Relationship between Retinal Vessels and OCT-Derived Retinal Neural Parameters

 $\ddot{}$

- 1. Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- 2. Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, Australia
- Mayinuer Yusufu^{4,2}, Robert N. Weinreb³, Mengtian Kang⁴, Algis J. Vingrys^{1,2}, Xianwen Shang^{1,2,2},
Lei Zhang^{1,7}, Danli Shi^{8,9,10}, Mingguang He^{8,9,10}
L. Centre for Eye Research Australia, Royal Victorian Eye a Lei Zhang^{+,}", Danli Shi^{9,9,10}, Mingguang He^{9,9,10}
ustralia, Royal Victorian Eye and Ear Hospital, East Melb
phthalmology), The University of Melbourne, Melbourr
r, Viterbi Family Department of Ophthalmology and the
n ii
T
C
D 3. Hamilton Glaucoma Center, Viterbi Family Department of Ophthalmology and the Shiley Eye Institute, University of California San Diego, La Jolla, California, USA.
-
- 4. Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
5. Department of Optometry & Visions Sciences, The University of Melbourne, Melbourne, Australia
- 5. Department of Optometry & Visions Sciences, The University of Melbourne, Melbourne, Australia 6. Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- 7. Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
- 8. School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- 9. Research Centre for SHARP Vision, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR
- 10. Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong SAR.

-
-

(|
|
| (||
| ||
|-Co-corresponding authors
Dr. Xianwen Shang, xianwen.shang@unimelb.edu.au
Dr. Danli Shi, danli.shi@polyu.edu.hk
Correspondence to:
Prof. Mingguang He, 11 Yuk Choi Rd Hung Hom, KLN,
mingguang.he@polyu.edu.hk Dr. Danli Shi, danli.shi@polyu.edu.hk
Correspondence to:
Prof. Mingguang He, 11 Yuk Choi Rd Hung Hom, KLN,
mingguang.he@polyu.edu.hk Dr. Danni Shi, ammanig polyusaland
Correspondence to:
Prof. Mingguang He, 11 Yuk Choi Rd F
mingguang.he@polyu.edu.hk (
|
<u>|</u> Correspondence to: $P(T)$ Mingguang He, $P(T)$ $=$ 1 km shown a Hung Hom, $P(T)$ Hong Kong. e-mail:
mingguang.he @polyu.edu.hk mingguang.he@polyu.edu.hk

Abstract

Objective: To investigate structural relationships between retinal vasculometry derived from
color fundus photography (CFP) and neural parameters obtained from Optical Coherence
Tomography (OCT) scans and validate their ca

Tomography (OCT) scans and validate their causal relationships.
Design: Cross-sectional study
Participants: Participants with fundus photographs data and OCT data in the UK Biobank cohort
study
Methods: We used the Retina-

Design: Cross-sectional study

Participants: Participants with fundus photographs data and OCT

study

Methods: We used the Retina-based Microvascular Health As

extract retinal vascular measurements in the 6^{*}6mm area ce Besign: Cross-sectional study
Participants: Participants with
study
Methods: We used the Reti
extract retinal vascular measu
parameters were available fro
retinal lavers and vascular na rarticipants: Participants with fundus photographs data and OCT data in the OK Biobank cohort
study
Methods: We used the Retina-based Microvascular Health Assessment System (RMHAS) to
extract retinal vascular measurements ,
Methe
extrac
param
retina
was tl
sampl extract retinal vascular measurements in the 6*6mm area centered on the macular region. OCT
parameters were available from the UK Biobank. First, pairwise correlations between individual
retinal layers and vascular paramet was then used to examine associations between sets of variables. Lastly, bidirectional twopartinal layers and vascular parameters were investigated. Canonical correlation analysis (CCA)
was then used to examine associations between sets of variables. Lastly, bidirectional two-
sample Mendelian randomization was

retinal layers and viscular parameters in the userigated variables. Lastly, bidirectional two-
sample Mendelian randomization was employed to investigate potential causal relationships.
Main Outcome Measures: Measurements Inner Nuclear Layer (INL) thickness showed positive correlations with Width ($r=0.122$) and Main Outcome Measures: Measurements of retinal vascular network and neural layers

Results: Data from 67,918 eyes of 43,029 participants were included. The Ganglion Cell-Inn

Plexiform Layer (GC-IPL) thickness showed the s Main Outcome Measures: Measurements of retinal vascular network and neural layers
Results: Data from 67,918 eyes of 43,029 participants were included. The Ganglion C
Plexiform Layer (GC-IPL) thickness showed the strongest Results: Data from 67,918 eyes of 43,029 participants were included. The Ganglion Cell line
Plexiform Layer (GC-IPL) thickness showed the strongest correlations with vascular Density and
Complexity (r=0.199 for arterial Ve Complexity (r=0.199 for arterial Vessel Area Density and r=0.175 for Number of Segments). The
Inner Nuclear Layer (INL) thickness showed positive correlations with Width (r=0.122) and
Vessel Area Density (artery) (r=0.127) Inner Nuclear Layer (INL) thickness showed positive correlations with Width (r=0.122) and
Vessel Area Density (artery) (r=0.127). Mendelian randomization analysis indicated bidirectional
causal relationships between retin Vessel Area Density (artery) (r=0.127). Mendelian randomization analysis indicated bidirectional
causal relationships between retinal vascular features and layer thicknesses. Genetically
predicted higher Vessel Density was causal relationships between retinal vascular features and layer thicknesses. Genetically
predicted higher Vessel Density was associated with increased thickness across various retinal
layers, with the strongest effect on predicted higher Vessel Density was associated with increased thickness across various retinal
layers, with the strongest effect on Inner Segment/Outer Segment + Photoreceptor Segment
thickness (standardized effect size 1. press, with the strongest effect on Inner Segment/Outer Segment + Photoreceptor Segment
thickness (standardized effect size 1.50, p<0.001). Genetically predicted increases in retinal
layer thicknesses, particularly the Out layer thickness (standardized effect size 1.50, p<0.001). Genetically predicted increases in retinal
layer thicknesses, particularly the Outer Plexiform Layer, were linked to higher Vessel Density
(standardized effect size layer thicknesses, particularly the Outer Plexiform Layer, were linked to higher Vessel Density
(standardized effect size 0.45, p=0.002) and Fractal Dimension (standardized effect size 0.48,
p<0.001).
Conclusions: The posi

layer thicknesses, parameters, particularly the Outer Plemmark Layer, and the Madardized effect size 0.48, p<0.001).

Conclusions: The positive associations of macular thickness with vascular Density and Caliber

measureme (standard effect size 2.13) person, and effect size 2.143, p<0.001).
 Conclusions: The positive associations of macular thickness with vascular Density and Caliber

measurements were mainly attributable to their associat r
Conclusio
measurem
Multidime
two sets
Randomiz
novel ther **Conclusions:** The positive associations of macular thickness with vascular Density and Caliber measurements were mainly attributable to their associations with GC-IPL and INL. The positive analy attributable to their associations with GC-IPL and INL.

Sonal relationships revealed by CCA revealed a complementary nature between the

parameters, highlighting their value as a composite biomarker. Me Multidimensional relationships revealed by CCA revealed a complementary nature between the
two sets of parameters, highlighting their value as a composite biomarker. Mendelian
Randomization uncovered a bidirectional causal two sets of parameters, highlighting their value as a composite biomarker. Mendelian
Randomization uncovered a bidirectional causal relationship that should provide insights into
novel therapeutic approaches targeting both The sets of parameters, highlighting their state as a complement momentum monotonic provide in
the parameters of parameters of parameters of parameters.
The provide insights into
novel therapeutic approaches targeting both

Keywords:

novel therapeutic approaches targeting both vascular and neuronal components.
 Keywords:

Retinal vascular geometry, Retina-Based Microvascular Health Assessment System, Optical

Coherence Tomography, Retinal layer thick Reywords:
Retinal vascular geometry, Retina-Based Microvascular Health Assessment System
Coherence Tomography, Retinal layer thickness, Color fundus photography Retinal vascular geometry, Retina-Based Microvascular Health Assessment System, Optical Retinal vascular geometry, Retinal layer thickness, Color fundus photography
Coherence Tomography, Retinal layer thickness, Color fundus photography Coherence Tomography, Retinal layer thickness, Color fundus photography

1 Introduction

2 physiology. It allows for direct, non-invasive visualization of its vasculature and neural
structures^{1,2}, lending itself as a valuable proxy for assessing both ocular and systemic health³⁻⁵.
For instance, retinal vascu 3 For instance, retinal vascular features, including vessel diameter, tortuosity, and branching

for instance, retinal vascular features, including vessel diameter, tortuosity, and branching

patterns, quantified from color 5 patterns, quantified from color fundus photography (CFP), have been associated with
cardiovascular diseases, diabetes, and hypertension 6,7 . Retinal layer measurements such as
retinal nerve fiber layer (RNFL) thicknes 6 cardiovascular diseases, diabetes, and hypertension 6,7. Retinal layer measurements such as
retinal nerve fiber layer (RNFL) thickness and ganglion cell-inner plexiform layer (GC-IPL)
thickness derived from Optical Coheren cardiovascular diseases, diabetes, and hypertension $^{6.7}$. Retinal layer measurements such as

a retinal nerve fiber layer (RNFL) thickness and ganglion cell-inner plexiform layer (GC-IPL)

thickness derived from Optica 8 retinal nerve field from Optical Coherence Tomography (OCT) have shown associations with
neurodegenerative diseases like Alzheimer's disease, Parkinson's disease, and multiple
sclerosis⁸⁻¹⁰.
While previous studies have e 9 10

meurodegenerative diseases like Alzheimer's disease, Parkinson's disease, and multiple sclerosis⁸⁻¹⁰.
Sclerosis⁸⁻¹⁰.
While previous studies have explored associations between retinal features and various
systemic condi 11 sclerosis⁸⁻¹⁰.

