Loukola A, Lahtela E, Mattsson H, Laiho P, 
Della Briotta Parolo P, Lehisto AA, Kanai M, Mars N, Rämö J, Kiiskinen T, Heyne 
HO, Veerapen K, Rüeger S, Lemmelä S, Zhou W, Ruotsalainen S, Pärn K, 
Hiekkalinna T, Koskelainen S, Paajanen T, Llorens V, Gracia-Tabuenca J, Siirtola 
H, Reis K, Elnahas AG, Sun B, Foley CN, Aalto-Setälä K, Alasoo K, Arvas M, Auro 
K, Biswas S, Bizaki-Vallaskangas A, Carpen O, Chen CY, Dada OA, Ding Z, Ehm 
MG, Eklund K, Färkkilä M, Finucane H, Ganna A, Ghazal A, Graham RR, Green 
EM, Hakanen A, Hautalahti M, Hedman ÅK, Hiltunen M, Hinttala R, Hovatta I, Hu 
X, Huertas-Vazquez A, Huilaja L, Hunkapiller J, Jacob H, Jensen JN, Joensuu H, 
John S, Julkunen V, Jung M, Junttila J, Kaarniranta K, Kähönen M, Kajanne R, 
Kallio L, Kälviäinen R, Kaprio J, Kerimov N, Kettunen J, Kilpeläinen E, Kilpi T, 
Klinger K, Kosma VM, Kuopio T, Kurra V, Laisk T, Laukkanen J, Lawless N, Liu A, 
Longerich S, Mägi R, Mäkelä J, Mäkitie A, Malarstig A, Mannermaa A, Maranville J, 
Matakidou A, Meretoja T, Mozaffari SV, Niemi MEK, Niemi M, Niiranen T, O´Donnell 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 7, 2024. ; https://doi.org/10.1101/2024.09.23.24314008doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.23.24314008
http://creativecommons.org/licenses/by/4.0/


CJ, Obeidat M, Okafo G, Ollila HM, Palomäki A, Palotie T, Partanen J, Paul DS, 
Pelkonen M, Pendergrass RK, Petrovski S, Pitkäranta A, Platt A, Pulford D, Punkka 
E, Pussinen P, Raghavan N, Rahimov F, Rajpal D, Renaud NA, Riley-Gillis B, 
Rodosthenous R, Saarentaus E, Salminen A, Salminen E, Salomaa V, Schleutker 
J, Serpi R, Shen H yi, Siegel R, Silander K, Siltanen S, Soini S, Soininen H, Sul JH, 
Tachmazidou I, Tasanen K, Tienari P, Toppila-Salmi S, Tukiainen T, Tuomi T, 
Turunen JA, Ulirsch JC, Vaura F, Virolainen P, Waring J, Waterworth D, Yang R, 
Nelis M, Reigo A, Metspalu A, Milani L, Esko T, Fox C, Havulinna AS, Perola M, 
Ripatti S, Jalanko A, Laitinen T, Mäkelä TP, Plenge R, McCarthy M, Runz H, Daly 
MJ, Palotie A. FinnGen provides genetic insights from a well-phenotyped isolated 
population. Nature. 2023;613(7944):508–518. PMCID: PMC9849126 

39.  Johnson R, Ding Y, Bhattacharya A, Knyazev S, Chiu A, Lajonchere C, Geschwind 
DH, Pasaniuc B. The UCLA ATLAS Community Health Initiative: Promoting 
precision health research in a diverse biobank. Cell Genom. 2023 Jan 
11;3(1):100243. PMCID: PMC9903668 

40.  All of Us Research Program Genomics Investigators. Genomic data in the All of Us 
Research Program. Nature. 2024 Mar;627(8003):340–346. PMCID: PMC10937371 

41.  Wright CF, Sharp LN, Jackson L, Murray A, Ware JS, MacArthur DG, Rehm HL, 
Patel KA, Weedon MN. Guidance for estimating penetrance of monogenic disease-
causing variants in population cohorts. Nat Genet. 2024 Jul 29; PMID: 39075210 

