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Abstract
The Parkinson’s Progression Markers Initiative (PPMI) delivers multiple modality
MRI (M3RI) and biomarker data for a comprehensive longitudinal study of
Parkinson’s Disease (PD). These provide quantitative indices of deep brain
and cortical structure (T1-weighted MRI), microstructural integrity of brain
tissue (diffusion-weighted imaging) and resting brain function (resting state
functional MRI). Integrating and uniformly analyzing M3RI alongside non-
imaging biological and clinical data is challenging due to the distinct nature
of each modality. This study systematically organizes these complex data into
a structured format, provides a PD-focused evaluation of the methodologies
and evidence for technical robustness of the approach. The cohort encompasses
841 idiopathic PD, 309 genetic PD, 1364 presymptomatic PD and 240 control
subjects at baseline with followup at a mean of 1.83 years.

Background & Summary
Parkinson’s Disease (PD) is characterized by the progressive accumulation of
Lewy bodies, primarily composed of misfolded alpha-synuclein, and appear-
ing in the substantia nigra at an early stage (Fearnley and Lees 1991). The
spread of this pathology correlates with both motor and non-motor symptoms
of PD, underscoring alpha-synuclein’s pivotal role in disease progression (Lee
and Trojanowski 2006; Dickson et al. 2009; Calabresi et al. 2023). The synu-
clein amplification assay (SAA) significantly advanced PD research by enabling
in vivo confirmation for the first time. The Parkinson’s Progression Markers
Initiative (PPMI) study enhances this development by offering a comprehensive
dataset of subjects assessed with SAA and multimodal MRI (M3RI), facilitating
the monitoring of PD progression and the impact of synucleinopathy on brain
structure and function (Shahnawaz et al. 2020; Siderowf et al. 2023).

Analyzing longitudinal M3RI in the PPMI study necessitates accessible data
representations for the PD research community. While each MRI modality
provides distinct insights, their combined analysis is challenging due to the
data’s high dimensionality and computational demands. Therefore, creating
clear, accessible data representations is crucial for advancing PD research and
fostering new discoveries in particular using multi-view data linking evidence of
pathology, symptoms and imaging (Nemmi et al. 2019; Tremblay et al. 2020;
Markello et al. 2021).

The study utilizes the Advanced Normalization Tools X (ANTsX) ecosystem to
process PPMI MRI from 2010 to early 2024, focusing on T1-weighted, diffusion-
weighted, and resting-state functional rsfMRI. The extended duration of data
collection underscores the necessity for robust processing techniques that manage
the resultant heterogeneity in images. ANTsX, leveraging decades of MRI
analysis expertise, employs advanced techniques and integrates open science,
deep learning, and machine learning for efficient multi-site M3RI data processing
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(B. B. Avants et al. 2015; Stone et al. 2020; Tustison et al. 2021)

To establish face validity, this study leverages not only PPMI M3RI, but also the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Veitch et al. 2024) and
traveling subject data in three cohorts (Hawco et al. 2022; Tanaka et al. 2021;
Tong et al. 2019). We analyze these data collectively and uniformly to establish
reliability benchmarks and to demonstrate feasibility of consistent processing in
multi-site studies such as PPMI. Additionally, we exemplify statistical models
using PPMI data that are appropriate for unlocking key questions relevant to
biomarker-confirmed PD and related conditions.

Historically, MRI research on PD has primarily utilized T1-weighted (T1w)
structural imaging to investigate neuroanatomical changes. A consistent finding
across these studies has been the identification of early neurodegeneration in
mid-brain regions, particularly the substantia nigra (Schwarz et al. 2011; Aquino
et al. 2014; Ryman and Poston 2020; Poston et al. 2020). Diffusion-weighted
MRI (dwMRI) has further enhanced our understanding by allowing for the
investigation of white matter microstructural integrity which may be impacted
not only in sporadic PD (Péran et al. 2010; Owens-Walton et al. 2024) but also
in genetic PD (Tolosa et al. 2020; Owens-Walton et al. 2024). Similarly, resting
state functional MRI (rsfMRI) has unveiled alterations in network connectivity in
PD patients, highlighting changes in the functional integration and segregation of
brain networks involved in motor and cognitive functions (Hacker et al. 2012; Kim
et al. 2017; Esposito et al. 2013). Taken together, these findings suggest that PD
impacts both the structural and functional aspects of the brain. More integrative
research in PD (Menke et al. 2009; Markello et al. 2021) is needed to determine
the sequence of these changes and how they may relate to alpha-synuclein and
potential copathology or comorbidity (Simuni et al. 2024).