12 While previa

13 systemic cor

14 separately. 1

15 provided by

16 empowered

17 feature alter 12 systemic conditions, they primarily focused on studying retinal vascular and neural features
separately. There is a gap in our understanding of the relationships between the information
provided by those two modalities. Al 13 separately. There is a gap in our understanding of the relationships between the information
provided by those two modalities. Although the development of artificial intelligence has
empowered their detailed quantification 14 provided by those two modalities. Although the development of artificial intelligence has
empowered their detailed quantification and facilitated the differentiation of subtle retinal
feature alterations,^{11,12} there is a 15 16 18

produced their detailed quantification and facilitated the differentiation of subtle retinal
feature alterations,^{11,12} there is a paucity of information about detailed associations between
vascular features observed in C Fracture alterations,^{11,12} there is a paucity of information about detailed associations between
18 vascular features observed in CFP and neural characteristics measured by OCT.
19 CFP and OCT offer complementary data o CFP and OCT offer complementary data on vascular and neural health, respe
the functional interplay between retinal vessels and neurons and ganglion
neurovascular coupling, plays an essential role in maintaining normal reti 19 the functional interplay between retinal vessels and neurons and ganglion cells, known as
neurovascular coupling, plays an essential role in maintaining normal retinal physiology and is
disrupted in many ocular diseases, s 20 neurovascular coupling, plays an essential role in maintaining normal retinal physiology and is
disrupted in many ocular diseases, such as diabetic retinopathy and glaucoma^{13,14}, and by
extension, brain function¹⁵. In 21 neuron many ocular diseases, such as diabetic retinopathy and glaucoma^{13,14}, and by
extension, brain function¹⁵. In addition, their interrelationship could provide a more
comprehensive understanding of retinal physiolo disrupted in many ocular diseases, such as diabetic retinopathy and glaucoma^{13,14}, and by
extension, brain function¹⁵. In addition, their interrelationship could provide a more
comprehensive understanding of retinal p extension, brain function¹⁵. In addition, their interrelationship could provide a more

comprehensive understanding of retinal physiology and pathology, as well as the underlying

pathophysiology of conditions involving 24 pathophysiology of conditions involving both vascular and neural health. Such insights could
lead to the identification of early composite markers of neurodegeneration and vascular
cognitive impairment, facilitating earlie 25 pathophysically of comprise the markers of neurodegeneration and vascular cognitive impairment, facilitating earlier diagnosis and intervention in conditions such as Alzheimer's disease^{16,17}. Furthermore, it remains uncl 26 cognitive impairment, facilitating earlier diagnosis and intervention in conditions such as
Alzheimer's disease^{16,17}. Furthermore, it remains unclear which process (vascular or neural
structure changes) precedes the oth 27 Alzheimer's disease^{16,17}. Furthermore, it remains unclear which process (vascular or neural structure changes) precedes the other. One hypothesis posits that nerve damage leads to reduced energy usage, subsequently caus Alzheimer's disease^{16,17}. Furthermore, it remains unclear which process (vascular or neural

structure changes) precedes the other. One hypothesis posits that nerve damage leads to

reduced energy usage, subsequently ca 29 reduced energy usage, subsequently causing a decrease in vessel density to match the lowered
metabolic demand¹⁸. Conversely, it is possible that vascular damage could precede and
contribute to nerve degeneration by compr 30 32

metabolic demand¹⁸. Conversely, it is possible that vascular damage could precede and
contribute to nerve degeneration by compromising blood supply and nutrient delivery to neural
tissues ¹⁹.
In the current study, we tissues 19 .
In the current study, we aim to bridge this gap by (1) investigating structural relationships
between retinal vasculometry, obtained from CFPs using the Retina-based Microvascular Health
Assessment System 33 tissues ¹⁹.
34 In the cur
35 between r
36 Assessmer
37 participan
38 and neura 34 between retinal vasculometry, obtained from CFPs using the Retina-based Microvascular Health
Assessment System (RMHAS)¹¹, and OCT-derived retinal layer parameters in a large cohort of
participants from the UK Biobank; (2 35 Assessment System (RMHAS)¹¹, and OCT-derived retinal layer parameters in a large cohort of
participants from the UK Biobank; (2) Unveil the causal relationship between retinal vascular
and neural feature changes through Assessment System (RMHAS)¹¹, and OCT-derived retinal layer parameters in a large cohort of participants from the UK Biobank; (2) Unveil the causal relationship between retinal vascular and neural feature changes through 37 participants from the UK Biobana and District and District the causal relationship between retinal variationship between retinal variations of the causal retinal value of the causal value of the causal value of the causal 38 and neural feature changes through Mendelian Randomization.

- 39
- 40
- 41

42 Methods

43 Study design and population

44 UK Biobank. The UK Biobank study is a large population-based cohort study that enrolled
participants aged 40 to 69 years that was launched in 2006 in the United Kingdom, and
introduced eye examinations in 2009, including 45 participants aged 40 to 69 years that was launched in 2006 in the United Kingdom, and
introduced eye examinations in 2009, including CFP^{20,21}. The UK Biobank cohort study obtained
ethical approval from the North West Mu 46 particulary of the UK Biobank cohort study obtained
introduced eye examinations in 2009, including CFP^{20,21}. The UK Biobank cohort study obtained
ethical approval from the North West Multi-Centre Research Ethics Committe 48 49

Inclusion and exclusion criteria

introduced eye examinations in 2009, including CFP^{20,21}. The UK Biobank cohort study obtained

ethical approval from the North West Multi-Centre Research Ethics Committee (reference

number 06/MRE08/65).
 Inclusion and Inclusion and exclusion criteria
 Inclusion and exclusion criteria

We excluded participants who withdrew their consent or did not have CFPs and/or OCT data.

The quality of the CFPs was assessed with RMHAS, and those **Inclusion and exclusion of**
We excluded participant
The quality of the CFP:
removed¹¹. The quality of
with the Topcon Advanc
than 45 within the poo 51 The quality of the CFPs was assessed with RMHAS, and those classified as "Reject" were
removed¹¹. The quality of OCT data was assessed using the quality control indicators obtained
with the Topcon Advanced Boundary Segm 52 removed¹¹. The quality of OCT data was assessed using the quality control indicators obtained
with the Topcon Advanced Boundary Segmentation software²². Images with a quality score less
than 45, within the poorest 20% stable of Muslim and Segmentation software²². Images with a quality score less
than 45, within the poorest 20% of centration and segmentation uncertainty were excluded.
Lastly, we excluded eyes with conditions that coul 54 with the Topcon Advanced Boundary Segmentation software²². Images with a quality score less
55 than 45, within the poorest 20% of centration and segmentation uncertainty were excluded.
56 Lastly, we excluded eyes wi 55 Lastly, we excluded eyes with conditions that could potentially affect vascular network
quantification or retinal layer thickness measurements. These included intraocular pressure
(IOP) of \geq 21 mmHg or \leq 8 mmHg, sel 56 quantification or retinal layer thickness measurements. These included intraocular pressure
(IOP) of 221 mmHg or ≤8 mmHg, self-reported glaucoma, macular degeneration, retinal
diseases, diabetic eye diseases, or history o 57 $\frac{1}{2}$
(IOP) of 221 mmHg or ≤8 mmHg, self-reported glaucoma, macular degeneration, retinal
diseases, diabetic eye diseases, or history of glaucoma surgery¹². (Definitions are presented in
Supplementary Table 1)
The r 58 60

61 Retinal vascular Measurements

diseases, diabetic eye diseases, or history of glaucoma surgery¹². (Definitions are presented in

60 Supplementary Table 1)
 Retinal vascular Measurements

62 The retinal vascular parameters were obtained using RMHAS Retinal vascular Measur
The retinal vascular para
the macular region of
measurements of 5 cate
Supplementary Table 2
corresponding structure The retinal vascular parameters were obtained using RMHAS¹¹ from a 6*6mm area centered on

the macular region of CFPs. The RMHAS automatedly segmented and quantified 23

measurements of 5 categories: Calibers, Density, 63 the macular region of CFPs. The RMHAS automatedly segmented and quantified 23
measurements of 5 categories: Calibers, Density, Tortuosity, Branching Angle, and Complexity.
Supplementary Table 2 shows the definition of reti 64 65 66 67

68 OCT Parameters

OCT images were acquired using spectral domain OCT (Topcon 3D OCT 1000 Mk2, Topcon Inc,
Oakland, NJ, USA), capturing high-resolution, cross-sectional scans of the retina, 6 mm x 6 mm Supprementary Table 2 shows the hammed in the main values of retinal values of the retinal vascular network obtained from CFPs and cross-sectional
layers obtained from OCT scans in the 6*6mm area.
OCT Parameters
OCT imag corresponding structure of the retinal values of the retinal values in the retinal values of the retinal values
 OCT Parameters

OCT images were acquired using spectral domain OCT (Topcon 3D OCT 1000 Mk2, Topcon Inc,

O OCT Parameters
OCT images were acquired using spectral domain O
Oakland, NJ, USA), capturing high-resolution, cross-
area centered on the fovea, without pupillary dilatic
were extracted using Topcon Advanced Boundary
param 69 Oakland, NJ, USA), capturing high-resolution, cross-sectional scans of the retina, 6 mm x 6 mm
area centered on the fovea, without pupillary dilation in a dark room setting²³. OCT parameters
were extracted using Topcon A 70 area centered on the fovea, without pupillary dilation in a dark room setting²³. OCT parameters
were extracted using Topcon Advanced Boundary Segmentation software¹². After removing
parameters with more than 30% missin area centered on the fovea, without pupillary dilation in a dark room setting²³. OCT parameters
were extracted using Topcon Advanced Boundary Segmentation software¹². After removing
parameters with more than 30% missin were extracted using Topcon Advanced Boundary Segmentation software¹². After removing
parameters with more than 30% missing values and keeping only parameters presenting retinal
layer thickness of the 6*6mm area, we incl 73 layer thickness of the 6*6mm area, we included 9 parameters: macular thickness, RNFL, GC-IPL,
inner nuclear layer (INL), INL-retinal pigment epithelium (RPE), INL-external limiting membrane
(ELM), ELM-inner segment/outer s 74 75 76

77 Mendelian Randomization

inner nuclear layer (INL), INL-retinal pigment epithelium (RPE), INL-external limiting membrane
(ELM), ELM-inner segment/outer segment (ISOS), ISOS-RPE, and RPE thickness (Figure 1).
Mendelian Randomization
We performed a (ELM), ELM-inner segment/outer segment (ISOS), ISOS-RPE, and RPE thickness (Figure 1).
 Mendelian Randomization

We performed a bidirectional, two-sample Mendelian Randomization to examine further the

potential causal r **Mendelian Randomization**
We performed a bidirectional, two-sample Mendelian Randomization to examine furth
potential causal relationship between vascular network features and retinal layer thickne
the vascular features, 78 potential causal relationship between vascular network features and retinal layer thickness. For
the vascular features, we used single nucleotide polymorphisms (SNPs) of retinal vascular
network features obtained in the UK 79 the vascular features, we used single nucleotide polymorphisms (SNPs) of retinal vascular
network features obtained in the UK Biobank²⁴. The study²⁴ provided genome-wide association
network features obtained in the UK 80 the variant features, we used single nucleotide projection (SNPs) of retinal variants
network features obtained in the UK Biobank²⁴. The study²⁴ provided genome-wide association network features obtained in the UK Biobank²⁴. The study²⁴ provided genome-wide association
Notation the UK Biobank²⁴. The study²⁴ provided genome-wide association
Notation the UK Biobank²⁴. The study²⁴ provid

82 thickness, we used GWAS data of retinal layer thickness obtained from the Leipzig Research
Centre for Civilization Diseases (LIFE-Adult Study)^{25,26}. Details of GWAS studies can be found in
Supplementary Text 1. The basel 83 Centre for Civilization Diseases (LIFE-Adult Study)^{25,26}. Details of GWAS studies can be found in
Supplementary Text 1. The baseline of the LIFE-Adult Study was carried out from August 2011
to November 2014 in Leipzig, G Centre for Civilization Diseases (LIFE-Adult Study)^{25,26}. Details of GWAS studies can be found in

S5 Supplementary Text 1. The baseline of the LIFE-Adult Study was carried out from August 2011

to November 2014 in Leip 85 The November 2014 in Leipzig, Germany, focusing on investigating prevalences, early onset
markers, genetic predispositions, and lifestyle determinants of major civilization diseases in
participants aged 40-79²⁶.
To descr 86 87

