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Abstract 

Background: Current methods of measuring disease progression of neurodegenerative 

disorders, including Parkinson’s disease (PD), largely rely on composite clinical rating 

scales, which are prone to subjective biases and lack the sensitivity to detect 

progression signals in a timely manner. Digital health technology (DHT)-derived 

measures offer potential solutions to provide objective, precise, and sensitive measures 

that address these limitations. However, the complexity of DHT datasets and the 

potential to derive numerous digital features that were not previously possible to 

measure pose challenges, including in selection of the most important digital features 

and construction of composite digital biomarkers.  
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Methods: We present a comprehensive machine learning based framework to 

construct composite digital biomarkers for progression tracking. This framework 

consists of a marginal (univariate) digital feature screening, a univariate association 

test, digital feature selection, and subsequent construction of composite (multivariate) 

digital disease progression biomarkers using Penalized Generalized Estimating 

Equations (PGEE). As an illustrative example, we applied this framework to data 

collected from a PD longitudinal observational study. The data consisted of OpalTM 

sensor-based movement measurements and MDS-UPDRS Part III scores collected at 

3-month intervals for 2 years in 30 PD and 10 healthy control participants. 

Results: In our illustrative example, 77 out of 235 digital features from the study passed 

univariate feature screening, with 11 features selected by PGEE to include in 

construction of the composite digital measure. Compared to MDS-UPDRS Part III, the 

composite digital measure exhibited a smoother and more significant increasing trend 

over time in PD groups with less variability, indicating improved ability for tracking 

disease progression. This digital composite measure also demonstrated the ability to 

classify between de novo PD and healthy control groups. 

Conclusion: Measures from DHTs show promise in tracking neurodegenerative 

disease progression with increased sensitivity and reduced variability as compared to 

traditional clinical scores. Herein, we present a novel framework and methodology to 

construct composite digital measure of disease progression from high-dimensional DHT 

datasets, which may have utility in accelerating the development and application of 

composite digital biomarkers in drug development.   
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1 Introduction 

Neurodegenerative diseases, including Parkinson’s Disease (PD), are an area of vast 

unmet medical need. Drug development efforts in this area have increasingly focused 

on the search for disease-modifying therapies that slow down the underlying disease 

progression mechanisms. However, a lack of validated measures that allow for disease 

progression to be monitored objectively, relatively rapidly, and with high precision 

makes it challenging to effectively demonstrate therapeutic efficacy and hinders drug 

development efforts. PD clinical trials generally use the Movement Disorder Society - 

Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) to track disease progression 

longitudinally. However, MDS-UPDRS is subjective in nature, relies on patient and 

caregiver-reported symptoms and clinician’s qualitative ratings [1], is slow to change, 

and has low measurement precision, resulting in large and lengthy clinical trials to test 

efficacy for potential disease modifying therapies [2]. 

Recent advances in digital health technologies (DHTs) offer unprecedented 

opportunities to collect more objective, precise, and sensitive measures, both in the 

clinic and remotely, that were out of reach in the past. Such measures could provide 

new insights into neurogenerative disease progression, including for Parkinson’s 

disease. There are many studies that have investigated using measures from sensor-

based digital health technologies in neurodegenerative diseases [3 – 11]. These studies 

have collectively demonstrated that many neurodegenerative disease symptoms can be 

quantified by DHTs. Moreover, multiple longitudinal observational studies have shown 

that digital measures can pick up changes over time that are indicative of disease 
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progression [12 – 18]. It is further thought that the objective measures enabled by DHTs 

could offer improved sensitivity and reduced variability [12, 19], which could translate to 

smaller and shorter clinical trial designs [20] and, in turn, potential for accelerated drug 

development. Despite promising results, the longitudinal studies published to date have 

used different DHTs and analysis methodologies to identify the digital features of 

importance and to derive respective digital clinical measures, making it difficult to 

compare across studies or create consensus among the research community. Open 

discussions on the methodology of digital clinical measure development and evaluation 

are critically needed to move the field forward. 

It has been increasingly recognized that composite digital measures, rather than 

reliance on individual digital features, are needed for more effective measurement of 

disease progression as compared to traditional clinical composite scores. Adams et al. 

[21] showed that no individual digital feature (from gait, tremor, turns, speech, and 

cognition) outperformed MDS-UPDRS Part III (a composite clinical score) in terms of 

the standardized change from baseline after 12 months in a PD observational study 

(WATCH-PD). Furthermore, Czeck et. al. [28] demonstrated individual sensor-based 

digital features of upper and lower extremity bradykinesia often lacked strong sensitivity 

to longitudinal changes, whereas digital composite scores showed significant 

differences over 12 months in WATCH-PD.   