42.  Wright CF, West B, Tuke M, Jones SE, Patel K, Laver TW, Beaumont RN, Tyrrell J, 
Wood AR, Frayling TM, Hattersley AT, Weedon MN. Assessing the Pathogenicity, 
Penetrance, and Expressivity of Putative Disease-Causing Variants in a Population 
Setting. Am J Hum Genet. 2019 Feb 7;104(2):275–286. PMCID: PMC6369448 

43.  Forrest IS, Chaudhary K, Vy HMT, Petrazzini BO, Bafna S, Jordan DM, Rocheleau 
G, Loos RJF, Nadkarni GN, Cho JH, Do R. Population-Based Penetrance of 
Deleterious Clinical Variants. JAMA. 2022 Jan 25;327(4):350–359. PMCID: 
PMC8790667 

44.  Mirshahi UL, Colclough K, Wright CF, Wood AR, Beaumont RN, Tyrrell J, Laver 
TW, Stahl R, Golden A, Goehringer JM, Frayling TF, Hattersley AT, Carey DJ, 
Weedon MN, Patel KA. Reduced penetrance of MODY-associated HNF1A/HNF4A 
variants but not GCK variants in clinically unselected cohorts. Am J Hum Genet. 
2022 Nov 3;109(11):2018–2028. PMCID: PMC9674944 

45.  Bastarache L, Peterson JF. Penetrance of Deleterious Clinical Variants. JAMA. 
2022 May 17;327(19):1926–1927. PMCID: PMC9350877 

46.  Landrum MJ, Lee JM, Benson M, Brown GR, Chao C, Chitipiralla S, Gu B, Hart J, 
Hoffman D, Jang W, Karapetyan K, Katz K, Liu C, Maddipatla Z, Malheiro A, 
McDaniel K, Ovetsky M, Riley G, Zhou G, Holmes JB, Kattman BL, Maglott DR. 
ClinVar: improving access to variant interpretations and supporting evidence. 
Nucleic Acids Res. 2018 Jan 4;46(D1):D1062–D1067. PMCID: PMC5753237 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 7, 2024. ; https://doi.org/10.1101/2024.09.23.24314008doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.23.24314008
http://creativecommons.org/licenses/by/4.0/


47.  Rehm HL, Berg JS, Brooks LD, Bustamante CD, Evans JP, Landrum MJ, Ledbetter 
DH, Maglott DR, Martin CL, Nussbaum RL, Plon SE, Ramos EM, Sherry ST, 
Watson MS, ClinGen. ClinGen--the Clinical Genome Resource. N Engl J Med. 
2015 Jun 4;372(23):2235–2242. PMCID: PMC4474187 

48.  Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA. Online Mendelian 
Inheritance in Man (OMIM), a knowledgebase of human genes and genetic 
disorders. Nucleic Acids Res. 2005 Jan 1;33(Database issue):D514-517. PMCID: 
PMC539987 

49.  Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, Downey P, Elliott P, 
Green J, Landray M, Liu B, Matthews P, Ong G, Pell J, Silman A, Young A, Sprosen 
T, Peakman T, Collins R. UK Biobank: An Open Access Resource for Identifying the 
Causes of a Wide Range of Complex Diseases of Middle and Old Age. PLoS Med. 
2015 Mar 31;12(3):e1001779. PMCID: PMC4380465 

50.  The “All of Us” Research Program. New England Journal of Medicine. 
Massachusetts Medical Society; 2019 Aug 15;381(7):668–676. PMID: 31412182 