89 Statistical analysis

The Internal of Temperation and lifestyle determinants of major civilization diseases in
participants aged 40-79²⁶.
Statistical analysis
To describe baseline characteristics, we summarized continuous variables with me participants aged 40-79²⁶.
 Statistical analysis

To describe baseline characteristics, we summarized continuous variables with mean (standard

deviation [SD]), while categorical variables were presented as counts and 88 participants aged 40-79²⁶.
89 **Statistical analysis**
90 To describe baseline chara
91 deviation [SD]), while cat
92 removed outliers using th
93 proportion of > 30% were
94 by Chained Fquations. To 6 90 deviation [SD]), while categorical variables were presented as counts and percentages. We
removed outliers using the method proposed by Zekayat et al²⁴. Parameters with a missing
proportion of > 30% were excluded. Missin 91 93

94

removed outliers using the method proposed by Zekayat et al²⁴. Parameters with a missing proportion of > 30% were excluded. Missing values were imputed using Multivariate Imputation by Chained Equations. To ensure compa removed outliers using the method proposed by Zekayat et al²⁴. Parameters with a missing
proportion of > 30% were excluded. Missing values were imputed using Multivariate Imputation
by Chained Equations. To ensure compa proportion of the data distribution was assessed with the Anderson-Darling test.
We assessed normality of the data distribution was assessed with the Anderson-Darling test.
For the correlation test, we used Pearson correla by Chained Equations. To entity comparability, an increasing the correlation of the correlation test, we used Pearson correlation if both variables were normally distributed, otherwise Spearman's rank correlation was used. 95 For the correlation test, we used Pearson correlation if both variables were normally
distributed, otherwise Spearman's rank correlation was used. We generated a heatmap based
on the correlation matrix to assess the pairwi 96 distributed, otherwise Spearman's rank correlation was used. We generated a heatmap based
on the correlation matrix to assess the pairwise strength and direction of the relationships
between all possible pairs of retinal v 97 98 99

on the correlation matrix to assess the pairwise strength and direction of the relationships
between all possible pairs of retinal vessel characteristics and OCT parameters.
For broader structural relationships between the Canonical Correlation Analysis (CCA). The CCA generates dimensions that are linear For broader structural relationships between these two sets of variables
Canonical Correlation Analysis (CCA). The CCA generates dimensions
combinations of variables from each set that maximize the correlation betwe
The pr 100 Canonical Correlation Analysis (CCA). The CCA generates dimensions that are linear combinations of variables from each set that maximize the correlation between the two sets. The proportion of variables from each set that 101 combinations of variables from each set that maximize the correlation between the two sets.
The proportion of variance explained by each canonical dimension was calculated to assess the
relative importance of each dimensio 102 The proportion of variance explained by each canonical dimension was calculated to assess the relative importance of each dimension in explaining the overall relationship between the two sets of variables. The scatter plot 103 relative importance of each dimension in explaining the overall relationship between the two
sets of variables. The scatter plot with a fitted locally estimated scatterplot smoothing (LOESS)
curve and linear regression li 104 relative interpretation. The scatter plot with a fitted locally estimated scatterplot smoothing (LOESS) curve and linear regression line illustrated the correlation in the canonical dimensions. A Sankey diagram was constr 105 surve and linear regression line illustrated the correlation in the canonical dimensions. A Sankey diagram was constructed to depict the change in variable importance across canonical dimensions.
For the bidirectional Men 106 diagram was constructed to depict the change in variable importance across canonical
dimensions.
For the bidirectional Mendelian Randomization, SNPs with a GWAS-correlated P-value < 5×10^{-6}
were selected, and data clu 107 dimensions.

For the bidirectional Mendelian Randomization, SNPs with a GWAS-correlated P-value $< 5 \times 10^{-6}$

were selected, and data clumping was performed with the linkage disequilibrium r^2 set at 0.001

and clumpin 108

111 112

For the bidir
Were selecte
and clumpin
standardized
Additionally,
study a two For the bidirectional Mendelian Randomization, SNPs with a GWAS-correlated P-value $< 5 \times 10^{-6}$

110 were selected, and data clumping was performed with the linkage disequilibrium r^2 set at 0.001

111 and clumping wi were selected, and data clumping was performed with the linkage disequilibrium r^2 set at 0.001

111 and clumping window set at 10000 kb. To ensure the comparability among parameters, the

112 standardized effect sizes standardized effect sizes were presented.
Additionally, subgroup analyses by sex, age groups, and eye laterality were performed. In this
study, a two-sided significance level of alpha = 0.05 was set for all statistical tes Additionally, subgroup analyses by sex, as
study, a two-sided significance level of alp
were conducted using R version 4.2.3.
Ally and the sign of the sented. 113 study, a two-sided significance level of alpha = 0.05 was set for all statistical tests. All analyses were conducted using R version 4.2.3. 114 studies two-sided using R version 4.2.3.
Were conducted using R version 4.2.3. 115 were conducted using R version 4.2.3.

- 116
- 117
- 118

119 Results

120 Characteristics of participants

121 OCT data but excluded low-quality images and data and eyes with conditions that would affect
the segmentation and quantification of retinal features. Our final cohort was 43,029
participants with 67,918 eyes that had both 122 123 124

The segmentation and quantification of retinal features. Our final cohort was 43,029
participants with 67,918 eyes that had both quality CFP and OCT data.
The mean (SD) age of the participants was 55.5 (8.19) years, with participants with 67,918 eyes that had both quality CFP and OCT data.
The mean (SD) age of the participants was 55.5 (8.19) years, with a higher proportion of
females (55.6%) than males (44.4%) and males being slightly old participants with 67,918 and that the mapping of the mean (SD) age of the participants was 55.5 (8.19) years, with females (55.6%) than males (44.4%) and males being slightly older the years, p<0.001). Males had a higher m 125 females (55.6%) than males (44.4%) and males being slightly older than females (55.7 vs 55.3 years, p<0.001). Males had a higher mean body mass index (27.6 vs 26.7 kg/m², p<0.001) and were more likely to be current or f 126 Females (56.001). Males had a higher mean body mass index (27.6 vs 26.7 kg/m², p<0.001) and
were more likely to be current or former smokers (47.1% vs 38.2%, p<0.001) compared with
females. Males also reported higher le 127 yearcy procedure likely to be current or former smokers (47.1% vs 38.2%, p<0.001) compared with
females. Males also reported higher levels of physical activity, with 36.0% in the high category
compared with 30.6% of femal 128 Females. Males also reported higher levels of physical activity, with 36.0% in the high category
compared with 30.6% of females (p<0.001). Cardiovascular risk factors showed significant
differences across genders, with ma 129 compared with 30.6% of females (p<0.001). Cardiovascular risk factors showed significant
differences across genders, with males having higher mean SBP (138 vs 133 mmHg, p<0.001),
DBP (83.2 vs 79.8 mmHg, p<0.001), and HbA1 130 compared with 30.6 senders, with males having higher mean SBP (138 vs 133 mmHg, p<0.001),
DBP (83.2 vs 79.8 mmHg, p<0.001), and HbA1c levels (35.8 vs 35.3 mmol/mol, p<0.001).
Females had higher mean high-density lipoprote 131 DBP (83.2 vs 79.8 mmHg, p<0.001), and HbA1c levels (35.8 vs 35.3 mmol/mol, p<0.001).
Females had higher mean high-density lipoprotein (1.63 vs 1.31 mmol/L, p<0.001) and low-
density lipoprotein (3.59 vs 3.51 mmol/L, p<0.0 132 Females had higher mean high-density lipoprotein (1.63 vs 1.31 mmol/L, p<0.001) and low-
density lipoprotein (3.59 vs 3.51 mmol/L, p<0.001) levels. The prevalence of diabetes (4.9% vs
2.8%, p<0.001) and cardiovascular dis 133 134 135 136

137 Pairwise correlations

of retinal layers. Macular thickness had moderate positive correlations with multiple vascular 2.8%, $p<0.001$) and cardiovascular diseases (29.9% vs 21.3%, $p<0.001$) was higher in males.
Detailed characteristics of participants stratified by sex can be found in Table 1.
Pairwise correlations
Figure 3 illustrates Detailed characteristics of participants stratified by sex can be found in Table 1.
 Pairwise correlations

Figure 3 illustrates the pairwise correlations between retinal vascular features and the thickness

of retinal **Pairwise correlations**
Figure 3 illustrates the pairwise correlations between retinal vascular features a
of retinal layers. Macular thickness had moderate positive correlations with n
features, particularly the Density m 138 of retinal layers. Macular thickness had moderate positive correlations with multiple vascular
features, particularly the Density measure. The strongest correlations were observed for Vessel
Area Density (artery) (r=0.161) 139 features, particularly the Density measure. The strongest correlations were observed for Vessel
Area Density (artery) (r=0.161), Vessel Skeleton Density (artery) (r=0.132), and Width (r=0.118).
Similarly, GC-IPL demonstrat 140 Fearually, particular (rep. 1611), Vessel Skeleton Density (artery) (r=0.132), and Width (r=0.118).
Similarly, GC-IPL demonstrated even stronger positive correlations with these vascular features,
with the highest correlat 141 Area Density (artery) (research area Density (artery) (research Similarly, GC-IPL demonstrated even stronger positive correlations with these vascular features, with the highest correlations observed for Vessel Area Densit 142 with the highest correlations observed for Vessel Area Density (artery) (r=0.199), Vessel
Skeleton Density (artery) (r=0.170), and Vessel Skeleton Density (vein) (r=0.152). INL also
showed moderate positive correlations wi 143 144 145 146

Skeleton Density (artery) (r=0.170), and Vessel Skeleton Density (vein) (r=0.152). INL also
showed moderate positive correlations with several vascular features, such as Width (r=0.122)
and Vessel Area Density (artery) (r= Showed moderate positive correlations with several vascular features, such as Width (r=0.122)
and Vessel Area Density (artery) (r=0.127).
GC-IPL showed strong correlations with Complexity measures, such as Number of Segmen and Vessel Area Density (artery) (r=0.127).
GC-IPL showed strong correlations with Complexity measures, such as Number of Segments
(r=0.175) and Number of Branching (r=0.157). Conversely, the Length Diameter Ratio (LDR)
sh and Vessel Area Density (artery) (reserving
GC-IPL showed strong correlations with C
(r=0.175) and Number of Branching (r=0.
showed negative correlations with multip
0.143) and INL (r=-0.106). RNFL shows wea
positive corre 147 (r=0.175) and Number of Branching (r=0.157). Conversely, the Length Diameter Ratio (LDR)
showed negative correlations with multiple retinal layer thicknesses, particularly GC-IPL (r=-
0.143) and INL (r=-0.106). RNFL shows 148 showed negative correlations with multiple retinal layer thicknesses, particularly GC-IPL (r=-0.143) and INL (r=-0.106). RNFL shows weaker correlations, with the strongest being a modest positive correlation with Vessel S 149 0.143) and INL (r=-0.106). RNFL shows weaker correlations, with the strongest being a modest
positive correlation with Vessel Skeleton Density (artery) (r=0.065). Most correlations were
statistically significant (p<0.001) 150 positive correlation with Vessel Skeleton Density (artery) (r=0.065). Most correlations were
statistically significant (p<0.001), although the strength of these correlations varied, with most
falling in the weak to moderat 151 152 153