There have been several examples where composite digital measures were developed 

for disease classification and/or tracking symptom progression [22 - 30]; however, the 

approach taken has varied, and there have been limited discussions on the 

methodologies to effectively select informative digital features and construct the most 
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performant composite measures. For example, Perumal and Sankar [22] developed a 

Linear Discriminant Analysis (LDA) classifier using multiple gait features collected from 

wearable sensors to distinguish between PD patients and healthy control (HC) subjects. 

Czech et al. [28] constructed composite digital scores using pre-defined combinations of 

features from single tasks (pronation-supination and toe-tapping) and used them to 

measure longitudinal progression of bradykinesia after 1 year. Sotirakis et al. [30] 

developed a Random Forest model to estimate the MDS-UPDRS III values using gait 

and sway features and used the model to detect progression of motor symptoms 

longitudinally. These efforts vary in terms of the measure construction (pre-defined vs. 

supervised ML, choice of models), the clinical label selection (MDS-UPDRS III total 

score or single item), the selection of digital tasks (single task e.g., toe-tapping or a 

combination of tasks), as well as the selection of input features (e.g., whether features 

are pre-screened). Overall, the field has not adopted consistent and systematic 

methods and/or analysis frameworks. Therefore, there is an urgent need to develop 

methodologies and analysis pipelines for the construction of composite digital measures 

for disease progression tracking, tailored for high-dimensional, longitudinal data with 

digital features collected from sensor technologies.  

The types of data generated by DHTs are often longitudinal and high dimensional, 

which differs from traditional clinical measures, calling for novel analytical strategies to 

handle such data for the construction of composite digital measures. Unlike traditional 

clinical measures that collect a defined set of measures at each time point, DHTs 

leverage various sensors to generate large amounts of time-series data (e.g., 

acceleration, screen touch, audio/video, keyboard press), either collected from defined 
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active task-based assessments or from passive monitoring. Such data are often not 

readily analysable statistically and need to be aggregated and transformed into digital 

features first. For example, for measurement of physical activity, continuous 

accelerometer signals are often converted to epoch level activity counts and then 

aggregated over time into features such as daily total activity count, total steps, non-

sedentary time, etc., for further statistical analysis. There can be large numbers of 

features derived from the high-frequency sensor signals; such features may have 

various data types (i.e., categorical, continuous, duration, etc.) and clinimetric 

properties, many of which may not yet have been fully explored as it was not previously 

possible to measure them without use of DHTs. These features could have intrinsic 

skewness in distribution, floor/ceiling effects, as well as unknown redundancies and 

covariances. In addition, the high frequency nature of DHT data collection and potential 

for remote data acquisition can also lend itself to higher levels of data missingness. 

Furthermore, not all digital features that can be generated from sensor data may have 

clinical significance or be valuable for creating composite digital measures. These 

attributes of DHT data make it a unique challenge in the development of composite 

digital measures to track longitudinal disease progression.  

Machine learning (ML) methods offer a valuable tool for selecting the most informative 

digital features to reflect disease progression and to construct clinically meaningful 

composite digital measures. ML-based techniques can often improve prediction 

performance in analysing digital data in neurodegenerative diseases; however, existing 

ML methodologies for longitudinal data analysis are also challenged by the high 

dimensionality of DHT data. For example, although the generalized estimating 
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equations (GEE) method [31] incorporating different patterns of working correlation 

matrix across multiple timepoints has been widely used in longitudinal data analysis, the 

direct use of classical unpenalized GEE in high-dimensional longitudinal data analysis 

may lead to misleading results [32]. To address this, an ML-based penalized GEE 

(PGEE) method [32] could be used to improve upon the GEE method in handling DHT 

data. PGEE performs simultaneous coefficient estimation and variable selection for 

longitudinal data analysis with high-dimensional covariates by including a penalty term 

in the GEE model, which can be better-suited to handle high-dimensional feature sets. 

In this paper, we propose a principled and comprehensive methodology framework for 

the development of novel composite digital biomarkers, derived from DHT data and 

anchored to the MDS-UPDRS score, to measure neurodegenerative disease 

progression. This framework includes data processing, univariate digital feature 

screening, multivariate (composite) digital biomarker construction (using PGEE 

methods), and composite biomarker performance evaluation.  

