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Abstract 

We conducted the first comprehensive association analysis of a coronary artery disease (CAD) cohort 
within the recently released UK Biobank (UKB) whole genome sequencing dataset. We employed 
fine mapping tool PolyFun and pinpoint rs10757274 as the most likely causal SNV within the 9p21.3 
CAD risk locus. Notably, we show that machine-learning (ML) approaches, REGENIE and 
VariantSpark, exhibited greater sensitivity compared to traditional single-SNV logistic regression, 
uncovering rs28451064 a known risk locus in 21q22.11. Our findings underscore the utility of 
leveraging advanced computational techniques and cloud-based resources for mega-biobank analyses. 
Aligning with the paradigm shift of bringing compute to data, we demonstrate a 44% cost reduction 
and 94% speedup through compute architecture optimisation on UK Biobank’s Research Analysis 
Platform using our RAPpoet approach. We discuss three considerations for researchers implementing 
novel workflows for datasets hosted on cloud-platforms, to pave the way for harnessing mega-
biobank-sized data through scalable, cost-effective cloud computing solutions.   

Keywords 

Population-Scale Genetics; UKBiobank; DNAnexus; Cloud-computing; GWAS; Trusted Research 
Environments 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 3, 2024. ; https://doi.org/10.1101/2024.09.23.24313932doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2024.09.23.24313932


2 
 

Introduction 

In November 2023, the UK Biobank (UKB) released the world’s largest single set of whole genome 
sequencing (WGS) data of half a million individuals through their Research Analysis Platform (RAP). 
In total, 27.5 petabytes of data was created as outlined by UK Biobank WGS consortium [1]. Briefly, 
the GraphTyper-called [2] WGS data comprised of 1,037,556,156 SNVs and 101,188,713 indels 
across the 490,640 participants, resulting in 1510 terabytes across 145,207 pVCFs (Supplementary 
Table S1). 

Implementing a new paradigm of data management, the data is stored on the RAP, a cloud-based 
platform, which allows analysis workflows to be “brought to the data”. Registered RAP users with a 
linked UKB Access Management System (AMS) account can access and analyse datasets through 
“applets”, including the Swiss Army Knife (SAK) app, which holds several bioinformatics tools such 
as PLINK2 [3] and bcftools [4] as well as user-installable tools for custom workflows. Besides the 
Tier 3 data access fee to UKB, other costs to the user via DNAnexus include storing uploaded or 
derived data, egress, and compute using Amazon Web Services (AWS). 

The use of such cloud-based Trusted Research Environments (TREs) is becoming more commonplace 
as genomic studies increase in scale (e.g., All of Us [5]). While these TREs offer benefits like enabling 
cross-cohort analysis [6], they also present distinct challenges, including a steep learning curve for 
researchers unfamiliar with cloud and bioinformatics, and costs that scale with cohort size. Given the 
size of the UKB WGS dataset, the costs to run a genome-wide association analysis would be 
substantial, particularly if compute is not optimised. Therefore, this study set out to explore the 
usability of the RAP and the potential cost of running an association analysis on the UKB WGS 
dataset.  

We present the first coronary artery disease (CAD) association analysis that leverages the 
unprecedented density of the UKB WGS dataset facilitated by our parallelisation tool, RAPpoet, and 
show how the density of the dataset enables novel insights into CAD genetics. We also discuss how 
bringing the compute to the data facilitates individual-level access for researchers worldwide and 
three considerations for researchers looking to use cloud-based TREs. 

 

Results 

RAPpoet: A Driver-Worker Approach to Running Jobs on the UKB RAP 

As of writing, the web UI of RAP and available tutorials are tailored towards processing UKB’s 
genomic data sequentially or in small batches. While this was well suited to earlier and smaller 
versions of the UKB datasets (e.g., array imputed data), with 145,207 pVCFs this approach has 
become impractical. 

To address this, we have designed a scalable orchestration engine called RAP parallelisation 
orchestration engine template (RAPpoet), to streamline our pipeline across the UKB pVCFs using the 
DNAnexus CLI (Figure 1).  
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Figure 1. A Driver-Worker Approach (RAPpoet) for Managing the Configuration of Requested Instances on UK 
Biobank RAP and for Parallelising the Processing of Files on Cloud Instances. The driver script, which remains on the 
user's local machine, includes configurable environmental variables, such as the type of instance requested and number of 
batches to process in each instance. Meanwhile, the worker script, located in the RAP project environment, contains the 
actual commands to be executed on the instance that can be set by the user depending on their requirements. 