154 Canonical Correlation Analysis

statistically significant (p<0.001), although the strength of these correlations varied, with most
falling in the weak to moderate range.
Canonical Correlation Analysis
Figure 4 shows the main results of CCA. The sharp Falling in the weak to moderate range.
 Canonical Correlation Analysis

Figure 4 shows the main results of CCA. The sharp increase in cumulative variance observed in

the first three dimensions suggests that most of the **Canonical Correlation Analysis**
Figure 4 shows the main results of CC/
the first three dimensions suggests tha
sets of variables are captured. The firs
the variance in the relationship betwe 155 the first three dimensions suggests that most of the important relationships between the two
sets of variables are captured. The first canonical dimension explained approximately 43.8% of
the variance in the relationship b 156 the first three dimensions of the first transmissions in the important relationship $\frac{1}{2}$ and $\frac{1}{2}$ an 157 the variance in the relationship between retinal vascular and OCT parameters, and subsequent 158 the variance in the relationship between retinal vascular and OCT parameters, and subsequent 159 160

for over 92.02% of the total variance explained.
The first canonical dimension showed a moderate positive correlation ($\rho = 0.265$) between
retinal vascular measurements and retinal layer thickness. The correlation coeffi The first canonical dimension showed a mode
retinal vascular measurements and retinal lay
0.218 and 0.171 in the second and third dimer
first three canonical dimensions, the LOESS curv
suggesting predominant linear relatio 161 retinal vascular measurements and retinal layer thickness. The correlation coefficients were
0.218 and 0.171 in the second and third dimensions (all p <0.001). In the scatter plots of the
first three canonical dimensions, 162 0.218 and 0.171 in the second and third dimensions (all $p < 0.001$). In the scatter plots of the first three canonical dimensions, the LOESS curves largely overlapped with the fitted linear lines, suggesting predominant l 163 First three canonical dimensions, the LOESS curves largely overlapped with the fitted linear lines, suggesting predominant linear relationships with merely weak non-linear relationships at the extremes of the distributions 164 165 166

suggesting predominant linear relationships with merely weak non-linear relationships at the
extremes of the distributions.
The Sankey diagram revealed that in the first dimension, the number of segments, GC-IPL
thickness, suggesting predominant lines. The transminipe and merely mean constrained controlline extremes of the distributions.
The Sankey diagram revealed that in the first dimension, the number of segments, GC-IPL
thickness, and IN The Sankey diagram revealed
thickness, and INL-RPE thickre
dimension showed that Vesse
INL-ELM thickness are the mag
evenly distributed patterns of
vessel width, branching patter 167 thickness, and INL-RPE thickness appeared to be the most influential variables. The second
dimension showed that Vessel Area Density (artery), Junctional Exponent Deviation (JED), and
INL-ELM thickness are the major contri 168 The dimension showed that Vessel Area Density (artery), Junctional Exponent Deviation (JED), and
INL-ELM thickness are the major contributors. The third and fourth dimensions displayed more
evenly distributed patterns of v 169 INL-ELM thickness are the major contributors. The third and fourth dimensions displayed more
evenly distributed patterns of variable importance, with contributions from parameters such as
vessel width, branching patterns, 170 evenly distributed patterns of variable importance, with contributions from parameters such as 171 172

173 Mendelian Randomization

exercy and the branching patterns, and various layer thicknesses.
 Mendelian Randomization

Table 2 presents the results of bidirectional Mendelian randomization, revealing significant

associations of various retinal la *Mendelian Randomization*

Table 2 presents the results of bidirectional Mendelian rand

associations of various retinal layers with Vessel Density and Fr

showed the strongest effect on ISOS + Photoreceptor Segme

standar 174 associations of various retinal layers with Vessel Density and Fractal Dimension. Vessel Density
showed the strongest effect on ISOS + Photoreceptor Segment (ISOS+PS) thickness, with a
standardized effect size of 1.50 (95% 175 showed the strongest effect on ISOS + Photoreceptor Segment (ISOS+PS) thickness, with a
standardized effect size of 1.50 (95% CI: 1.07, 1.93; p<0.001). In addition, Vessel Density also
showed significant positive effects o 176 standardized effect size of 1.50 (95% CI: 1.07, 1.93; p<0.001). In addition, Vessel Density also
showed significant positive effects on Ganglion Cell Layer (GCL) and Outer Plexiform Layer (OPL)
thicknesses, with standardiz 177 showed significant positive effects on Ganglion Cell Layer (GCL) and Outer Plexiform Layer (OPL)
thicknesses, with standardized effect sizes of 0.50 and 0.57 (both p-values <0.05). When
examining the effect of layer thickn 178 thicknesses, with standardized effect sizes of 0.50 and 0.57 (both p-values <0.05). When
examining the effect of layer thickness on Vessel Density, multiple retinal layer thicknesses
exhibited significant effects. OPL thic 179 examining the effect of layer thickness on Vessel Density, multiple retinal layer thicknesses
exhibited significant effects. OPL thickness demonstrated the largest effect on Vessel Density,
with an effect size of 0.45 (95% 180 exhibited significant effects. OPL thickness demonstrated the largest effect on Vessel Density,
with an effect size of 0.45 (95% CI: 0.16, 0.75, p=0.002). GCC, GCL, ISOS+PS, and INL thicknesses
also significantly positivel 181 with an effect size of 0.45 (95% CI: 0.16, 0.75, p=0.002). GCC, GCL, ISOS+PS, and INL thicknesses
also significantly positively affected Vessel Density, with effect sizes ranging from 0.27 to 0.40
(all p<0.05). While Mende 182 also significantly positively affected Vessel Density, with effect sizes ranging from 0.27 to 0.40 (all p<0.05). While Mendelian randomization did not demonstrate the effect of Fractal Dimension on the thickness of layers, 183 all p<0.05). While Mendelian randomization did not demonstrate the effect of Fractal
Dimension on the thickness of layers, the reverse effect was revealed. GCC, GCL, IPL, OPL, and
INL all showed significant effects, with s 184 Dimension on the thickness of layers, the reverse effect was revealed. GCC, GCL, IPL, OPL, and 185 INL all showed significant effects, with standardized effect sizes ranging between 0.25 and 0.48. 186

INL all showed significant effects, with standardized effect sizes ranging between 0.25 and 0.48.

187

188

189 Discussion

190 and vascular features in 67,918 eyes of 43,029 participants by evaluating pairwise correlations,
correlations between two sets of parameters, and their genetic influence on each other. The
GC-IPL and INL had the strongest 191 correlations between two sets of parameters, and their genetic influence on each other. The
GC-IPL and INL had the strongest associations with vascular features, including Density,
Complexity, and Caliber measurements; the 192 GC-IPL and INL had the strongest associations with vascular features, including Density, Complexity, and Caliber measurements; there were stronger correlations with arteries than veins. The CCA results further revealed mul 193 Complexity, and Caliber measurements; there were stronger correlations with arteries than
veins. The CCA results further revealed multidimensional relationships between the two sets of
parameters, indicating a complementar 194 veins. The CCA results further revealed multidimensional relationships between the two sets of
parameters, indicating a complementary nature of their relationships. Furthermore, the
Mendelian Randomization analysis provide 195 196 197 198

veins in the CCA results further relationships. Turker in the CCA response to the Mendelian Randomization analysis provided evidence for positive bidirectional causal relationships.
The pairwise correlation analysis reveal parameters, indicating a complementary mature of their controlling to intrictional causal
relationships.
The pairwise correlation analysis revealed the correlations between macular thickness (mainly
attributable to GC-IPL Mendionships.
The pairwise correlation analysis revealed the correlations between macular thickness (mainly
attributable to GC-IPL and INL thickness) and Density, Caliber, and Complexity measurements.
The strongest correla The pairwise
The pairwise
attributable to
The strongest
Skeleton Den:
Randomizatio
blood supply i 199 The structure is a GC-IPL and INL thickness) and Density, Caliber, and Complexity measurements.
The strongest correlations were found for GC-IPL with Vessel Area Density (artery) and Vessel
Skeleton Density (artery), Numbe 200 The strongest correlations were found for GC-IPL with Vessel Area Density (artery) and Vessel
Skeleton Density (artery), Number of Segments, and Number of Branching. The Mendelian
Randomization also revealed the effect of 201 Skeleton Density (artery), Number of Segments, and Number of Branching. The Mendelian Randomization also revealed the effect of Vessel Density on GCL. This suggests that a richer blood supply in the macular region could s 202 Randomization also revealed the effect of Vessel Density on GCL. This suggests that a richer
blood supply in the macular region could support enhanced growth of ganglion cells. Given the
high metabolic demand of ganglion 203 blood supply in the macular region could support enhanced growth of ganglion cells. Given the
high metabolic demand of ganglion cell bodies and dendrites in the GC-IPL, its thickness is
critically dependent on adequate blo 204 high metabolic demand of ganglion cell bodies and dendrites in the GC-IPL, its thickness is
critically dependent on adequate blood supply^{19,27,28}. This also explains the stronger correlation
found for arterial Density pa 205 critically dependent on adequate blood supply^{19,27,28}. This also explains the stronger correlation
found for arterial Density parameters compared with venular Density parameters in our study.
Furthermore, as revealed by critically dependent on adequate blood supply^{19,27,28}. This also explains the stronger correlation
207 found for arterial Density parameters compared with venular Density parameters in our study.
208 Furthermore, as rev 207 Furthermore, as revealed by the bidirectional Mendelian Randomization, genetically
determined thicker ganglion cell complex can result in higher Vessel Density and vice versa.
These findings align with previous research su 208 determined thicker ganglion cell complex can result in higher Vessel Density and vice versa.
These findings align with previous research suggesting the intricate bidirectional interaction
between retinal vascular health an 209 These findings align with previous research suggesting the intricate bidirectional interaction
between retinal vascular health and blood supply regulation is closely linked to the integrity of
retinal neurons, and neural 210 These final vascular health and blood supply regulation is closely linked to the integrity of
retinal neurons, and neural acticity^{18,29-31}, providing additional evidence on neurovascular
coupling in the retina in terms o 211 213

between retinal neurons, and neural acticity^{18,29-31}, providing additional evidence on neurovascular coupling in the retina in terms of phenotypic morphology and genetics.
INL thickness was another layer primarily contri The probability and neural acticity^{18,29-31}, providing additional evidence on neurovascular

213 coupling in the retina in terms of phenotypic morphology and genetics.

214 INL thickness was another layer primarily cont INL thickness was another layer primarily contributing to the correlated features and macular thickness. INL thickness was positively correlated and negatively correlated with LDR (r=-0.106). This might indicated associate 214 features and macular thickness. INL thickness was positively correlated with Width (r=0.122)
and negatively correlated with LDR (r=-0.106). This might indicate that thinner INL was
associated with a narrower diameter and e 215 Feature and megatively correlated with LDR (r=-0.106). This might indicate that thinner INL was
associated with a narrower diameter and elongated vessels relative to their diameter. Such a
geometric pattern could potential 216 associated with a narrower diameter and elongated vessels relative to their diameter. Such a
geometric pattern could potentially reflect vascular remodeling in response to altered
metabolic demands or could be an early sig 217 geometric pattern could potentially reflect vascular remodeling in response to altered
metabolic demands or could be an early sign of microvascular dysfunction³². Previous studies
have shown that changes in vessel morpho 218 metabolic demands or could be an early sign of microvascular dysfunction³². Previous studies

have shown that changes in vessel morphology, including alterations in LDR, can be indicative

of various retinal pathologies 220 of various retinal pathologies and systemic conditions such as diabetes and hypertension³³. In addition, we found INL was associated with Vessel Area Density. This is consistent with the findings in a previous study³⁴ 222 224

Equivalent in a previous study³⁴, which proposed the retinal vascular network had a more

224 important role for the inner retina, while the oxygen and nutrition supply of the outer retina

225 could rely on the choroid could rely on the choroid²⁷.
The CCA revealed that the first three canonical dimensions explained more than 90% of the
variance. The parameters that had strong correlations in the pairwise correlation analysis also
prim 225 could rely on the choroid²⁷.