We further demonstrate the utility of this framework by applying it to a sample dataset 

containing high-dimensional, longitudinal movement data collected by a body-worn 

accelerometer system from a PD longitudinal observation study. The current analytical 

challenges of high-dimensional and longitudinal digital data and path forward for the 

application of composite digital biomarkers in measurement of neurodegenerative 

disease progression are also discussed. 
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2 Materials and Methods 

2.1 Study Overview 

To illustrate our proposed methodology to construct composite digital measures for 

tracking longitudinal disease progression, we applied the framework to data from 30 PD 

patients (10 de novo PD patients, 10 mild-to-moderate PD patients on levodopa, and 10 

advanced PD patients) and 10 healthy control subjects from a PD longitudinal 

observational study conducted at John Radcliffe Hospital in Oxford, UK [11, 29, 33]. The 

participants visited the clinic once every 3 months for 2 years. At each visit, they wore 

six synchronized inertial measurement units (IMUs) (“Opal” sensors, APDM Wearable 

Technologies, a Clario Company) across their body and performed two-minute walk, 

postural sway, and timed up-and-go (TUG) tasks. The Mobility LabTM software (APDM 

Wearable Technologies, a Clario Company) was then used to process these raw sensor 

signals, and generate epoch-level digital features at each instance of a time period or 

physical movement (e.g., per minute, per step, per turn, or per sit-to-stand event). The 

MDS-UPDRS Part III assessments were also conducted at these clinic visits. The MDS-

UPDRS Part III score and subscales (including Bradykinesia, Postural and Gait, 

Rigidity, and Tremor, defined in Supplemental Table S1) were calculated. Demographic 

data including age and sex of the participants were also collected at the beginning of 

the study. 

2.2 Statistical Analysis 

The workflow of our proposed comprehensive machine learning based framework is 

illustrated in Figure 1, which comprises five main steps: 1) data collection and 
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processing; 2) univariate feature screening; 3) univariate association testing; 4) 

multivariate analysis (using PGEE) to construct a composite digital measure for 

longitudinal disease progression; 5) performance evaluation. The specifics of each step 

are described below. 

2.2.1 Data Processing and Quality Control 

In this first step, data aggregation and pre-processing are performed to convert high-

frequency, epoch-level data into a set of aggregated digital features for each task. The 

movement data collected from DHTs often include epoch-level features (e.g., per 

second, per minute, or per walking step) that are collected repeatedly during an active 

task (e.g., two-minute walk). This step simplifies such data and produces a clean, high-

dimensional feature set for each participant at each clinical time point, in order to 

facilitate subsequent longitudinal analyses. 

In our illustrative PD example, summary statistics (mean, median, standard deviation, 

and mean absolution deviation) were calculated to represent the repeated 

measurements across the entire task for features that had repeated measurements 

during the task. For example, during the two-minute walk task, step lengths of every 

step that the participant took were recorded; these were aggregated into task-level 

features such as mean step length during the two-minute walk task period. After that, 

we had 256 digital features generated in total. Then, distributions of all features were 

examined, and the non-informative features that had few distinct values, included a 

large amount of data missingness, or contained extreme values were removed. For the 

remaining features, missing data imputation was performed using the mean of available 

data in each feature. Finally, additional feature quality control steps were implemented, 
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which included removing highly correlated features, log-transforming skewed features, 

and removing outliers. 141 unique digital features were left for univariate progression 

screening in the next step. 

2.2.2 Univariate Progression Screening 

In the second step of our framework, univariate progression screening is recommended 

to identify whether each digital feature detected disease progression during the study 

duration.  In this step, a linear mixed effects model (LMM) is used to screen the 

univariate features against a set of pre-determined criteria. Each digital feature is used 

as the response variable for the screening separately. Independent variables are added 

to the model as fixed effects, including covariates to be adjusted, group membership, 

visit, group-by-visit interaction, and covariate-by-visit interactions. Random intercept and 

slope are added to the model as random effects. 

In our illustrative PD example, we applied relatively relaxed screening criteria to select 

digital features for downstream analysis. We considered a digital feature as a 

“candidate” if (1) its longitudinal trend was flat in the HC group (i.e., the LMM slope p-

value of HC group was larger than 0.05) and (2) it demonstrated a progression trend 

with time in PD groups (i.e., the LMM group-by-visit interaction p-value was < 0.1 or the 

p-value of the differential slope between de novo/mild-to-moderate/advanced PD and 

HC was < 0.1). 

2.2.3 Univariate Association Test 

To gain additional insights on the univariate associations between the standard clinical 

measure (i.e., MDS-UPRDS Part III) and the candidate digital features that passed the 
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univariate progression screening, our framework employs a univariate association test 

step.  In this step, a linear mixed effects model is employed, with the clinical measure as 

the dependent variable and each individual digital feature as the independent variable. 

Covariates to be adjusted are also included in the model. Random intercepts for each 

subject are allowed in the model and p-values are calculated to assess the significance 

of the association between the clinical measure and digital features. 