51.  Bastarache L, Hughey JJ, Hebbring S, Marlo J, Zhao W, Ho WT, Van Driest SL, 
McGregor TL, Mosley JD, Wells QS, Temple M, Ramirez AH, Carroll R, Osterman 
T, Edwards T, Ruderfer D, Velez Edwards DR, Hamid R, Cogan J, Glazer A, Wei 
WQ, Feng Q, Brilliant M, Zhao ZJ, Cox NJ, Roden DM, Denny JC. Phenotype risk 
scores identify patients with unrecognized Mendelian disease patterns. Science. 
2018 16;359(6381):1233–1239. PMCID: PMC5959723 

52.  Bastarache L, Hughey JJ, Goldstein JA, Bastraache JA, Das S, Zaki NC, Zeng C, 
Tang LA, Roden DM, Denny JC. Improving the phenotype risk score as a scalable 
approach to identifying patients with Mendelian disease. Journal of the American 
Medical Informatics Association. 2019 Dec 1;26(12):1437–1447.  

53.  MacArthur DG, Balasubramanian S, Frankish A, Huang N, Morris J, Walter K, 
Jostins L, Habegger L, Pickrell JK, Montgomery SB, Albers CA, Zhang Z, Conrad 
DF, Lunter G, Zheng H, Ayub Q, DePristo MA, Banks E, Hu M, Handsaker RE, 
Rosenfeld J, Fromer M, Jin M, Mu XJ, Khurana E, Ye K, Kay M, Saunders GI, 
Suner MM, Hunt T, Barnes IHA, Amid C, Carvalho-Silva DR, Bignell AH, Snow C, 
Yngvadottir B, Bumpstead S, Cooper DN, Xue Y, Romero IG, Wang J, Li Y, Gibbs 
RA, McCarroll SA, Dermitzakis ET, Pritchard JK, Barrett JC, Harrow J, Hurles ME, 
Gerstein MB, Tyler-Smith C. A systematic survey of loss-of-function variants in 
human protein-coding genes. Science. 2012 Feb 17;335(6070):823–828. PMCID: 
PMC3299548 

54.  Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, Collins RL, 
Laricchia KM, Ganna A, Birnbaum DP, Gauthier LD, Brand H, Solomonson M, 
Watts NA, Rhodes D, Singer-Berk M, England EM, Seaby EG, Kosmicki JA, 
Walters RK, Tashman K, Farjoun Y, Banks E, Poterba T, Wang A, Seed C, Whiffin 
N, Chong JX, Samocha KE, Pierce-Hoffman E, Zappala Z, O’Donnell-Luria AH, 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 7, 2024. ; https://doi.org/10.1101/2024.09.23.24314008doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.23.24314008
http://creativecommons.org/licenses/by/4.0/


Minikel EV, Weisburd B, Lek M, Ware JS, Vittal C, Armean IM, Bergelson L, 
Cibulskis K, Connolly KM, Covarrubias M, Donnelly S, Ferriera S, Gabriel S, 
Gentry J, Gupta N, Jeandet T, Kaplan D, Llanwarne C, Munshi R, Novod S, Petrillo 
N, Roazen D, Ruano-Rubio V, Saltzman A, Schleicher M, Soto J, Tibbetts K, 
Tolonen C, Wade G, Talkowski ME, Neale BM, Daly MJ, MacArthur DG. The 
mutational constraint spectrum quantified from variation in 141,456 humans. 
Nature. 2020 May;581(7809):434–443.  

55.  Singer-Berk M, Gudmundsson S, Baxter S, Seaby EG, England E, Wood JC, Son 
RG, Watts NA, Karczewski KJ, Harrison SM, MacArthur DG, Rehm HL, O’Donnell-
Luria A. Advanced variant classification framework reduces the false positive rate 
of predicted loss-of-function variants in population sequencing data. Am J Hum 
Genet. 2023 Sep 7;110(9):1496–1508. PMCID: PMC10502856 