226 The CCA revealed that the

227 variance. The parameters the

228 primarily contributed to the

229 canonical dimension, explai

230 ($\rho = 0.265$) between retinal 226 variance. The parameters that had strong correlations in the pairwise correlation analysis also
primarily contributed to the correlations between the two sets of parameters. The first
canonical dimension, explaining 43.8% 227 primarily contributed to the correlations between the two sets of parameters. The first 228 canonical dimension, explaining 43.8% of the variance, showed a moderate positive correlation 229 $(\rho = 0.265)$ between retinal vascular measurements and retinal layer thickness. The moderate 230 (ρ = 0.265) between retinal vascular measurements and retinal layer thickness. The moderate

231 complementary rather than redundant information about retinal health and structure. This is
partially evidenced by a previous study that reported that the combined use of CFP and OCT
biomarkers led to improved performance 232 partially evidenced by a previous study that reported that the combined use of CFP and OCT
biomarkers led to improved performance for predicting late age-related macular degeneration
development³⁵. This highlights the va 233 poten arkers led to improved performance for predicting late age-related macular degeneration
development³⁵. This highlights the value of the retinal vascular and neural layer as a composite
biomarker. Further research s 234 development³⁵. This highlights the value of the retinal vascular and neural layer as a composite
biomarker. Further research should extend the application of grouped retinal vascular and
neural biomarkers to systemic dis development³⁵. This highlights the value of the retinal vascular and neural layer as a composite
236. biomarker. Further research should extend the application of grouped retinal vascular and
237. neural biomarkers to sy 236 237 239

meural biomarkers to systemic disease prediction. The information obtained on retinal vascular
architecture and neural status especially may be relevant to changes in brain functions³⁶ and
potentially could serve as earl architecture and neural status especially may be relevant to changes in brain functions³⁶ and
potentially could serve as early biomarkers.
The bidirectional relationships revealed by Mendelian randomization analyses poin architecture and neural status especially may be relevant to changes in brain functions³⁶ and

239 potentially could serve as early biomarkers.

240 The bidirectional relationships revealed by Mendelian randomization ana The bidirectional relationships revealed by
genetic influences between retinal vascular
overlap suggests common developmental pa
vascular and neuronal components of the
signaling pathways, such as the Norrin signa
receptor 240 genetic influences between retinal vascular features and retinal layer thicknesses. This genetic
overlap suggests common developmental pathways and regulatory mechanisms governing both
vascular and neuronal components of t 241 generiap suggests common developmental pathways and regulatory mechanisms governing both
vascular and neuronal components of the retina. A previous study reported that genes and
signaling pathways, such as the Norrin signa 242 vascular and neuronal components of the retina. A previous study reported that genes and
signaling pathways, such as the Norrin signaling pathway mediated by the FZD4/LRP5/TSPAN12
receptor complex, involved in angiogenesis 243 signaling pathways, such as the Norrin signaling pathway mediated by the FZD4/LRP5/TSPAN12
receptor complex, involved in angiogenesis and neurogenesis during retinal development may
have pleiotropic effects, influencing va 244 signaling pathways, such as the Norrington By pathway method is an interesting the Norring Have pleiotropic effects, influencing vascular architecture and neuronal layer formation³⁷.
Furthermore, the consistent associati 245 have pleiotropic effects, influencing vascular architecture and neuronal layer formation³⁷.
Furthermore, the consistent associations across multiple retinal layers and vascular features indicate that these shared genetic have pleiotropic effects, influencing vascular architecture and neuronal layer formation³⁷.

247 Furthermore, the consistent associations across multiple retinal layers and vascular features

248 indicate that these shar 247 indicate that these shared genetic factors may have broad effects on retinal structure and
function. Understanding these shared genetic influences could provide valuable insights into
the pathogenesis of retinal diseases a 248 249 250 251

function. Understanding these shared genetic influences could provide valuable insights into
the pathogenesis of retinal diseases and potentially facilitate the identification of new
therapeutic targets.
Our study presents the pathogenesis of retinal diseases and potentially facilitate the identification of new
therapeutic targets.
Our study presents several strengths including large sample size, inclusion of a wide range of
retinal vessel a The pathogenesis of retinal distribution in potentially facilitate the including the including the range of retinal vessel and neural layer features, and the employment of advanced statistical methods including CCA and Men Our study presents
retinal vessel and no
including CCA and
presence of shared
neuronal componen
conditions affecting
Despite its strengths 252 The study presents and heural layer features, and the employment of advanced statistical methods
including CCA and Mendelian randomization. The bidirectional relationships suggest the
presence of shared genetic influences 253 including CCA and Mendelian randomization. The bidirectional relationships suggest the presence of shared genetic influences and developmental pathways between vascular and neuronal components of the retina. This knowledge 254 255 256 257

presence of shared genetic influences and developmental pathways between vascular and
neuronal components of the retina. This knowledge could lead to new therapeutic targets for
conditions affecting both neurological and v presence of shared general minima. This knowledge could lead to new therapeutic targets for conditions affecting both neurological and vascular health.
Despite its strengths, our study has some limitations. First, the anal conditions affecting both neurological and vascular health.

Despite its strengths, our study has some limitations. First, the analyses were performed in the

population with a majority being Caucasians, which may affect Despite its strengths, our study has some limitations. First, population with a majority being Caucasians, which ma
findings. Additionally, due to the low availability of GWAS
we used data from a replication study in LIFE 258 Deputation with a majority being Caucasians, which may affect the generalizability of the findings. Additionally, due to the low availability of GWAS data on OCT-derived retinal layers, we used data from a replication stu 259 Findings. Additionally, due to the low availability of GWAS data on OCT-derived retinal layers, we used data from a replication study in LIFE-Adult-study. Therefore, the SNPs included may not be all SNPs that can be ident 260 we used data from a replication study in LIFE-Adult-study. Therefore, the SNPs included may
not be all SNPs that can be identified in this study population. Additionally, the exclusion of
eyes with IOP \geq 21 mmHg or \le 261 not be all SNPs that can be identified in this study population. Additionally, the exclusion of eyes with IOP \geq 21 mmHg or \leq 8 mmHg may omit eyes at risk for or in the early stages of glaucoma, particularly those wi 262 eyes with IOP \geq 21 mmHg or \leq 8 mmHg may omit eyes at risk for or in the early stages of glaucoma, particularly those with normal-tension glaucoma. Finally, while the study provides a comprehensive view of retinal st 263 extinguional particularly those with normal-tension glaucoma. Finally, while the study provides a comprehensive view of retinal structure-vasculature relationships, it may not capture all the functional implications of the 264 265 266 267

glaucomprehensive view of retinal structure-vasculature relationships, it may not capture all the functional implications of these relationships in terms of visual performance or disease progression. The clinical implicati Functional implications of these relationships in terms of visual performance or disease
progression. The clinical implications of these results should be explored in future studies.
In conclusion, we revealed that macular Functional implications of these results should be explored in future studies.
In conclusion, we revealed that macular thickness was associated with vascular Density and
Caliber measurements. These results are mainly attri In conclusion, we revealed that macular thickness was associated with vascular DensitY Caliber measurements. These results are mainly attributable to their associations with G
and INL thickness. Additionally, the multidime 268 Caliber measurements. These results are mainly attributable to their associations with GC-IPL
and INL thickness. Additionally, the multidimensional relationships revealed by CCA
demonstrate the complementary nature of the 269 and INL thickness. Additionally, the multidimensional relationships revealed by CCA
demonstrate the complementary nature of the two sets of parameters and highlight their value
as a composite biomarker for both ocular and 270 demonstrate the complementary nature of the two sets of parameters and highlight their value
as a composite biomarker for both ocular and systemic conditions. Moreover, Mendelian
as a composite biomarker for both ocular an 271 as a composite biomarker for both ocular and systemic conditions. Moreover, Mendelian

demonstration

demonstration

demonstration

demonstrations. Moreover, Mendelian

demonstration 272 as a composite biomarker for both ocular and systemic conditions. Moreover, Mendelian

- 273
- vascular features. This relationship offers insights that may be useful for developing novel
therapeutic approaches targeting both vascular and neuronal components of the retina.
Competing interests:
None 274
- therapeutic approaches targeting both vascular and neuronal components of the retina.
Competing interests:
None
Funding: 275
- 276

277 Competing interests:

- 278
- 279

280 Funding:

- therapeutic approaches targeting interests:
None
Funding: 281
- Maria
Fundi
This w
Eye Re
Gover
Unive Eye Research Australia receives Operational Infrastructure Support from the Victorian State
Government. M.Y. is supported by the Melbourne Research Scholarship established by the
University of Melbourne. The funding source 282
- Fovernment. M.Y. is supported by the Melbourne Research Scholarship established by the
Government. M.Y. is supported by the Melbourne Research Scholarship established by the
University of Melbourne. The funding source had 283
- Government. M.Y. is supported by the Melbourne Research Scholarship established by the
University of Melbourne. The funding source had no role in the design and conduct of the study;
collection, management, analysis, and i 284
- University of Melbourne. The funding source had no role in the design and temperature in the study;
collection, management, analysis, and interpretation of the data; preparation, review, or
approval of the manuscript; and 285
- approval of the manuscript; and decision to submit the manuscript for publication.