RAPpoet utilises two scripts: the ‘driver’ and the ‘worker’. The ‘driver’ script sits within the user’s 
local compute and includes commands for configuring the instance environment, uploading required 
files, and initiating the execution of the ‘worker’ scripts on requested instances. The ‘worker’ script is 
uploaded onto each instance and defines the processes to be run over the uploaded files.  

This setup enables the parallelisation of tasks as the ‘worker’ script can execute the defined process 
concurrently via the xargs tool, optimising resource utilisation by getting a single instance to handle 
multiple files. This also decreases the number of instances needed making it easier to manage and 
monitor jobs.   

Additionally, RAPpoet streamlines the workflow by centralising the control and coordination in the 
‘driver’ script. This improves the overall manageability of jobs by consolidating file setup and 
instance configuration within the ‘driver’ script. Essential variables, such as instance types, file lists, 
batch sizes, and the number of files run in parallel, are defined, ensuring consistency across all 
instances. Furthermore, centralising control to the ‘driver’ script mitigates potential issues related to 
file duplication and ensures a more organised and streamlined execution. 

Finally, RAPpoet facilitates efficient multi-tasking. While the RAP’s web UI typically executes one 
command at a time on uploaded files, our approach allows the user to define a more comprehensive 
process within the ‘worker’ script, such as running multiple bcftool commands in a single job. This 
capability also enables the execution of multiple steps calling on different tools within a single job, 
further enhancing the flexibility and efficiency of each task.  

 

 

Machine Learning Methods Show Greater Sensitivity Than Logistic Regression 
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To demonstrate how RAPpoet streamlines an association analysis, a pipeline was run from quality 
control (QC) to fine mapping.  

The significance of the well-established 9p21.3 (CDKN2B-AS1) risk locus [7,8] was confirmed with 
single-SNV LR (sLR) (Figure 2, Supplementary Table S2). The unprecedented density of the UKB 
WGS dataset further enabled fine mapping to identify the most likely causal variant. The same 13 
SNVs were identified in the first credible sets of both FINEMAP [9] and SuSie [10] (Figure 3; 
Supplementary Tables S3 and S4). Of these, rs10757274 has been linked to CDKN2B-AS1 expression 
[11,12], is part of the core risk haplotype region [13], and has been associated with CAD in several 
populations [14,15], suggesting that rs10757274 is the most likely causative SNV in the risk locus.   

The same region and rs10757274 were also identified using the ML GWAS platforms VariantSpark 
[16] (Figure 2; Supplementary Table S5) and REGENIE [17] (Supplementary Table S6). 

 

 

 

Figure 2. Miami Plot of Chromosome 9 for single-SNV Logistic Regression (Top) and VariantSpark (Bottom). The 
locus 9p21.3 reached genome-wide significance in the logistic regression analysis and is the top association from 
VariantSpark. Note that the Gini score (bottom y-axis) is used to measure variable importance and while it is analogous to 
the traditional P-values of logistic regression to rank associations relative to other associations, it does not include multiple 
testing and does not have guiding significance thresholds. 
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Figure 3. Scatterplot of SNVs in the 9p21.3 locus with Posterior Inclusion Probability (PIP) (y-axis) against 
Chromosome 9 Position (x-axis) for FINEMAP (A) and SuSie (B). The first credible set of both approaches include the 
same 13 SNVs which are highlighted in dark purple and annotated with rsIDs. 

To further test the differences between sLR and ML on this richer data resource, the same association 
pipeline was also applied to chromosome 21. Figure 4 shows that sLR did not find any significant 
genome-wide SNVs (Supplementary Table S7). However, REGENIE found one significant genome-
wide SNV, rs28451064 (Supplementary Table S8) in the known CAD locus 21q22.11 (KCNE2) [18] 
and VariantSpark also identifies this SNV as the top association (Supplementary Table S9), 
demonstrating that these ML-based approaches are more sensitive than sLR. The rs28451064 SNV is 
intergenic between long non-coding RNA (lncRNA), LINC00310 and the KCNE2 gene and has been 
previously associated with CAD as a putative functional SNV [19,20].  