56.  Gudmundsson S, Singer-Berk M, Stenton SL, Goodrich JK, Wilson MW, Einson J, 
Watts NA, Lappalainen T, Rehm HL, MacArthur DG, O’Donnell-Luria A. Exploring 
penetrance of clinically relevant variants in over 800,000 humans from the Genome 
Aggregation Database. bioRxiv. 2024 Jun 13;2024.06.12.593113. PMCID: 
PMC11195293 

57.  Morales J, Pujar S, Loveland JE, Astashyn A, Bennett R, Berry A, Cox E, Davidson 
C, Ermolaeva O, Farrell CM, Fatima R, Gil L, Goldfarb T, Gonzalez JM, Haddad D, 
Hardy M, Hunt T, Jackson J, Joardar VS, Kay M, Kodali VK, McGarvey KM, 
McMahon A, Mudge JM, Murphy DN, Murphy MR, Rajput B, Rangwala SH, Riddick 
LD, Thibaud-Nissen F, Threadgold G, Vatsan AR, Wallin C, Webb D, Flicek P, 
Birney E, Pruitt KD, Frankish A, Cunningham F, Murphy TD. A joint NCBI and 
EMBL-EBI transcript set for clinical genomics and research. Nature. 2022 
Apr;604(7905):310–315. PMCID: PMC9007741 

58.  Forrest IS, Duffy Á, Park JK, Vy HMT, Pasquale LR, Nadkarni GN, Cho JH, Do R. 
Genome-first evaluation with exome sequence and clinical data uncovers 
underdiagnosed genetic disorders in a large healthcare system. Cell Rep Med. 
2024 Apr 19;5(5):101518. PMCID: PMC11148562 

59.  Lindeboom RGH, Vermeulen M, Lehner B, Supek F. The impact of nonsense-
mediated mRNA decay on genetic disease, gene editing and cancer 
immunotherapy. Nat Genet. 2019 Nov;51(11):1645–1651. PMCID: PMC6858879 

60.  Dyle MC, Kolakada D, Cortazar MA, Jagannathan S. How to get away with 
nonsense: Mechanisms and consequences of escape from nonsense-mediated 
RNA decay. Wiley Interdiscip Rev RNA. 2020 Jan;11(1):e1560. PMCID: 
PMC10685860 

61.  Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae JF, Darbandi SF, 
Knowles D, Li YI, Kosmicki JA, Arbelaez J, Cui W, Schwartz GB, Chow ED, 
Kanterakis E, Gao H, Kia A, Batzoglou S, Sanders SJ, Farh KKH. Predicting 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 7, 2024. ; https://doi.org/10.1101/2024.09.23.24314008doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.23.24314008
http://creativecommons.org/licenses/by/4.0/


Splicing from Primary Sequence with Deep Learning. Cell. 2019 Jan 
24;176(3):535-548.e24. PMID: 30661751 

62.  Breiman L. Random Forests. Machine Learning. 2001 Oct 1;45(1):5–32.  

63.  Chung CCY, Hue SPY, Ng NYT, Doong PHL, Hong Kong Genome Project, Chu 
ATW, Chung BHY. Meta-analysis of the diagnostic and clinical utility of exome and 
genome sequencing in pediatric and adult patients with rare diseases across 
diverse populations. Genet Med. 2023 Sep;25(9):100896. PMID: 37191093 

64.  Amendola LM, Jarvik GP, Leo MC, McLaughlin HM, Akkari Y, Amaral MD, Berg JS, 
Biswas S, Bowling KM, Conlin LK, Cooper GM, Dorschner MO, Dulik MC, Ghazani 
AA, Ghosh R, Green RC, Hart R, Horton C, Johnston JJ, Lebo MS, Milosavljevic A, 
Ou J, Pak CM, Patel RY, Punj S, Richards CS, Salama J, Strande NT, Yang Y, Plon 
SE, Biesecker LG, Rehm HL. Performance of ACMG-AMP Variant-Interpretation 
Guidelines among Nine Laboratories in the Clinical Sequencing Exploratory 
Research Consortium. Am J Hum Genet. 2016 Jun 2;98(6):1067–1076. PMCID: 
PMC4908185 

65.  Schubach M, Maass T, Nazaretyan L, Röner S, Kircher M. CADD v1.7: using 
protein language models, regulatory CNNs and other nucleotide-level scores to 
improve genome-wide variant predictions. Nucleic Acids Research. 2024 Jan 
5;52(D1):D1143–D1154.  