The data series of the data; preparation of the data; preparation, or the data; preparation, or the data; pre
 $\frac{d}{dt}$ 286 approval of the manuscript; and decision to submit the manuscript for publication to submit the manuscript for
The manuscript for publication. The manuscript for publication of publication. The manuscript for publication
T
- 287

288

References:

1. Erski
2014;6(6)do
2. Lond
to CNS disor
3. Liew
Fractal and S
doi:10.1161,
4. Fu Y. 1. Erskine L, Herlefa L. Connecting the retina to the brain. ASN Metro.
2014;6(6)doi:10.1177/1759091414562107
2. London A, Benhar I, Schwartz M. The retina as a window to the brain
to CNS disorders. Nat Rev Neurol. Jan 201

2. London A, Benhar I, Schwartz M. Th
to CNS disorders. *Nat Rev Neurol*. Jan 2013;
3. Liew G, Gopinath B, White AJ, Burlu
Fractal and Stroke Mortality. *Stroke*. Apr 20
doi:10.1161/strokeaha.120.031886
4. Fu Y, Yusufu M, to CNS disorders. *Nat Rev Neurol*. Jan 2013;9(1):44-53. doi:10.1038/nrneurol.2012.227
3. Liew G, Gopinath B, White AJ, Burlutsky G, Yin Wong T, Mitchell P. Retinal Vasculature
Fractal and Stroke Mortality. *Stroke*. Apr 2 to CNS disorders. Nat Rev Wearon. Jan 2013, 3(1):44-53. doi:10.1038/illiedioi.2012.227

3. Liew G, Gopinath B, White AJ, Burlutsky G, Yin Wong T, Mitchell P. Retinal Vascul

Fractal and Stroke Mortality. Stroke. Apr 2021;5 Fractal and Stroke Mortality. *Stroke*. Apr 2021;52(4):1276-1282.

doi:10.1161/strokeaha.120.031886

4. Fu Y, Yusufu M, Wang Y, He M, Shi D, Wang R. Association of retinal microvascular

density and complexity with inciden

Fractal and Stroke Mortanty. Stroke. Apr 2021;32(4):1270 1202.

doi:10.1161/strokeaha.120.031886

4. Fu Y, Yusufu M, Wang Y, He M, Shi D, Wang R. Associatior

density and complexity with incident coronary heart disease. At 4. Fu Y, Yusufu M, Wang Y, He N
density and complexity with inciden
2023;380:117196. doi:10.1016/j.ath
5. Yusufu M, Chen Y, Dayimu A,
Evidence From the UK Biobank Stud
doi:10.1167/tvst.13.1.2
6. Tien Yin Wong F, MPH, 1,2,3 density and complexity with incident coronary heart disease. Atherosclerosis. Sep
2023;380:117196. doi:10.1016/j.atherosclerosis.2023.117196
5. Yusufu M, Chen Y, Dayimu A, et al. Retinal Vascular Measurements and Mortality density and complexity with incident coronary neart disease. Atherosclerosis. Sep
2023;380:117196. doi:10.1016/j.atherosclerosis.2023.117196
5. Yusufu M, Chen Y, Dayimu A, et al. Retinal Vascular Measurements and Mo
Eviden 2023;380:117196. doi:10.1016/j.atherosclerosis.2023.117196

Evidence From the UK Biobank Study. *Transl Vis Sci Technol*. Jan 2 2024;13(1):2.
doi:10.1167/tvst.13.1.2
6. Tien Yin Wong F, MPH, 1,2,3 Ronald Klein, MD, MPH, 1 James M. Tielsch, PhD, 3,4 Larry
Hubbard, MAT, 1 and F. Javi Evidence From the OK Biobank Stday. Transl Vis Scribenmon. Jan 2 2024, 15(1):2.

doi:10.1167/tvst.13.1.2

6. In Tien Yin Wong F, MPH, 1,2,3 Ronald Klein, MD, MPH, 1 James M. Tielsch,

Hubbard, MAT, 1 and F. Javier Nieto, M 6. Tien Yin Wong F,
Hubbard, MAT, 1 and F. J
Relationship with Hyper
7. Sasongko MB, W
in young type 1 diabetes
8. Chan VTT, Sun Z,
Disease: A Systematic Re
doi:10.1016/i.onhtha.20

Hubbard, MAT, 1 and F. Javier Nieto, MD, PhD 3. Retinal Microvascular Abnormalities and their
Relationship with Hypertension, Cardiovascular Disease, and Mortality. 2001;
7. Sasongko MB, Wang JJ, Donaghue KC, et al. Altera Relationship with Hypertension, Cardiovascular Disease, and Mortality. 2001;
7. Sasongko MB, Wang JJ, Donaghue KC, et al. Alterations in retinal microvascular geometr
in young type 1 diabetes. *Diabetes Care*. Jun 2010;33(T. Sasongko MB, Wang JJ, Donaghue KC, et al. Alterations in retinal micro
in young type 1 diabetes. *Diabetes Care*. Jun 2010;33(6):1331-6. doi:10.2337/
8. Chan VTT, Sun Z, Tang S, et al. Spectral-Domain OCT Measurements in young type 1 diabetes. *Diabetes Care*. Jun 2010;33(6):1331-6. doi:10.2337/dc10-0055
8. Chan VTT, Sun Z, Tang S, et al. Spectral-Domain OCT Measurements in Alzheimer's
Disease: A Systematic Review and Meta-analysis. *Op* in young type 1 diabetes. Diabetes care. Jan 2010, 33(0):1331-0. doi:10.2337/dc10-0333-8.

8. Chan VTT, Sun Z, Tang S, et al. Spectral-Domain OCT Measurements in Alzheimer's

Disease: A Systematic Review and Meta-analysis.

8. Chan VTT, Sun Z, Tang S, et al. Spectral-Domain OCT Measurements in Alzheimer's
Disease: A Systematic Review and Meta-analysis. *Ophthalmology*. Apr 2019;126(4):497-51
doi:10.1016/j.ophtha.2018.08.009
9. Satue M, Obis J Disease: A Systematic Review and Meta-analysis. Ophthalmology. Apr 2015, 120(4):457-510.

doi:10.1016/j.ophtha.2018.08.009

9. Satue M, Obis J, Rodrigo MJ, et al. Optical Coherence Tomography as a Biomarker for

Diagnosis, 9. Satue M, Obis J, Rodrigo MJ
Diagnosis, Progression, and Progno
2016;2016:8503859. doi:10.1155/2
10. Petzold A, Balcer LJ, Calabre
systematic review and meta-analys
doi:10.1016/s1474-4422(17)30278
11. Shi D, Lin Z, Wang

Diagnosis, Progression, and Prognosis of Neurodegenerative Diseases. J Ophthalmol.
2016;2016:8503859. doi:10.1155/2016/8503859
10. Petzold A, Balcer LJ, Calabresi PA, et al. Retinal layer segmentation in multiple sclerosi

Diagnosis, Progression, and Prognosis of Neurodegenerative Diseases. J Ophthalmol.
2016;2016:8503859. doi:10.1155/2016/8503859
10. Petzold A, Balcer LJ, Calabresi PA, et al. Retinal layer segmentation in multiple
systemati 2022, 2016 A, Balcer LJ, Calabresi PA, et al. Ref
systematic review and meta-analysis. *Lancet Neur*
doi:10.1016/s1474-4422(17)30278-8
11. Shi D, Lin Z, Wang W, et al. A Deep Learnin
Measurement in High Throughput Image An systematic review and meta-analysis. *Lancet Neurol*. Oct 2017;16(10):797-812.
doi:10.1016/s1474-4422(17)30278-8
11. Shi D, Lin Z, Wang W, et al. A Deep Learning System for Fully Automated Retinal Vessel
Measurement in Hig systematic review and meta-analysis. *Lancet Neurol.* Oct 2017;16(10):797-812.

doi:10.1016/s1474-4422(17)30278-8

11. Shi D, Lin Z, Wang W, et al. A Deep Learning System for Fully Automated

Measurement in High Throughput 11. Shi D, Lin Z, Wang W, et al. A D
Measurement in High Throughput Im:
doi:10.3389/fcvm.2022.823436
12. Ko F, Foster PJ, Strouthidis NG,
Thickness Measures in a Large Cohort
2017;124(1):105-117. doi:10.1016/j.o
13. Wareha

Measurement in High Throughput Image Analysis. Front Cardiovasc Med. 2022;9:823436.

doi:10.3389/fcvm.2022.823436

12. Ko F, Foster PJ, Strouthidis NG, et al. Associations with Retinal Pigment Epithelium

Thickness Measure Measurement in High Throughput Image Analysis. Front Cardiovase Med. 2022,9:823436.

12. Ko F, Foster PJ, Strouthidis NG, et al. Associations with Retinal Pigment Epithelium

Thickness Measures in a Large Cohort: Results f 12. Ko F, Foster PJ, Strouthid
Thickness Measures in a Large C
2017;124(1):105-117. doi:10.10
13. Wareham LK, Calkins DJ.
Front Cell Dev Biol. 2020;8:452.
14. Gardner TW, Davila JR. Tl
retinopathy. *Graefes Arch Clin E*,
3

Thickness Measures in a Large Cohort: Results from the UK Biobank. *Ophthalmology*. Jan
2017;124(1):105-117. doi:10.1016/j.ophtha.2016.07.033
13. Wareham LK, Calkins DJ. The Neurovascular Unit in Glaucomatous Neurodegenera Thickness Measures in a Large Conort: Results from the OK Diobank. Ophthalmology. Jan
2017;124(1):105-117. doi:10.1016/j.ophtha.2016.07.033
13. Wareham LK, Calkins DJ. The Neurovascular Unit in Glaucomatous Neurodegenera
F 2020; Mareham LK, Calkins DJ. The Neurovascular Unit is

Front Cell Dev Biol. 2020; 8:452. doi:10.3389/fcell.2020.00

14. Gardner TW, Davila JR. The neurovascular unit and

retinopathy. *Graefes Arch Clin Exp Ophthalmol*. Front Cell Dev Biol. 2020;8:452. doi:10.3389/fcell.2020.00452
14. Gardner TW, Davila JR. The neurovascular unit and the pathophysiologic basis of diabet
retinopathy. *Graefes Arch Clin Exp Ophthalmol.* Jan 2017;255(1):1-6. From Cen Dev Biol. 2020;0:452. doi:10.33857icell.2020.00452
14. Gardner TW, Davila JR. The neurovascular unit and the
retinopathy. *Graefes Arch Clin Exp Ophthalmol*. Jan 2017;255(1
3548-y
15. Girouard H, ladecola C. Neuro

14. The image of the neuron of the neuron of the neuron of the neuron of the same of the same of the same of the neuron of the neuron of the pathop of the neuron of the neuron of the pathop of the pathop of the pathop of t retinopathy. Graefes Arch Clin Exp Ophthalmol. Jan 2017,235(1).1-0. doi:10.1007,300417-010-3548-y
3548-y
15. Girouard H, ladecola C. Neurovascular coupling in the normal brain and in hypertensior
stroke, and Alzheimer dise 15.
stroke,
doi:10.: 15. Girola C. And Alzheimer disease. *J Appl Physiol (1985)*. Jan 2006;100(1):328-35.
doi:10.1152/japplphysiol.00966.2005
doi:10.1152/japplphysiol.00966.2005 stroke, and Alzheimer disease. J Appl Physiol (1985). Jan 2000, 100(1):328-35.
doi:10.1152/japplphysiol.00966.2005

 α

16. Czako C, Kovacs T, Ungvari Z, et al. Retinal biomarkers for Alzheimer's disease and
vascular cognitive impairment and dementia (VCID): implication for early diagnosis and
prognosis. *Geroscience*. Dec 2020;42(6):1499-1 prognosis. *Geroscience*. Dec 2020;42(6):1499-1525. doi:10.1007/s11357-020-00252-7
17. Normando EM, Davis BM, De Groef L, et al. The retina as an early biomarker of
neurodegeneration in a rotenone-induced model of Parkinso prognosis. Geroscience. Dec 2020;42(0):1499-1525. doi:10.1007;511357-020-00252-7
17. Normando EM, Davis BM, De Groef L, et al. The retina as an early biomarker of
neurodegeneration in a rotenone-induced model of Parkinson' neurodegeneration in a rotenone-induced model of Parkinson's disease: evidence for a
neuroprotective effect of rosiglitazone in the eye and brain. Acta Neuropathol Commur
2016;4(1):86. doi:10.1186/s40478-016-0346-z
18. Pou

neurodegeneration in a rotenone-induced model of Parkinson's disease: evidence for a
neuroprotective effect of rosiglitazone in the eye and brain. Acta Neuropathol Commun.
2016;4(1):86. doi:10.1186/s40478-016-0346-z
18. Po neuroprotective effect of rosignitazone in the eye and brain. Acta Neuropathol commun. Aug 18
2016;4(1):86. doi:10.1186/s40478-016-0346-z
18. Pournaras CJ, Rungger-Brändle E, Riva CE, Hardarson SH, Stefansson E. Regulation 18. Pournaras CJ, Rungger-Brändle E, Riva C
retinal blood flow in health and disease. *Prog R*
doi:10.1016/j.preteyeres.2008.02.002
19. ladecola C. The pathobiology of vascula
doi:10.1016/j.neuron.2013.10.008
20. Sudlow C