Taken together, these results highlight that the era of ML in genomics could be ushered in by the 
unprecedented data volumes, both in cohort size and density, that UKB-style mega-biobanks offer, 
potentially leading to novel findings that traditional statistical approaches may overlook.  

 

 

Figure 4. Miami Plot of Chromosome 21 for Logistic Regression (Top) and REGENIE (Bottom). The locus 21q22.11, 
which has been previously associated with CAD, is only showing marginal association in the single-SNV logistic regression 
analysis. Conversely, a single SNV in the locus reached genome-wide significance in the REGENIE analysis. 
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Optimising Cloud Compute and Parallelisation is Crucial to Reducing Cost and Runtime on 
RAP 

On the RAP, analyses are carried out on AWS Elastic Compute Cloud (EC2) instances with different 
options for storage, memory capacity, and number of cores. In this study, we evaluated the impact of 
different compute architectures and of running files in parallel versus sequentially on cost and 
runtime, particularly for the requisite quality control (QC) steps. 

Running QC step one (Figure 5) on a single chromosome 21 pVCF of 10.5GB, the average pVCF 
size, using the RAP’s Web UI and Workflow approach took 30 minutes. In contrast, using RAPpoet to 
parallelise across multiple files, the average runtime for one pVCF was 1.75 minutes (Supplementary 
Table S10), a 94% reduction in runtime compared to the sequential approach.   

Furthermore, by optimising compute instances, the cost associated with QC step one of the pipeline 
(Figure 5) was reduced by 44% (£0.029 per file vs £0.052) between chromosome 9 and 21 while 
keeping runtime constant. Initially, the instance type mem1_ssd1_v2_x72 was selected resulting in an 
average runtime of 1.75 minutes and an average cost of £0.052 per pVCF (Supplementary Table S10). 
However, by switching to the smaller instance mem2_ssd1_v2_x48 type (i.e., half the number of 
vCPUs), the average runtime and cost per pVCF for QC step one on chromosome 9 was 1.80 minutes 
and £0.029 (Supplementary Table S11).  

Other settings that impact cost and runtimes such as job priority and file I/O were also benchmarked 
(Supplementary Material S1). Notably, the dxFUSE I/O filesystem limits the number of files that can 
be processed concurrently, severely hindering the level of parallelisation of RAPpoet and requiring a 
looping system within RAPpoet to process the 6,106 pVCFs from chromosome 9. 

 

Discussion 

UKB’s RAP and DNAnexus have pioneered access to large-scale individual-level data by overcoming 
the risks of moving data, such as corruption, inability to enact consent changes, and lack of 
standardisation. In this study, we demonstrated that access to such dense individual-level data enables 
ML approaches to identify associations that traditional statistical methods may overlook. Additionally, 
previous research has highlighted potential differences in findings between individual-level analysis 
and meta-analysis, particularly for diverse populations [6].  

Supporting this paradigm-shift, we discuss three considerations for researchers to efficiently process 
the UKB’s resource on RAP and other such datasets (e.g., All Of Us Researcher Workbench).  

Firstly, parallelisation is crucial for efficient computation over the large number of files in mega-
biobank-scale WGS cohorts. To streamline this process on the RAP, we designed RAPpoet. Akin to 
high-performance compute scheduling systems, this worker-driver architecture allows massively 
parallel workloads while minimising monitoring overhead (centralised coordination). It also enables 
multitasking within instances, thereby optimising the utilisation of compute resources. In this study, 
we show that using RAPpoet decreased runtime by 94% (1.75 minutes vs 30 minutes).  

The upcoming inclusion of pre-processed PLINK and BGEN format files in the RAP may collapse 
individual pVCF files into larger cohort files. While there may be fewer files, the data volume may 
exhaust compute resources and still requires these monolithic files to be split into distributed 
workloads, which can be done with RAPpoet. Furthermore, as RAPpoet was built specifically for the 
RAP, if other cloud platforms such as Google Cloud become available on the RAP, RAPpoet is 
extendable to them. Similarly, if other biobanks that are enabled by DNAnexus follow a similar set up 
to RAP, RAPpoet could potentially be applicable to these data sources as well. 
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Secondly, cloud compute architecture needs to be tuned to the workload, file size and time 
constraints at hand. On the RAP, analyses are carried out on AWS Elastic Compute Cloud (EC2) 
instances with different options for storage, memory capacity, and number of cores.  