66.  Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae JF, Darbandi SF, 
Knowles D, Li YI, Kosmicki JA, Arbelaez J, Cui W, Schwartz GB, Chow ED, 
Kanterakis E, Gao H, Kia A, Batzoglou S, Sanders SJ, Farh KKH. Predicting 
Splicing from Primary Sequence with Deep Learning. Cell. 2019 Jan 
24;176(3):535-548.e24. PMID: 30661751 

67.  Kingsmore SF, Smith LD, Kunard CM, Bainbridge M, Batalov S, Benson W, Blincow 
E, Caylor S, Chambers C, Del Angel G, Dimmock DP, Ding Y, Ellsworth K, 
Feigenbaum A, Frise E, Green RC, Guidugli L, Hall KP, Hansen C, Hobbs CA, 
Kahn SD, Kiel M, Van Der Kraan L, Krilow C, Kwon YH, Madhavrao L, Le J, 
Lefebvre S, Mardach R, Mowrey WR, Oh D, Owen MJ, Powley G, Scharer G, 
Shelnutt S, Tokita M, Mehtalia SS, Oriol A, Papadopoulos S, Perry J, Rosales E, 
Sanford E, Schwartz S, Tran D, Reese MG, Wright M, Veeraraghavan N, Wigby K, 
Willis MJ, Wolen AR, Defay. T. A genome sequencing system for universal newborn 
screening, diagnosis, and precision medicine for severe genetic diseases. Am J 
Hum Genet. 2022 Sep 1;109(9):1605–1619. PMCID: PMC9502059 

68.  Adhikari AN, Gallagher RC, Wang Y, Currier RJ, Amatuni G, Bassaganyas L, Chen 
F, Kundu K, Kvale M, Mooney SD, Nussbaum RL, Randi SS, Sanford J, Shieh JT, 
Srinivasan R, Sunderam U, Tang H, Vaka D, Zou Y, Koenig BA, Kwok PY, Risch N, 
Puck JM, Brenner SE. The Role of Exome Sequencing in Newborn Screening for 
Inborn Errors of Metabolism. Nat Med. 2020 Sep;26(9):1392–1397. PMCID: 
PMC8800147 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 7, 2024. ; https://doi.org/10.1101/2024.09.23.24314008doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.23.24314008
http://creativecommons.org/licenses/by/4.0/


69.  Reich C, Ostropolets A, Ryan P, Rijnbeek P, Schuemie M, Davydov A, Dymshyts D, 
Hripcsak G. OHDSI Standardized Vocabularies-a large-scale centralized reference 
ontology for international data harmonization. J Am Med Inform Assoc. 2024 Feb 
16;31(3):583–590. PMCID: PMC10873827 

70.  OMOP Common Data Model [Internet]. [cited 2024 Aug 20]. Available from: 
https://ohdsi.github.io/CommonDataModel/ 

71.  Köhler S, Gargano M, Matentzoglu N, Carmody LC, Lewis-Smith D, Vasilevsky NA, 
Danis D, Balagura G, Baynam G, Brower AM, Callahan TJ, Chute CG, Est JL, 
Galer PD, Ganesan S, Griese M, Haimel M, Pazmandi J, Hanauer M, Harris NL, 
Hartnett MJ, Hastreiter M, Hauck F, He Y, Jeske T, Kearney H, Kindle G, Klein C, 
Knoflach K, Krause R, Lagorce D, McMurry JA, Miller JA, Munoz-Torres MC, 
Peters RL, Rapp CK, Rath AM, Rind SA, Rosenberg AZ, Segal MM, Seidel MG, 
Smedley D, Talmy T, Thomas Y, Wiafe SA, Xian J, Yüksel Z, Helbig I, Mungall CJ, 
Haendel MA, Robinson PN. The Human Phenotype Ontology in 2021. Nucleic 
Acids Res. 2021 Jan 8;49(D1):D1207–D1217. PMCID: PMC7778952 