18. Pour 18. Pour 20. Pour 20
18. Pour 10.1016/j. preteyeres. 2008.02.002
19. Pour Ladecola C. The pathobiology of vascular dementia. Neuron. retinal blood flow in health and disease. Programmingle ries. May 2000,27(3):204-330.
doi:10.1016/j.preteyeres.2008.02.002
19. ladecola C. The pathobiology of vascular dementia. Neuron. Nov 20 2013;80(4)
doi:10.1016/j.neur 19. ladecola C. The pathobiology of
doi:10.1016/j.neuron.2013.10.008
20. Sudlow C, Gallacher J, Allen N, e
the causes of a wide range of complex
2015;12(3):e1001779. doi:10.1371/jou
21. Chua SYL, Thomas D, Allen N, e
visio 19. Iadecola C. The pathobiology of vascular dementia. *Neuron.* Nov 20 2013,80(4).844-66.

20. Sudlow C, Gallacher J, Allen N, et al. UK biobank: an open access resource for identifying

the causes of a wide range of comp 20. Sudlow C, Gallacher J, Allen

the causes of a wide range of comp

2015; 12(3): e 1001779. doi: 10.1371,

21. Chua SYL, Thomas D, Allen I

vision consortium of UK Biobank. B

2018-025077

22. Patel PJ, Foster PJ, Grossi

the causes of a wide range of complex diseases of middle and old age. *PLoS Med*. Mar
2015;12(3):e1001779. doi:10.1371/journal.pmed.1001779
21. Chua SYL, Thomas D, Allen N, et al. Cohort profile: design and methods in the

the causes of a wide range of complex diseases of initiate and old age. PLOS Med. Mar

2015;12(3):e1001779. doi:10.1371/journal.pmed.1001779

21. Chua SYL, Thomas D, Allen N, et al. Cohort profile: design and methods in th 21. Chua SYL, Thomas D, Allen N, et al. Cohort profile: d
vision consortium of UK Biobank. *BMJ Open*. Feb 21 2019;9
2018-025077
22. Patel PJ, Foster PJ, Grossi CM, et al. Spectral-Domain
Imaging in 67 321 Adults: Associat vision consortium of UK Biobank. *BMJ Open*. Feb 21 2019;9(2):e025077. doi:10.1136/bmjoper
2018-025077
22. Patel PJ, Foster PJ, Grossi CM, et al. Spectral-Domain Optical Coherence Tomography
Imaging in 67 321 Adults: Assoc 22. Patel F
Imaging in 67
Ophthalmolog
23. Keane
Study - Rapid
One. 2016;11
24. Zekava
and Genome-

vision consortium of OK Biobank. BMJ Open. Feb 21 2019,9(2):e025077. doi:10.1150/bmjopen
2018-025077
22. Patel PJ, Foster PJ, Grossi CM, et al. Spectral-Domain Optical Coherence Tomography
Imaging in 67 321 Adults: Associa Imaging in 67 321 Adults: Associations with Macular Thickness in the UK Biobank Study.

Ophthalmology. Apr 2016;123(4):829-40. doi:10.1016/j.ophtha.2015.11.009

23. Keane PA, Grossi CM, Foster PJ, et al. Optical Coherence Ophthalmology. Apr 2016;123(4):829-40. doi:10.1016/j.ophtha.2015.11.009

23. Keane PA, Grossi CM, Foster PJ, et al. Optical Coherence Tomography in the UK Bi

Study - Rapid Automated Analysis of Retinal Thickness for Large Ophthalmology. Apr 2016,123(4):829-40. doi:10.1016/j.ophtha.2015:11.009
23. Keane PA, Grossi CM, Foster PJ, et al. Optical Coherence Tomography i
Study - Rapid Automated Analysis of Retinal Thickness for Large Population-B

23. Study - Rapid Automated Analysis of Retinal Thickness for Large Population-Based Studies. PLos

24. 2016;11(10):e0164095. doi:10.1371/journal.pone.0164095

24. Zekavat SM, Raghu VK, Trinder M, et al. Deep Learning of t

Stady - Rapid Automated Analysis of Retinal Thickness for Large Topulation Based Studies. 7 203

One. 2016;11(10):e0164095. doi:10.1371/journal.pone.0164095

24. Zekavat SM, Raghu VK, Trinder M, et al. Deep Learning of the Che. 2010,11(10):e0104099. doi:10.1371/journal.pone.0104099

24. Zekavat SM, Raghu VK, Trinder M, et al. Deep Learning of

and Genome-Wide Analyses of the Microvasculature. *Circulation*.

doi:10.1161/circulationaha.121.05 and Genome-Wide Analyses of the Microvasculature. Chreatation. Jan 11 2022, 145(2):134-150.

doi:10.1161/circulationaha.121.057709

25. Zekavat SM, Jorshery SD, Rauscher FG, et al. Phenome- and genome-wide analyses of

ret 25. Zekavat SM, Jorshery SD, Rausch
retinal optical coherence tomography in
Sci Transl Med. Jan 24 2024;16(731):ead
26. Loeffler M, Engel C, Ahnert P, et a
population-based cohort study with 10, G
Health. Jul 22 2015;15:69

Health. Jul 22 2015; 15:691. doi:10.1186/s12889-015-1983-z 26. Zet al. and 2022; 2015; 15.691. doi:10.1186/s12889-015-1983-2
25. *Iransl Med.* Jan 24 2024; 16(731):eadg4517. doi:10.1126/scitranslmed.adg4517
26. Loeffler M, Engel C, Ahnert P, et al. The LIFE-Adult-Study: objectives Sci Transl Med. Jan 24 2024;16(731):eadg4517. doi:10.1126/scitranslmed.adg4517
26. Loeffler M, Engel C, Ahnert P, et al. The LIFE-Adult-Study: objectives and design of a
population-based cohort study with 10,000 deeply phe Sci Transl Med. Jan 24 2024;16(731):eadg4517. doi:10.1120/scitranslined.adg4517
26. Loeffler M, Engel C, Ahnert P, et al. The LIFE-Adult-Study: objectives and des
population-based cohort study with 10,000 deeply phenotyped

population-based cohort study with 10,000 deeply phenotyped adults in Germany. *BMC Pu*
 Health. Jul 22 2015;15:691. doi:10.1186/s12889-015-1983-z

27. Kur J, Newman EA, Chan-Ling T. Cellular and physiological mechanisms population-based cohort study with 10,000 deeply phenotyped adults in Germany. BMC Public
Health. Jul 22 2015; 15:691. doi:10.1186/s12889-015-1983-z
27. Kur J, Newman EA, Chan-Ling T. Cellular and physiological mechanisms Freakm. 3ar 22 2015, 15:691. doi:10.1186/s12689-015-1589-2

27. Kur J, Newman EA, Chan-Ling T. Cellular and physiolog

flow regulation in the retina and choroid in health and diseas

2012;31(5):377-406. doi:10.1016/j.pret

Flow regulation in the retina and choroid in health and disease. *Prog Retin Eye Res.* Sep
2012;31(5):377-406. doi:10.1016/j.preteyeres.2012.04.004
28. Ames A, 3rd. CNS energy metabolism as related to function. *Brain Res* Flow regulation in the retina and choroid in health and disease. Progrident Lye Res. Sep
2012;31(5):377-406. doi:10.1016/j.preteyeres.2012.04.004
28. Ames A, 3rd. CNS energy metabolism as related to function. *Brain Res Br* 28. Ames A, 3rd. CNS energy metabolism as related to full 2000; 34(1-2): 42-68. doi: 10.1016/s0165-0173(00)00038-2
29. ladecola C. The Neurovascular Unit Coming of Age: ℓ Coupling in Health and Disease. *Neuron*. Sep 2 20. Ames A, 3rd. CNS energy metabolism as related to function. Brain Res Brain Res Rev. Nov
2000;34(1-2):42-68. doi:10.1016/s0165-0173(00)00038-2
29. ladecola C. The Neurovascular Unit Coming of Age: A Journey through Neur 20. ladecola C. The Neurovascular Unit Coming of Age:
20. ladecola C. The Neurovascular Unit Coming of Age:
Coupling in Health and Disease. *Neuron*. Sep 27 2017;96(1
doi:10.1016/j.neuron.2017.07.030
30. Attwell D, ladecol

Coupling in Health and Disease. *Neuron*. Sep 27 2017;96(1):17-42.
doi:10.1016/j.neuron.2017.07.030
30. Attwell D, ladecola C. The neural basis of functional brain imaging signals. *Trends*
Neurosci. Dec 2002;25(12):621-5. Couping in Health and Disease. Neuron. Sep 27 2017,50(1):17-42.
doi:10.1016/j.neuron.2017.07.030
30. Attwell D, ladecola C. The neural basis of functional brain in
Neurosci. Dec 2002;25(12):621-5. doi:10.1016/s0166-2236(0 doi:10.1016/j.neuron.2017.07.030 So. Attwell D, Iadecola C. The neural basis of functional brain imaging signals. Trends
Neurosci. Dec 2002;25(12):621-5. doi:10.1016/s0166-2236(02)02264-6 N eurosci. Dec 2002;25(12):621-5. doi:10.1010/s0166-2236(02)02264-6

31.

neuronal control of brain blood flow. *Nature*. Nov 11 2010;468(7321):232-43.
doi:10.1038/nature09613
32. Broe R, Rasmussen ML, Frydkjaer-Olsen U, et al. Retinal vessel calibers predict long-
microvascular complications in neuronal control of brain blood flow. Nature. Nov 11 2010,408(7321):232-43.

doi:10.1038/nature09613

32. Broe R, Rasmussen ML, Frydkjaer-Olsen U, et al. Retinal vessel calibers

microvascular complications in type 1 diabe 32. Broe R, Rasmussen
microvascular complicatiol
(DCPD1987). *Diabetes*. Nov
33. Hughes AD, Wong
normal subjects. *Microcirc*
34. Yu J, Gu R, Zong Y, e
Healthy Subjects: An Optic
Sci. Jul 1 2016:57(9):Oct20

microvascular complications in type 1 diabetes: the Danish Cohort of Pediatric Diabetes 1987
(DCPD1987). *Diabetes*. Nov 2014;63(11):3906-14. doi:10.2337/db14-0227
33. Hughes AD, Wong TY, Witt N, et al. Determinants of ret (DCPD1987). *Diabetes*. Nov 2014;63(11):3906-14. doi:10.2337/db14-0227