An optional procedure is to further filter the candidate digital features based on their 

associations to the standard reference measure (i.e., MDS-UPDRS Part III and its 

subscales in our example) and exclude non-significant features. In our example, we 

chose to implement relatively relaxed screening criteria to retain more features for the 

subsequent feature selection, and therefore, we did not exclude features that did not 

show association with MDS-UPDRS Part III in our downstream analysis. 

2.2.4 Multivariate Prediction Model 

In the final step of our framework, a multivariate prediction model is developed, which 

selects and combines a set of digital features that pass the univariate progression 

screening into a composite digital biomarker of disease progression. As MDS-UPDRS 

Part III is the current clinical standard for monitoring PD motor function progression in 

PD clinical trials, this was used as the training endpoint in our illustrative example. As 

several studies have explored digital measures for disease detection and staging, we 

proceeded to also include classification between de novo PD and HC as a secondary 

goal for our composite measure.  Importantly, one could use our proposed framework to 

optimize the measure for disease progression tracking, disease classification, or both, 

based on the screening criteria and training endpoints used. 
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To model the high-dimensional longitudinal data, our framework includes a ML-based 

Penalized Generalized Estimating Equations (PGEE) method [32], which performs 

simultaneous coefficient estimation and variable selection. Compared to the traditional 

GEE method, PGEE introduces a penalty term to the estimating function of GEE (details 

of PGEE is provided in Supplementary Method S1). 

To determine the optimal number of digital features (P) to be included into the final 

multivariate prediction model, a cross-validation (CV) strategy is implemented into the 

framework to avoid overfitting [34]. Specifically, all digital features are first ranked by 

their PGEE estimates from the training set, then a series of PGEE models with different 

numbers of top features are built and evaluated in the testing set. The optimal number 

of features is then determined to be the number of features from the model with the 

smallest Root Mean Squared Error (RMSE). The approach is further described in 

Supplementary Method S2. 

All candidate digital features that pass the univariate screening are ranked by their 

PGEE estimates from the largest to the smallest using the whole dataset. The top P 

digital features are used to construct the composite digital measure. Specifically, a GEE 

model is fitted with the top P digital features and covariates as independent variables. 

The dependent variable is a continuous outcome for the primary goal of tracking 

disease progression, and a binary outcome for the secondary goal of classifying 

disease status. 
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3 Results 

3.1 Patient Demographics and Baseline Characteristics 

The baseline demographic characteristics for the participants included in our illustrative 

analysis are shown in Table 1 and Supplementary Figure S1. The mean ages of four 

groups (de novo PD, mild-to-moderate PD, advanced PD, and HC) were 66.2, 61.6, 

71.2, and 65.6 years, respectively. The ratios of male-to-female subjects in the four 

groups were 5:5, 9:1, 5:5, and 3:7, respectively. 

To determine if age and sex needed be considered covariates to be adjusted for in our 

models, we calculated the age-by-visit and group-by-visit interaction p-values in linear 

mixed effects models with MDS-UPDRS Part III as the response. The results, 

summarized in Supplementary Table S2, suggested that age would affect the slope of 

MDS-UPDRS Part III progression (with p-value = 0.04) while sex would not (with p-

value = 0.19). We therefore considered only age as a covariate to be adjusted in our 

data analysis models. 

3.2 Univariate Progression Screening Results 

In our illustrative example, our univariate progression screening criteria were such that a 

digital feature would “pass” if the LMM model for that digital feature showed (1) no 

progression in the control group and (2) a progression in at least one of the three PD 

groups. 77 digital features out of 141 screened passed these criteria, including 15 

features from postural sway task, 5 features from timed up-and-go (TUG) task, and 57 

features from two-minute walk task. Among these, Walk GLLGS (Gait – Lower Limb – 

Gait Speed) had the smallest group-by-visit interaction p-value (6.0e-07) and the 
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smallest de novo PD vs. HC progression slope p-value (4.7e-04); Walk GLLDS (Gait – 

Lower Limb – Double Support) had the smallest mild-to-moderate PD vs. HC 

progression slope p-value (0.01); and Walk GLLSD (Gait – Lower Limb – Step Duration) 

had the smallest advanced PD vs. HC progression p-value (1.2e-06). P-values of TUG 

TPV (Timed Up and Go – Turn Peak Velocity) for group-by-visit interaction, de novo PD 

vs. HC progression slope, mild-to-moderate PD vs. HC progression slope, and 

advanced PD vs. HC progression slope were 0.008, 0.001, 0.147, and 0.013, 

respectively. A summary heatmap of all 77 digital features that met the screening 

criteria is displayed in Figure 2, and the heatmap of all the digital features that were 

screened is displayed Supplementary Table S3. 