72.  Schriml LM, Mitraka E, Munro J, Tauber B, Schor M, Nickle L, Felix V, Jeng L, 
Bearer C, Lichenstein R, Bisordi K, Campion N, Hyman B, Kurland D, Oates CP, 
Kibbey S, Sreekumar P, Le C, Giglio M, Greene C. Human Disease Ontology 2018 
update: classification, content and workflow expansion. Nucleic Acids Res. 2019 
08;47(D1):D955–D962. PMCID: PMC6323977 

73.  Orphanet [Internet]. [cited 2024 Aug 20]. Available from: https://www.orpha.net/ 

74.  Köhler S, Carmody L, Vasilevsky N, Jacobsen JOB, Danis D, Gourdine JP, 
Gargano M, Harris NL, Matentzoglu N, McMurry JA, Osumi-Sutherland D, Cipriani 
V, Balhoff JP, Conlin T, Blau H, Baynam G, Palmer R, Gratian D, Dawkins H, Segal 
M, Jansen AC, Muaz A, Chang WH, Bergerson J, Laulederkind SJF, Yüksel Z, 
Beltran S, Freeman AF, Sergouniotis PI, Durkin D, Storm AL, Hanauer M, Brudno 
M, Bello SM, Sincan M, Rageth K, Wheeler MT, Oegema R, Lourghi H, 
Della Rocca MG, Thompson R, Castellanos F, Priest J, Cunningham-Rundles C, 
Hegde A, Lovering RC, Hajek C, Olry A, Notarangelo L, Similuk M, Zhang XA, 
Gómez-Andrés D, Lochmüller H, Dollfus H, Rosenzweig S, Marwaha S, Rath A, 
Sullivan K, Smith C, Milner JD, Leroux D, Boerkoel CF, Klion A, Carter MC, Groza 
T, Smedley D, Haendel MA, Mungall C, Robinson PN. Expansion of the Human 
Phenotype Ontology (HPO) knowledge base and resources. Nucleic Acids Res. 
2019 Jan 8;47(Database issue):D1018–D1027. PMCID: PMC6324074 

75.  Martin FJ, Amode MR, Aneja A, Austine-Orimoloye O, Azov AG, Barnes I, Becker A, 
Bennett R, Berry A, Bhai J, Bhurji SK, Bignell A, Boddu S, Branco Lins PR, Brooks 
L, Ramaraju SB, Charkhchi M, Cockburn A, Da Rin Fiorretto L, Davidson C, Dodiya 
K, Donaldson S, El Houdaigui B, El Naboulsi T, Fatima R, Giron CG, Genez T, 
Ghattaoraya GS, Martinez JG, Guijarro C, Hardy M, Hollis Z, Hourlier T, Hunt T, 
Kay M, Kaykala V, Le T, Lemos D, Marques-Coelho D, Marugán JC, Merino GA, 
Mirabueno LP, Mushtaq A, Hossain SN, Ogeh DN, Sakthivel MP, Parker A, Perry 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 7, 2024. ; https://doi.org/10.1101/2024.09.23.24314008doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.23.24314008
http://creativecommons.org/licenses/by/4.0/