33. Hughes AD, Wong TY, Witt N, et al. Determinants of retinal microvascular architecture

normal subjects. *Microcirculation*. Feb 2009;16(2):159-66. (DCPD1987). Diabetes. Nov 2014,03(11):3900-14. doi:10.233770014-0227

33. Hughes AD, Wong TY, Witt N, et al. Determinants of retinal microva

normal subjects. *Microcirculation*. Feb 2009;16(2):159-66. doi:10.1080/10

34.

normal subjects. *Microcirculation*. Feb 2009;16(2):159-66. doi:10.1080/10739680802353868
34. Yu J, Gu R, Zong Y, et al. Relationship Between Retinal Perfusion and Retinal Thickness in
Healthy Subjects: An Optical Coherenc normal subjects. Microcirculation. Feb 2009,10(2):139-00: uol.10.1000/107396060023339606
34. Yu J, Gu R, Zong Y, et al. Relationship Between Retinal Perfusion and Retinal Thickness
Healthy Subjects: An Optical Coherence To Healthy Subjects: An Optical Coherence Tomography Angiography Study. *Invest Ophthalmol Vis*

Sci. Jul 1 2016;57(9):Oct204-10. doi:10.1167/iovs.15-18630

35. Wu Z, Bogunović H, Asgari R, Schmidt-Erfurth U, Guymer RH. Predi

Healthy Subjects: An Optical Coherence Tomography Anglography Study. *Invest Ophthalmol Vis*
Sci. Jul 1 2016;57(9):Oct204-10. doi:10.1167/iovs.15-18630
35. Wu Z, Bogunović H, Asgari R, Schmidt-Erfurth U, Guymer RH. Predict Sci. 3di 1 2016;37(9):Oct204-10: doi:10:1107):008:15-18630
35. Mu Z, Bogunović H, Asgari R, Schmidt-Erfurth U, Guy
Age-Related Macular Degeneration Using OCT and Fundus P
2021;5(2):118-125. doi:10.1016/j.oret.2020.06.026
3 Age-Related Macular Degeneration Using OCT and Fundus Photography. Ophthalmol Retina. For 2021;5(2):118-125. doi:10.1016/j.oret.2020.06.026
36. Cabrera DeBuc D, Somfai GM, Arthur E, Kostic M, Oropesa S, Mendoza Santiesteba Age-Related Macular Degeneration Osing OCT and Fundus Photography. Ophthalmol Retina. Feb
2021;5(2):118-125. doi:10.1016/j.oret.2020.06.026
36. Cabrera DeBuc D, Somfai GM, Arthur E, Kostic M, Oropesa S, Mendoza Santiesteba 2020)
2021; Cabrera DeBuc D, Somfai GM, Arthur E, Kosti
Investigating Multimodal Diagnostic Eye Biomarkers
Vascular and Neurogenic Changes in the Retina. *Frol*
doi:10.3389/fphys.2018.01721
37. Selvam S, Kumar T, Fruttiger Investigating Multimodal Diagnostic Eye Biomarkers of Cognitive Impairment by Measuring
Vascular and Neurogenic Changes in the Retina. *Front Physiol*. 2018;9:1721.
doi:10.3389/fphys.2018.01721
37. Selvam S, Kumar T, Frutt Vascular and Neurogenic Changes in the Retina. *Front Physiol*. 2018;9:1721.
doi:10.3389/fphys.2018.01721
37. Selvam S, Kumar T, Fruttiger M. Retinal vasculature development in health and disea
Prog Retin Eye Res. Mar 2018

Vascular and Neurogenic Changes in the Retina. Front Physiol. 2010,9.1721.
doi:10.3389/fphys.2018.01721
37. Selvam S, Kumar T, Fruttiger M. Retinal vasculature development in P
Prog Retin Eye Res. Mar 2018;63:1-19. doi:10. 37. Selvam S, Kumar T, Frutt
Prog Retin Eye Res. Mar 2018;6.
1998. Prog Retin Eye Res. Mar $2018,63.1$ -19. doi:10.1016/j.preteyeres.2017.11.001

Selva $\frac{1}{2}$ of $\frac{1}{2}$ and distribution of $\frac{1}{2}$ and distribution of $\frac{1}{2}$ and distribution of $\frac{1}{2}$ and distribution of $\frac{1$ Prog Retin Eye Res. Mar 2018;63:1-19. doi:10.1016/j.preteyeres.2017.11.001

Figure 1. Two imaging modalities of retina structures

and by Sally Kim. (Structure of the Retina.: Biorender; 2020. https://app.biorender.com/biorender-
templates/figures/all/t-5fdba689c542b300a3aeb236-structure-of-the-retina). Abbreviations: RNFL, retinal nerve
fiber layer; fiber layer; GC-IPL, ganglion cell layer-inner plexiform layer; INL, inner nuclear layer; ELM, external limiting
membrane; ISOS, inner segment/outer segment; RPE, retinal pigment epithelium.
membrane; ISOS, inner segment/o filmer; ISOS, inner segment/outer segment; RPE, retinal pigment epithelium.

Thermore, ISOS, inner segment/outer segment; RPE, retinal pigment epithelium.

Thermore, ISOS, inner segment/outer segment; RPE, retinal pigment membrane; ISOS, inner segment/outer segment; RPE, retinal pigment epithelium.

 $\begin{split} \text{selection process are presented in Supplementary Table 1.} \end{split}$ selection process are presented in Supplementary Table 1.

Figure 3 Correlations between retinal vascular features and thickness of retinal layers

Notes: Circle size represents statistical significance (-log10(p) value), mind its correlations with p<0.05 were
direction of correlation (purple for positive, green for negative). Only those correlations with p<0.05 were direction of correlation (purple for positive, green for negative). Only those correlations with p<0.05 were

presented with a circle. Above in the state with a circle with a circle. Above in the state of the state of the
interview in the calculated correlating membrane; ISOS, inner segment/outer segment; RPE, retinal
pigment epit pigment epithelium. The calculated correlation coefficients and the corresponding p-values can be found in Supplementary Table 3. proplementary Table 3.
Supplementary Table 3. Supplementary Table 3.

Figure 4. Canonical Correlation Analysis (CCA) of Retinal Vascular Measurements and Retinal Layer Thickness

Notes: (A) Variance Explained: The bar chart (blue) shows the proportion of variance explained by each canonical dimension, while the line graph (red) displays the cumulative variance explained. This illustrates the relative
importance of each dimension in capturing the relationship between retinal vascular and OCT parameters. The fi importance of each dimension in capturing the relationship between retinal vascular and OCT parameters. The four dimensions explained over 95% of the variance. (B) First Canonical Dimension Correlation: This scatter prequi if our dimensions explained over 95% of the variance. (B) First Canonical Dimension Correlation: This scatter plot
depicts the correlation between the first canonical variates for retinal vascular measurements (y-axis) and depicts the correlation between the first canonical variates for retinal vascular measurements (y-axis) and retinal
alayer thickness (x-axis). The red ellipse outlines the 95% confidence region of the data distribution. Th layer thickness (x-axis). The red ellipse outlines the 95% confidence region of the data distribution. The blue
dashed line shows the linear regression fit, while the 95% confidence region of the data distribution. The blu dashed line shows the linear regression fit, while the solid red curve represents the locally estimated scatter
smoothing (LOESS) fit, providing a non-linear visualization of the relationship. The canonical correlation (p) smoothing (LOESS) fit, providing a non-linear visualization of the relationship. The canonical correlation (p) of
0.265 indicates the strength of the association for this dimension. (C) Variable Importance Across Dimensio smoothing (LOES) indicates the strength of the association for this dimension. (C) Variable Importance Across Dimensions:
Sankey diagram illustrates how the importance of different variables (both retinal vascular measurem Sankey diagram illustrates how the importance of different variables (both retinal vascular measurements and OCT

Sankey diagram illustrates how the importance of different variables (both retinal vascular measurements and Sankey diagram illustrates how the importance of different variables (both retinal vascular measurements and OCT

parameters) contribution to each dimension, allowing for the visualization of which variable's contribution to each dimension, allowing for the visualization of which variables are most influential in each canonical relati of a variable's contribution to each dimension, allowing for the visualization of which variables are most influential
in each canonical relationship. Supplementary Figures 1 and 2 show the correlations of the first four d and the loadings of variables.

Supplementary Figures 1 and 2 show the correlations of the first four dimensions of the first four dime and the loadings of variables.

Table 1. Baseline characteristics of participants

Notes: SD: standard deviation; N, number; CVD, Cardiovascular Disease

GCC FD Wald ratio 1 0.25 (0.18, 0.32) <0.001

GCC FD Wald ratio 1 0.32 (0.19, 0.46) <0.001

IPL FD Wald ratio 1 0.44 (0.32, 0.56) <0.001

OPL FD Wald ratio 1 0.48 (0.35, 0.61) <0.001

OPL FD Wald ratio 1 0.48 (0.35, 0.61) GCC FD Wald ratio 1 0.32 (0.19, 0.46) <0.001

IPL FD Wald ratio 1 0.44 (0.32, 0.56) <0.001

OPL FD Wald ratio 1 0.44 (0.32, 0.56) <0.001

OPL FD Wald ratio 1 0.48 (0.35, 0.61) <0.001

Notes: SNP, single nucleotide polymorp FD Wald ratio 1 0.44 (0.32, 0.56) <0.001

OPL FD Wald ratio 1 0.48 (0.35, 0.61) <0.001

Notes: SNP, single nucleotide polymorphism; NSNPs, number of SNPs; VD, Vessel Density; FD, Fract

Dimension; OPL, outer plexiform laye The model of the exposure variable, the exposure variable.

In the exponse of SNPs; VD, Vessel Density; FD, Fract

Dimension; OPL, outer plexiform layer; GCC, ganglion cell complex; ISOS, inner segment/out

segment; PS pho Notes: SNP, single nucleotide polymorphism; NSNPs, number of SNPs; VD, Vessel Density; FD, Fract
Dimension; OPL, outer plexiform layer; GCC, ganglion cell complex; ISOS, inner segment/out
segment; PS photoreceptor segments Dimension; OPL, outer plexiform layer; GCC, ganglion cell complex; ISOS, inner segment/outer
segment; PS photoreceptor segments; GCL, ganglion cell layer; INL, inner nuclear layer; GCC included
RNFL, GCL, and inner plexifo segment; PS photoreceptor segments; GCL, ganglion cell layer; INL, inner nuclear layer; GCC included
RNFL, GCL, and inner plexiform layer. ISOS+PS included external limiting membrane-ISOS + ISOS-
retinal pigment epithelium sent RINFL, GCL, and inner plexiform layer. ISOS+PS included external limiting membrane-ISOS + ISOS-
RINFL, GCL, and inner plexiform layer. ISOS+PS included external limiting membrane-ISOS + ISOS-
retinal pigment epitheliu retination of exposure and outcome, the Wald ratio was used, while if more than one was identified,
then IVW was used. The standardized effect size was calculated to represent the change in the
outcome variable (in SD unit Finance and outcome, then IVW was used. The standardized effect size was calculated to represent the change in the outcome variable (in SD units) for a one-unit change in the exposure variable. then IVW was used. The standardized effect size was used. The standardized to represent the change in the chan outcome variable (in SD units) for a one-unit change in the exposure variable.