In this study, we show that by optimising compute resources, costs can be reduced by 44% (£0.052 
per file vs £0.029) while keeping runtime constant. Furthermore, RAPpoet intrinsically optimises 
compute by processing multiple files concurrently rather than sequentially as suggested by the RAP 
tutorials. If a single pVCF was run through QC steps one and two of the pipeline (Figure 5) using the 
RAP’s Web UI and workflow approach, runtime would increase by 28.25 minutes (230% per pVCF 
more than RAPpoet) at minimum. Although, with the requisite skills and experience, parallelisation 
can be achieved through the RAP’s CLI as well [21]. 

We only ran chromosome 9 and 21 in this study, as whole genome analysis is estimated to take 4.3K 
hours and cost £4.2K. This is due to the DNAnexus dxFUSE I/O system, which limits the number of 
files that can be read into the compute instances in parallel. Updates to dxFUSE are necessary to 
reduce the estimated runtime.  

Another important factor of cost optimisation is the risk of information loss when using ‘spot’ 
instances (low-priority tasks), which are cheaper but have the risk of external termination compared to 
the more expensive ‘on-demand’ instances (high-priority tasks) with full availability (Supplementary 
Material S1). Workflows wanting to use low-priority tasks need to implement strategies such as 
checkpointing to capture machine images, which allows for the process to resume from the last 
captured state before termination.  

Lastly, data privacy and security must be balanced with the benefits of making individual-level 
data accessible to researchers, as demonstrated in this study. Implementing federated access, including 
appropriate governance and seamless integration of dynamic consent layers, requires design-choices 
from conception [22]. Ideally such systems also enable interactive queries across genomes and 
metadata without full access to the raw data, such as queries enabled through sBeacon, the cloud-
based implementation of the GA4GH Beacon protocol [23].  

In conclusion, this study demonstrates that ML approaches are more sensitive in detecting 
associations from dense mega-biobank datasets compared to LR. As the field continues to adopt 
cloud-based platforms like the RAP to exclusively manage access to large-scale datasets, their 
responsibility will be to equitably support researchers in conducting innovative and technologically 
complex genomic studies.  

 

Methods 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 3, 2024. ; https://doi.org/10.1101/2024.09.23.24313932doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.23.24313932


8 
 

 

Figure 5. Schematic of Pipeline for UK Biobank 500K Whole Genome Sequencing Dataset on RAP. RAPpoet was used 
to facilitate this pipeline on the UKB RAP. 

Cohort Determination 

Participants were determined to have coronary artery disease (CAD) using International Classification 
of Disease (ICD)-9, ICD-10, and OPCS Classification of Interventions and Procedures (OPCS)-4 
codes (i.e., 410, 411, 413, 414, I20-25, Z951, Z955, K40-46, K49, K50, and K75) from their linked 
electronic health records. The healthy controls were participants who reported to be non-smoking with 
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a BMI < 30 and had no diagnoses of other cardiovascular diseases and known comorbidities, such as 
epilepsy and arrhythmias.  

Sample Quality Control (QC) 

Sample QC measures that were provided by the UKB[24] (provided in square brackets are their 
FieldIDs from the UKB AMS) were also used to filter our cohort. Samples were retained that (i) had 
matching reported and genetic sex [22001], (ii) were not carriers of full or mosaic sex chromosome 
aneuploidies [22019], (iii) were not related to other UKB participants to the third degree [22021], (iv) 
were genetically identified as white British [22006]. Further GWAS QC thresholds (i.e., call rates > 
98% and +/- 3 standard deviations of calculated heterozygosity rate mean) were included to filter out 
low sample quality. 

After sample QC, there were 24,954 CAD cases with 25,858 controls. While there were more healthy 
controls available (n = 182,772), the ratio of CAD cases and controls were kept relatively even to 
control for inflation of test statistics when using PLINK2[3] for single-SNV logistic regression (sLR) 
and to prevent convergence issues with REGENIE[17].  