M, Piližota I, Prosovetskaia I, Pérez-Silva JG, Salam AIA, Saraiva-Agostinho N, 
Schuilenburg H, Sheppard D, Sinha S, Sipos B, Stark W, Steed E, Sukumaran R, 
Sumathipala D, Suner MM, Surapaneni L, Sutinen K, Szpak M, Tricomi FF, Urbina-
Gómez D, Veidenberg A, Walsh TA, Walts B, Wass E, Willhoft N, Allen J, Alvarez-
Jarreta J, Chakiachvili M, Flint B, Giorgetti S, Haggerty L, Ilsley GR, Loveland JE, 
Moore B, Mudge JM, Tate J, Thybert D, Trevanion SJ, Winterbottom A, Frankish A, 
Hunt SE, Ruffier M, Cunningham F, Dyer S, Finn RD, Howe KL, Harrison PW, 
Yates AD, Flicek P. Ensembl 2023. Nucleic Acids Res. 2023 Jan 6;51(D1):D933–
D941. PMCID: PMC9825606 

76.  pyensembl package — pyensembl 0.8.10 documentation [Internet]. [cited 2024 Aug 
20]. Available from: https://pyensembl.readthedocs.io/en/latest/pyensembl.html 

77.  Luebbert L, Pachter L. Efficient querying of genomic reference databases with 
gget. Bioinformatics. 2023 Jan 1;39(1):btac836. PMCID: PMC9835474 

78.  Tan AL, Gonçalves RS, Yuan W, Brat GA, EHR TC for CC of C 19 by, Gentleman 
R, Kohane IS. Implications of mappings between ICD clinical diagnosis codes and 
Human Phenotype Ontology terms [Internet]. arXiv; 2024 [cited 2024 Aug 16]. 
Available from: http://arxiv.org/abs/2407.08874 

79.  SNOMED CT [Internet]. U.S. National Library of Medicine; [cited 2020 Jul 10]. 
Available from: https://www.nlm.nih.gov/healthit/snomedct/index.html 

80.  McArthur E, Bastarache L, Capra JA. Linking rare and common disease 
vocabularies by mapping between the human phenotype ontology and phecodes. 
JAMIA Open. 2023 Apr;6(1):ooad007. PMCID: PMC9976874 

81.  Bastarache L. Using Phecodes for Research with the Electronic Health Record: 
From PheWAS to PheRS. Annu Rev Biomed Data Sci. 2021 Jul 20;4:1–19. 
PMCID: PMC9307256 

82.  Schuyler PL, Hole WT, Tuttle MS, Sherertz DD. The UMLS Metathesaurus: 
representing different views of biomedical concepts. Bull Med Libr Assoc. 1993 
Apr;81(2):217–222. PMCID: PMC225764 

83.  Pang C, Sollie A, Sijtsma A, Hendriksen D, Charbon B, de Haan M, de Boer T, 
Kelpin F, Jetten J, van der Velde JK, Smidt N, Sijmons R, Hillege H, Swertz MA. 
SORTA: a system for ontology-based re-coding and technical annotation of 
biomedical phenotype data. Database (Oxford). 2015;2015:bav089. PMCID: 
PMC4574036 

84.  Athena [Internet]. [cited 2024 Aug 20]. Available from: 
https://athena.ohdsi.org/search-terms/start 

85.  Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, 
Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 7, 2024. ; https://doi.org/10.1101/2024.09.23.24314008doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.23.24314008
http://creativecommons.org/licenses/by/4.0/


Brucher M, Perrot M, Duchesnay É. Scikit-learn: Machine Learning in Python. 
Journal of Machine Learning Research. 2011;12(85):2825–2830.  

86.  Backman JD, Li AH, Marcketta A, Sun D, Mbatchou J, Kessler MD, Benner C, Liu 
D, Locke AE, Balasubramanian S, Yadav A, Banerjee N, Gillies CE, Damask A, Liu 
S, Bai X, Hawes A, Maxwell E, Gurski L, Watanabe K, Kosmicki JA, Rajagopal V, 
Mighty J, Jones M, Mitnaul L, Stahl E, Coppola G, Jorgenson E, Habegger L, 
Salerno WJ, Shuldiner AR, Lotta LA, Overton JD, Cantor MN, Reid JG, 
Yancopoulos G, Kang HM, Marchini J, Baras A, Abecasis GR, Ferreira MAR. 
Exome sequencing and analysis of 454,787 UK Biobank participants. Nature. 
2021;599(7886):628–634. PMCID: PMC8596853 

87.  Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham A, 
Keane T, McCarthy SA, Davies RM, Li H. Twelve years of SAMtools and BCFtools. 
GigaScience. 2021 Feb 1;10(2):giab008.  