3.3 Univariate Association Analysis Results 

Figure 3 shows the univariate association testing results between the 77 digital features 

that passed the univariate screening in our illustrative example and MDS-UPDRS Part 

III scores (and its subscales). 37 of these 77 digital features (48.1%) showed significant 

associations (i.e., p-value < 0.05) with MDS-UPDRS Part III scores (including 32 

features from the Walk task, 3 features from the TUG task, and 2 features from the 

Sway task). The associations of digital features with the MDS-UPDRS Part III scores 

were generally consistent with their associations with the Bradykinesia (BK) subscale 

within MDS-UPDRS Part III. Specifically, 40 of the 77 digital features were associated 

with the BK subscale (including 31 features from the Walk task, 3 features from the 

TUG task, and 6 features from the Sway task). In addition, 59 of the 77 digital features 

were associated with the Postural Instability and Gait (PIGD) subscale (including 54 

features from the Walk task, 4 features from the TUG task, and 1 feature from the Sway 
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task), while only 3 of the 77 features (TUG TPV, TUG TA, and Walk GULMV) were 

associated with the Tremor Dominant (TD) subscale. 

Turn Peak Velocity (TPV), obtained from the Timed Up and Go (TUG) test [35], 

demonstrated the most significant association with MDS-UPDRS Part III. TUG TPV is 

defined as the maximum achieved angular velocity of trunk rotation in the y-axis during 

180-degree turns (deg/sec) and has been found to be related to PD progression in 

multiple studies [12, 36 – 38]. The progression characteristics of TUG TPV are shown in 

Figure 4, where the group-wise and subject-wise lines were obtained from the linear 

mixed effect model and the points represented the observed data. In terms of TUG 

TPV, the mild-to-moderate, on therapy PD and HC groups were stable, while the de 

novo and advanced PD groups showed progression. 

In general, the univariate association observations were consistent with the progression 

patterns seen in the MDS-UPDRS Part III and its subscales, which is shown in 

Supplementary Figure S2. Specifically, compared to the HC group, the BK subscale 

progressed across all PD groups (at α = 0.1 level). The PIGD subscale progressed in de 

novo and advanced PD groups while staying stable in the mild-to-moderate, on-therapy 

PD group. This pattern was similar to most of the digital features included in the 

analysis, as indicated in Figure 2. In contrast, the TD subscale progressed in the mild-

to-moderate, on-therapy PD group, while remaining unchanged in de novo and 

advanced PD groups.  
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3.4 Multivariate Feature Selection and Prediction Results 

3.4.1 Feature Selection 

We applied multivariate feature selection to first determine the optimal number of 

features to be selected for the digital composite measure and subsequently select the 

digital features for inclusion into the composite score and prediction model in our 

illustrative example analysis. Supplementary Figure S3 indicated that for the primary 

analysis goal of developing a composite digital measure for disease progression 

tracking, using the top 9 features (ranked by their PGEE estimates) overall yielded the 

smallest RMSE; and for the secondary analysis goal of classifying disease status, using 

the top 3 features resulted in the largest AUC via internal cross-validation. 

We then ranked all pre-screened features (i.e., digital features) according to their PGEE 

estimates. Nine digital features (TUG TD, TUG TPV, TUG STSD, Walk TA, Walk GLLC, 

Walk GLLSW, Walk GLLLSM, Walk APAMAA, and Sway PSAN95ESA) were selected 

for the primary analysis goal; and three digital features (TUG TPV, Walk GLLTOA, and 

Walk GULMV) were selected for the secondary analysis goal. Table 2 lists the 

description of these selected features. The selected digital features for both analysis 

goals were further merged into a digital composite score for the prediction of MDS-

UPDRS Part III in the next step. As one of the features (TUG TPV) was selected for 

both the primary and secondary analysis goals, 11 unique digital features were included 

in the digital composite score. 
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3.4.2 Selected Features for Tracking MDS-UPDRS Part III 

The 11 selected unique digital features were merged for the prediction of MDS-UPDRS 

Part III by fitting a GEE model. The performance was evaluated using the 10-fold CV 

procedure in PD and HC groups, respectively. As shown in Figure 3, the composite 

digital measure based on the selected digital features showed a pattern of no change 

vs. time in the HC group as expected (with RMSE in HC group = 2.8). The composite 

digital measure had a smoother increasing trend in the overall PD group, as well as 

each PD subgroup (with RMSE in PD group = 12.7).  

We further compared performances among MDS-UPDRS Part III, the composite digital 

measure, and each of the univariate digital features included in the composite digital 

measure (e.g., TUG TPV) quantitatively in terms of both progression and variability. 