Variant Quality Control (QC) 

The following thresholds on GraphTyper metrics were used to ensure that variants called in the 
pVCFs were of high-quality: AAScore > 0.15, ABHet > 0.175, ABHom < 0.9, PASS_ratio > 0.05, QD 
> 6, and QUAL >= 10. Structural variants such as indels were also removed and multi-allelic variants 
were split for ease in downstream analysis.  

Further GWAS QC thresholds were used to make certain only reliable variants were included in 
subsequent analysis. This included Hardy-Weinberg equilibrium P < 1 x 10-6, minor allele frequency 
(MAF) < 1 x 10-5, and a call rate > 98%.  

After variant QC, there were 6,392,685 single nucleotide variants (SNVs) in chromosome 9 and 
1,958,444 SNVs in chromosome 21. Due to the available sample size after QC, we added a further 
MAF 0.1% filter to remove ultra-rare SNVs before running sLR, REGENIE, fine mapping and 
VariantSpark. At this more stringent MAF threshold, there were 597,370 SNVs and 187,146 SNVs in 
chromosomes 9 and 21 respectively.   

Single-SNV Logistic Regression (sLR) with PLINK 

A sLR with CAD status as response and the QC SNVs were modelled using PLINK2. The covariates 
included in the model were age, sex, BMI, and the first 10 principal components. The principal 
components were calculated using the UKB imputed genotypes to get genome-wide coverage. 
Genome-wide significance was the accepted P < 5 x 10-8 while marginal significance was P < 1 x 10-

5.  

Whole-Genome Regression with REGENIE[17] 

Whole genome regression, employing the REGENIE method, was used as an alternative approach for 
testing SNV associations with the same sets of covariate and phenotype data as above. The REGENIE 
run was divided into two steps. Initially, ridge regression predictors (j) are constructed for each block 
of the genome by partitioning it into consecutive blocks of B SNVs. These predictors are then 
combined through cross-validation to yield a single optimal predictor for estimating phenotype values. 
Subsequently, this predictor is divided into 23 chromosome-specific predictions for a leave-one-
chromosome-out (LOCO) approach which is effective in preserving the power to detect associations 
by preventing proximal contamination[25,26]. The second step of REGENIE tests the association of 
each SNV by conditioning on the LOCO predictors, which are used as covariates to account for 
underlying background polygenic effects. The fast Firth logistic regression method provided by 
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REGENIE was used for association testing, which improves the accuracy of logistic regression 
models by minimising bias in maximum-likelihood estimates through penalised likelihood. This 
approach ensures well-calibrated Type 1 errors and provides reliable estimates of SNV effect sizes and 
standard errors, especially when rare variants are being tested in the SNV set.  

While both steps were available as applets in the RAP tool library, the initial step was conducted on 
our internal high-performance computing (HPC) environment using the previously downloaded 
imputed array genotype dataset to mitigate costs on the RAP. This approach was taken assuming that 
the predicted phenotype values would consistently capture the background genome-wide polygenic 
effect on the phenotype. Specifically, the genome-wide imputed array SNVs (with MAF > 0.01, 
missingness < 0.02, Het > 3, and GBR individuals) were employed to develop the regression 
predictors. The parameters included B = 500, j = 5 (default shrinkage parameter value = [0.01 0.25 0.5 
0.75 0.99]), and 5-fold cross-validation to select the most effective predictors.  

The LOCO predictions were then exported from the HPC to the RAP for the second step where the 
WGS QC’d SNVs on chromosomes 9 and 21 were tested using the fast Firth approximation 
implementation. Genome-wide significance was the accepted P < 5 x 10-8 while marginal significance 
was P < 1 x 10-5. 

Machine Learning Analysis with VariantSpark 

VariantSpark is an Apache Spark-based application for building genome-wide random forest models 
and is not yet included in the RAP tool library. Following the guidelines available at 
https://documentation.dnanexus.com/developer/apps/developing-spark-apps, VariantSpark’s 
executable was created as a custom applet to run on RAP’s Spark cluster cloud architecture within the 
project space. To resolve conflicts between JAR file versions, VariantSpark needed to be compiled 
within the startup script rather than at applet build time, sacrificing some initialisation performance to 
ensure compatibility. 