88.  Hail Team. Hail 0.2. Available from: https://github.com/hail-is/hail 

89.  McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GRS, Thormann A, Flicek P, 
Cunningham F. The Ensembl Variant Effect Predictor. Genome Biology. 2016 Jun 
6;17(1):122.  

90.  UK Biobank Whole Exome Sequencing 300k Release: Analysis Best Practices 
[Internet]. Available from: 
https://biobank.ndph.ox.ac.uk/showcase/ukb/docs/UKB_WES_AnalysisBestPractic
es.pdf 

91.  Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-
generation PLINK: rising to the challenge of larger and richer datasets. 
Gigascience. 2015 Feb 25;4:7. PMCID: PMC4342193 

92.  Seabold S, Perktold J. Statsmodels: Econometric and Statistical Modeling with 
Python. Proceedings of the 9th Python in Science Conference. 2010 Jan 1;2010.  

93.  Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. A basic introduction to fixed-
effect and random-effects models for meta-analysis. Res Synth Methods. 2010 
Apr;1(2):97–111. PMID: 26061376 

94.  Wang X. Firth logistic regression for rare variant association tests. Front Genet 
[Internet]. Frontiers; 2014 [cited 2021 Aug 6];0. Available from: 
https://www.frontiersin.org/articles/10.3389/fgene.2014.00187/full 

95.  Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, 
Burovski E, Peterson P, Weckesser W, Bright J, van der Walt SJ, Brett M, Wilson J, 
Millman KJ, Mayorov N, Nelson ARJ, Jones E, Kern R, Larson E, Carey CJ, Polat İ, 
Feng Y, Moore EW, VanderPlas J, Laxalde D, Perktold J, Cimrman R, Henriksen I, 
Quintero EA, Harris CR, Archibald AM, Ribeiro AH, Pedregosa F, van Mulbregt P. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 7, 2024. ; https://doi.org/10.1101/2024.09.23.24314008doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.23.24314008
http://creativecommons.org/licenses/by/4.0/


SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods. 
Nature Publishing Group; 2020 Mar;17(3):261–272.  

96.  Jordan MI, Ghahramani Z, Jaakkola TS, Saul LK. An Introduction to Variational 
Methods for Graphical Models. Machine Learning. 1999 Nov 1;37(2):183–233.  

97.  Beaumont RN, Hawkes G, Gunning AC, Wright CF. Clustering of predicted loss-of-
function variants in genes linked with monogenic disease can explain incomplete 
penetrance. Genome Medicine. 2024 Apr 26;16(1):64.  

98.  de Sainte Agathe JM, Filser M, Isidor B, Besnard T, Gueguen P, Perrin A, Van 
Goethem C, Verebi C, Masingue M, Rendu J, Cossée M, Bergougnoux A, Frobert 
L, Buratti J, Lejeune É, Le Guern É, Pasquier F, Clot F, Kalatzis V, Roux AF, Cogné 
B, Baux D. SpliceAI-visual: a free online tool to improve SpliceAI splicing variant 
interpretation. Human Genomics. 2023 Feb 10;17(1):7.  

99.  pandas: powerful Python data analysis toolkit [Internet]. pandas; 2022 [cited 2022 
Apr 18]. Available from: https://github.com/pandas-dev/pandas 

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 7, 2024. ; https://doi.org/10.1101/2024.09.23.24314008doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.23.24314008
http://creativecommons.org/licenses/by/4.0/