Detailed results are summarized in Table 3. Overall, the group-by-visit interaction p-

value of composite digital measure was close to that of MDS-UPDRS Part III (7.65e-03 

vs. 6.22e-03). The increasing trend of the composite digital measure was much more 

significant in de novo and advanced PD groups, but didn’t show significant progression 

in the mild-to-moderate, on-therapy PD group, which was consistent with what is 

observed in Figure 3. Recall that none of the 11 selected digital features had significant 

univariate progression in the mild-to-moderate, on-therapy PD group (for example, the 

mild-to-moderate PD versus HC slope p-value of TUG TPV was not significant, p=0.15).  

Thus, it was not surprising that the composite digital measure preserved the same 

pattern. Moreover, the composite digital measure showed smaller between-/within-

subject coefficient of variation than MDS-UPDRS Part III. In summary, the results from 

Figure 3 and Table 3 indicate that the composite digital measure is an attractive 
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aggregated measure for tracking PD progression compared to MDS-UPDRS Part III and 

to individual digital features. 

3.4.3 Selected Features for Classifying de novo PD and HC 

To examine if the composite digital measure developed was also effective in classifying 

between de novo PD and HC subjects, we trained a GEE classification model using the 

11 unique selected digital features (age adjusted). Results are shown in Figure 4.  An 

AUC of 0.81 was achieved, indicating that the composite digital measure (composed of 

the 11 digital features) had good performance and was effective in classifying between 

de novo PD and HC subjects. 

 

4 Discussion 

DHT-derived measures have shown great promise in both tracking disease progression 

and disease classification. However, it remains challenging to identify digital features for 

predicting disease progression longitudinally in a high dimensional space, and 

furthermore, methodologies for combining individual digital features into composite 

digital measures have not been standardized. Features derived from DHT data may be 

high dimensional, with various data types and complex correlation structures. In this 

paper, we propose a principled and comprehensive methodology for the identification of 

relevant digital features of disease progression from large DHT data sets, and 

subsequent construction of a composite digital measure for disease progression 

tracking. Specifically, in Step 1, data is collected and processed for aggregated 

observation and quality control. In Step 2, we apply a linear mixed effects model for 
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univariate screening for longitudinal progression of digital features. In Step 3, a 

univariate association test is conducted between candidate digital features (i.e., features 

that pass the univariate screening) and clinical scores, for example the MDS-UPDRS 

Part III and/or its subscales. In Step 4, the candidate digital features are ranked via a 

ML-based method, PGEE, for high-dimensional longitudinal data analysis. The optimal 

number of top features to be included into the composite digital measure is further 

determined using a cross-validation based algorithm to avoid overfitting. 

To demonstrate the utility of our methodology, we applied it to data collected from a PD 

longitudinal observational study, which consisted of OpalTM sensor-based movement 

measurements and MDS-UPDRS Part III scores collected from PD patients at a range 

of disease stages and healthy controls over a 2-year duration. The composite digital 

measure we developed generally showed a smoother and more significant increasing 

trend in PD groups and smaller between-/within-subject coefficients of variation than 

MDS-UPDRS Part III in this small dataset (N=40), indicating potential utility for the 

composite digital measures to be used to track disease progression more sensitively 

and with less variability vs. standard clinical measures.  It should be noted that the 

dataset in our illustrative examples was small (N=40), and therefore, results of our 

analysis should be interpreted with caution. The analysis reported here was presented 

as an illustrative example of our proposed methodology and framework and not 

intended as a proposed composite measure for use in future studies. We also note that 

the composite digital measure shows less significant progression trending in mild-to-

moderate, on-therapy PD patients compared to in de novo and advanced PD patients. 

This outcome is consistent with the trends observed by Brzezicki et al. [11] using data 
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derived from the OxQUIP study. We further evaluated performances of the composite 

digital measure built from our methodology for classifying between de novo PD patients 

and HC. The measure had an AUC ROC of 0.81, indicating that the composite digital 

measure (composed of the 11 digital features) had good performance and was effective 

in classifying between de novo PD and HC subjects. 