Smaller instance sizes are unable to handle the Spark application, which necessitates the use of more 
compute intensive and expensive instances for worker nodes. Because RAP does not currently 
differentiate between worker nodes and the primary node when specifying instance types, this 
necessarily increases the cost associated with the now underutilised driver node. As such, 
specifications allowing for the sizes of worker and driver nodes to be optimised separately by 
matching node capabilities more closely to their operational roles will result in better resource 
management and cost-efficiency.  

The hyperparameters of the random forest models for both chromosomes 9 and 21 were no_of_tree 
(number of trees in forest) = 10K, min_node_size (minimum number of samples in node to be 
processed) = 10K, and mtry_fraction (fraction of variants evaluated at each node of a tree) = 0.1. The 
importance of a variable in the model was assessed using average Gini impurity measure. 

The VariantSpark analysis of chromosome 9 was run on eight on-demand ‘mem2_ssd2_v2_x48’ 
instances which completed in 13 hours and 16 minutes, costing £179.31. In comparison, the 
VariantSpark analysis of chromosome 21 used six on-demand ‘mem2_ssd2_v2_x32’ instances which 
took 8 hours and 19 minutes to complete and cost £56.14. 

Annotating Association Results with Annovar[27] 

Annovar was used to annotate association results from sLR, REGENIE, and VariantSpark. Namely, 
mapping SNVs to dbSNP rsIDs, genes and genetic function from UCSC’s RefSeq, and previous 
studies from the GWAS Catalog.   

Fine Mapping with PolyFun (SuSIE and FineMap) 
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A set of 5,179 SNVs at the associated CDKN2B locus, including a 500Kb flanking region, was 
subjected to functionally informed fine mapping using PolyFun[28] incorporating both the SuSie[10] 
and FINEMAP[9] methods. The approach adhered to the standard PolyFun workflow, integrating 
prior causal probabilities based on per-SNV heritability and summary LD information pre-calculated 
using individuals of European ancestry from the UK Biobank cohorts.  

As the pre-calculated information was based on the hg19/GRCh37 reference, liftOver[29] was used to 
map the sLR summary statistics from hg38/GRCh38 to hg19/GRCh37. Following this, variants 
without pre-computed values were filtered out, leaving 4,843 remaining variants. For both methods, a 
maximum of 10 causal SNVs was specified for the locus. The locus spanned four overlapping LD 
regions, with variants assigned to region-specific causal sets.  

Note that in the absence of a PolyFun applet on the RAP, the summary statistics file generated via sLR 
was downloaded from the RAP, and fine mapping was performed on an internal HPC environment. 
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Figure Legends 

Figure 6. A Driver-Worker Approach (RAPpoet) for Managing the Configuration of Requested Instances on UK 
Biobank RAP and for Parallelising the Processing of Files on Cloud Instances. The driver script, which remains on the 
user's local machine, includes configurable environmental variables, such as the type of instance requested and number of 
batches to process in each instance. Meanwhile, the worker script, located in the RAP project environment, contains the 
actual commands to be executed on the instance that can be set by the user depending on their requirements. 

Figure 7. Miami Plot of Chromosome 9 for single-SNV Logistic Regression (Top) and VariantSpark (Bottom). The 
locus 9p21.3 reached genome-wide significance in the logistic regression analysis and is the top association from 
VariantSpark. Note that the Gini score (bottom y-axis) is used to measure variable importance and while it is analogous to 
the traditional P-values of logistic regression to rank associations relative to other associations, it does not include multiple 
testing and does not have guiding significance thresholds. 

Figure 8. Scatterplot of SNVs in the 9p21.3 locus with Posterior Inclusion Probability (PIP) (y-axis) against 
Chromosome 9 Position (x-axis) for FINEMAP (A) and SuSie (B). The first credible set of both approaches include the 
same 13 SNVs which are highlighted in dark purple and annotated with rsIDs. 

Figure 9. Miami Plot of Chromosome 21 for Logistic Regression (Top) and REGENIE (Bottom). The locus 21q22.11, 
which has been previously associated with CAD, is only showing marginal association in the single-SNV logistic regression 
analysis. Conversely, a single SNV in the locus reached genome-wide significance in the REGENIE analysis. 

Figure 10. Schematic of Pipeline for UK Biobank 500K Whole Genome Sequencing Dataset on RAP. RAPpoet was 
used to facilitate this pipeline on the UKB RAP. 
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