Note that in our analysis, the top digital features (i.e., those with the largest PGEE 

estimates from the multivariate penalized regression model) were selected for both the 

primary analysis goal of tracking MDS-UPDRS Part III progression and the secondary 

analysis goal of classifying between de novo PD and HC. While the digital feature TUG 

TPV ranked high in both subgroups of selected features, we observe that the digital 

features that reflect disease progression are not necessarily the same as digital features 

that reflect classification. The final composite digital measure constructed with the 

merged features, on one hand, keeps the main characteristics of single digital features 

(i.e., progressing in de novo and advanced PD groups, but being flat in mild-to-

moderate, on-therapy PD and HC groups). On the other hand, the composite digital 

measure has a more significant increasing longitudinal trend compared to single digital 

features (including TUG TPV). This finding is not unique to composite digital measures 

as many traditional clinical measures (e.g., MDS-UPDRS Part III) are composite in 

nature and exhibit this trend. It is worth noting that the composite digital measure 

constructed following our proposed pipeline is comprised of features with diverse 

measurement properties. It is not a combination of the best-performing individual 

features (i.e., neither features with the most progressions in PD groups nor features with 

the most significant univariate association with MDS-UPDRS Part III). A possible 
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explanation is that combining top features with high correlations doesn’t necessarily add 

additional information to the composite score; there could be redundancy among digital 

features. It also suggests opportunities to further improve the performance of the 

composite digital measure by enriching the feature set with different assessments/tasks 

and measures. 

The superior performance observed in the multivariate analysis, albeit from a small pilot 

dataset, suggests promise for use of composite digital measures for progression 

tracking in future studies. Recent modelling efforts have shown that an increased 

precision made possible by more objective and frequent composite digital measures 

could enable smaller and shorter proof-of-concept studies to demonstrate disease-

modifying treatment effect [20]. Open discussions on methodologies to identify the 

relevant digital features (from the multitude of digital measure possible with DHTs) and 

construct composite digital measures are critical to enable construction and use of such 

digital measures, and we present a methodology for this herein. 

There are several limitations of our work. First, a major caveat of the results reported 

from the illustrative example herein is that this analysis only used a small number of 

participants. Our proposed analysis workflow for digital biomarker development needs 

to be applied to additional studies with larger N to further demonstrate utility. The 

identified individual digital features of Parkinson’s disease progression and the 

composite digital measure presented herein is solely for purposes of illustrating the 

methodology approach.  They would need to be validated and verified in an 

independent dataset in further research before they can be used as digital biomarkers 

of disease progression and treatment response. Second, the digital features in our 
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study were obtained from sensor-based movement measurements using one DHT 

system used during supervised, in-clinic tasks. Different or expanded digital features 

may be available with different DHTs, different task-based assessments, use of passive 

monitoring approaches, technology evolution, and further algorithm development. It is 

worth noting that we mainly use this feature set to demonstrate the methodology, and 

our proposed high-dimensional longitudinal data analysis framework (including feature 

selection and predictive modelling) is adaptive for different feature sets collected from 

different sensor technologies.  

Notably, the current dataset is longitudinal but only contains in-clinic visit data. One 

advantage of DHTs is that they may offer the ability to capture data outside of the clinic 

much more frequently. Other studies, including the Phase 2 Trial of Anti α-Synuclein 

Antibody in Early Parkinson’s Disease (PASADENA) study [10] (daily tasks) and the 

Personalized Parkinson Project (PPP) study [39] (bi-weekly tasks), have shown utility in 

capturing remotely collected DHT data with increased measurement frequency. 

Increased measurement frequency could further enhance the performance of digital 

measures in quantifying disease progression, as it could address the day-to-day 

symptom fluctuations and reduce the measurement variability. Such remotely acquired 

digital features could also be applied to the methodology and framework we’ve reported 

here. 

In addition, there is emerging research into characterization of the neurodegenerative 

disease progression directly from raw sensor signals recorded by DHTs (e.g., wearable 

sensors, environmental sensors, smartphone sensors) using deep neural networks and 

other black box algorithms [40, 41]. Germane to these efforts is an important question 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 24, 2024. ; https://doi.org/10.1101/2024.09.23.24313737doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.23.24313737


 

24 
 

about the interpretability of the ensuing models and results [42, 43]. In our work, we 

identified candidate digital features of disease progression using inherently interpretable 

linear models. We did not explore deep learning of the raw sensor data directly; such an 

approach is an interesting future direction of research. 

In summary, with the rapid development of DHTs, digital measures are playing an 

increasingly important role in not only neurodegenerative disease detection, but also 

longitudinally tracking disease progression over time and detection of therapeutic 

response. Our proposed ML-based framework for identifying digital features of 

progression and constructing composite digital measures adds to the existing body of 

literature on digital measure analysis methodologies and may help accelerate the 

translation of digital measures to utility for drug development and clinical practice. 
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Figures and Tables 

 

Figure 1. The analysis pipeline to select relevant digital features from high-dimensional

DHT data and construct a composite digital measure for disease progression tracking,

including 1) DHT data collection and processing, 2) univariate feature progression

screening, 3) univariate association test (optional), 4) multivariate/composite digital

measure construction, and 5) performance evaluation. 
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Figure 2. Heatmap representation of the p-values of the 77 digital features that passed 

the progression screening. The screening criteria applied were (1) no time progression 

in the HC group (i.e., LMM slope p-value of HC > 0.05), and (2) time progression in at 

least one of the three PD groups (i.e., LMM group-by-visit interaction p-value < 0.1 or p-
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value of differential slope between de novo/mild-to-moderate/advanced PD and HC < 

0.1). 

 

Figure 2. Heatmap of the univariate association testing p-values between MDS-UPDRS 

Part III (and its subscales: BK, TD, PIGD, RG) and the 77 digital features that passed 

the univariate screening. P-values were calculated from a linear mixed effects model 

with MDS-UPDRS Part III or its subscales as the outcome variable. The 77 features 

were ranked based on their association p-values from the analysis with the MDS-
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UPDRS Part III score. Each digital feature and age were included as independent 

variables. Random intercept was added as a random effect. 

 

Figure 4. Results from a digital feature, TUG TPV: Turn Peak Velocity (TPV), obtained 

from the Timed Up and Go (TUG) test, which showed the most significant association 

with the MDS-UPDRS Part III score. Each row represents the three PD groups and the 

HC group. Each panel within a row corresponds to a particular subject. The thick lines 

and thin lines denote the group-wise and subject-wise estimates of progression lines 

fitted by the linear mixed effects model, respectively. The points denote the observed 

data. 
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Figure 3. Tracking PD progression via MDS-UPDRS Part III (left panel) and the 

composite digital measure based on the 11 selected digital features (right panel). The 

dashed lines represented the observed MDS-UPDRS Part III scores (left panel) and the 

predicted composite digital scores (right panel) in the three PD groups combined.    
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Figure 4. Classification between de novo PD and HC groups using the 11 selected 

digital features. Each dot indicates the observed PD status (i.e., the ground truth) of 

each subject at each visit. False classifications (by the prediction model based on 11 

selected digital features) are highlighted by black circles. 
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Table 1. Patient baseline characteristics (age and sex) for the three PD groups and 

healthy control group. 

 De novo PD Mild-to-moderate 

PD (on-therapy) 

Advanced PD Healthy Control 

n 10 10 10 10 

Age (years) 

[mean (SD)] 

66.2 (6.46) 61.6 (10.76) 71.2 (4.78) 65.6 (6.98) 

Sex 

[Male (%) / Female 

(%)] 

5 (50) / 5 (50) 9 (90) / 1 (10) 5 (50) / 5 (50) 3 (30) / 7 (70) 
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Table 2. Description of the selected features: 9 for the primary analysis goal of 

longitudinally tracking MDS-UPDRS Part III score, and 3 for the secondary analysis goal 

of classifying de novo PD and Healthy Control. MAD = Mean Absolute Deviation, A = 

Affected side, and L = Less affected side. 

Goal Feature Statistic Side Description PGEE 

Estimate 

Primary TUG TD Median  Turns - Duration 0.39 

TUG TPV Median  Turns - Turn Velocity -0.38 

TUG STSD Mean  Stand to Sit - Duration 0.34 

Walk TA Median  Turns - Angle 0.26 

Walk GLLC MAD A Gait/Lower Limb - Cadence 0.16 

Walk GLLSW MAD L Gait/Lower Limb - Swing 0.07 

Walk GLLLSM Median L Gait/Lower Limb - Circumduction -0.06 

Walk APAMAA Mean  Anticipatory Postural Adjustment - 

Forward APA Peak 

-0.06 

Sway 

PSAN95ESA 

Mean  Postural Sway/Angles - Sway Area 0.05 

Secondary TUG TPV Median  Turns - Turn Velocity -0.60 

Walk GLLTOA MAD A Gait/Lower Limb - Toe Out Angle -0.43 

Walk GULMV Median A Gait/Upper Limb - Arm Swing Velocity -0.27 
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Table 3. Performance comparison among MDS-UPDRS Part III, the composite digital 

measure, and TUG TPV in terms of both progression and variability. 

 MDS-UPDRS Part III Composite Digital 

Measure 

TUG TPV 

Group-by-visit p-value 6.22e-03 7.65e-03 8.05e-03 

De novo PD vs. HC: 

slope p-value 

0.02 8.28e-03 1.35e-03 

Mild-to-moderate PD vs. 

HC: slope p-value 

2.25e-04 0.16 0.15 

Advanced PD vs. HC: 

slope p-value 

0.07 4.22e-03 0.01 

HC slope p-value 0.01 0.58 0.78 

Between-subject 

coefficient of variation 

39.0% 20.4% 17.2% 

Within-subject 

coefficient of variation 

34.1% 16.9% 9.7% 
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