The present study extends previous foundations by providing standardized imag-
ing data phenotypes (IDPs) for PPMI with a particular emphasis on an accessible
tabular representation. The summary IDPs are computed with ANTsPyMM
v1.4.0 and depend on standard anatomical and functional hierarchies that are
well-established in the field and consistently integrated in this work across
modalities. This approach supports investigations based on T1w structural
imaging, dwMRI, and rsfMRI either independently or collectively. Importantly,
these imaging variables easily merge with the associated demographics, SAA
status, clinical data such as the Movement Disorder Society-Sponsored Unified
Parkinson’s Disease Rating Scale (MDS-UPDRS) (Disease 2003) and standard
PPMI DAT-SPECT summary measurements (Bega et al. 2021; Droby et al.
2022). Through this integrative methodology, we aim to contribute to a deeper
understanding of PD, facilitating the development of more effective diagnostic
and therapeutic strategies and accelerating PD research.
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Methods
MRI data collection
MRI data collection occurred between 2010 and an April 2024 cutoff date for
these data. Two phases of MRI collection occurred in PPMI; the first collected
T1w and later DTI as part of exploratory investigations. In 2020, a new phase
of collection sought to improve both MRI quality and consistency and expand
the number of modalities collected. The sequences used at each site are provided
in detail at (B. Avants 2024) and in the original Laboratory of Neuroimaging
(LONI) source data (described below in Data Records). The “phase” of data
collection is captured in the variable imaging_protocol. The PPMI data
includes control subjects, idiopathic (sporadic) PD subjects and genetic PD
subjects characterized by GBA, LRRK2, SNCA and PRKN mutations; the
latter two groups appear infrequently in this PPMI M3RI cohort. Additionally,
presymptomatic subjects comprise a substantial and growing portion of the
cohort; these are also characterized by genetic mutations and/or early risk
factors for PD (hyposmia or RBD) (Siderowf et al. 2023). Table 1 summarizes
the cohort characteristics. In the following sections, we focus on the PD cohort
with SAA measurements as the presymptomatic cohort is undergoing significant
additional data collection.

Data Organization

Raw DICOM data was downloaded from LONI and converted to nifti format
via dcm2niix (Li et al. 2016). These data were then organized into a directory
tree following the NRG format illustrated in Figure 1. This BIDS-like structure
(Gorgolewski et al. 2016) is defined to aid in longitudinal analyses of multiple
modality data and intends to support: (a) sortable and specific dates associ-
ated with imaging sessions; (b) links between the data on disk and its origin
(LONI) through the “Image ID”; (c) easy maintenance of multiple modality
data collections; and (d) predictable input/output structure. Critically, the
unique ID allows the original data associated with an IDP to be easily found
in LONI. In brief, this system assigns each image – and categories of derivative
data – a directory and individual file name that assist in making data findable,
accessible, interpretable and reproducible (FAIR) for both early and downstream
processing.

ANTsPyMM processing

ANTsPyMM collects and documents best ANTsX practices for both data inspec-
tion and IDP generation for the modalities of interest in a single python package.
While ANTsPyMM supports BIDS format, it behaves most predictably and safely
with NRG format. Each “run” of the integrated multiple modality processing en-
coded by ANTsPyMM is driven by a data frame that defines a multiple modality
“collection” of images for a given subject at a given date. There are two key func-
tions that aid users in defining the appropriate input data structure and sending
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Table 1. Baseline PPMI IDP cohort. AR=at-risk; MSA = multi-system atrophy; OtherGen = other genetic; RBD = REM Sleep Behavior Disorder.
CN GenAR SporadicAR OtherGenPD LRRK2PD GBAPD SporadicPD
(N=748) (N=553) (N=811) (N=10) (N=185) (N=119) (N=851) p

age 69.8 ± 9.8 62.3 ± 7.4 68.1 ± 5.6 49.9 ± 14.0 64.9 ± 8.5 62.2 ± 9.6 63.6 ± 9.2 < 0.001
Sex < 0.001

Female 356 (47.6%) 331 (59.9%) 400 (49.3%) 2 (20.0%) 98 (53.0%) 54 (45.4%) 308 (36.2%)
Male 392 (52.4%) 222 (40.1%) 411 (50.7%) 8 (80.0%) 87 (47.0%) 65 (54.6%) 543 (63.8%)

race < 0.001
Asian 4 ( 0.5%) 0 ( 0.0%) 3 ( 0.4%) 0 ( 0.0%) 1 ( 0.5%) 0 ( 0.0%) 14 ( 1.6%)
Black 10 ( 1.3%) 0 ( 0.0%) 6 ( 0.7%) 0 ( 0.0%) 0 ( 0.0%) 2 ( 1.7%) 11 ( 1.3%)
not.spec. 507 (67.8%) 6 ( 1.1%) 8 ( 1.0%) 0 ( 0.0%) 0 ( 0.0%) 0 ( 0.0%) 6 ( 0.7%)
Other 8 ( 1.1%) 12 ( 2.2%) 27 ( 3.3%) 0 ( 0.0%) 14 ( 7.6%) 2 ( 1.7%) 24 ( 2.8%)
White 219 (29.3%) 535 (96.7%) 767 (94.6%) 10 (100.0%) 170 (91.9%) 115 (96.6%) 796 (93.5%)

duration.yrs 0.8 ± 1.2 3.6 ± 3.7 3.0 ± 2.1 2.7 ± 1.9 0.7 ± 0.6 < 0.001
updrs.totscore 4.8 ± 4.4 9.5 ± 8.8 13.1 ± 10.4 33.1 ± 16.7 37.4 ± 17.7 45.5 ± 14.9 35.0 ± 15.1 < 0.001
CSFSAA < 0.001

Negative 474 (86.2%) 484 (92.4%) 127 (35.8%) 4 (50.0%) 61 (35.7%) 6 ( 6.7%) 49 ( 7.4%)
Positive 76 (13.8%) 39 ( 7.4%) 226 (63.7%) 4 (50.0%) 109 (63.7%) 82 (91.1%) 608 (92.3%)
PosMSA 0 ( 0.0%) 1 ( 0.2%) 2 ( 0.6%) 0 ( 0.0%) 1 ( 0.6%) 2 ( 2.2%) 2 ( 0.3%)

LEDD 0.0 ± 0.0 4.1 ± 45.8 0.4 ± 10.5 573.2 ± 450.4 465.0 ± 425.7 542.3 ± 551.3 9.9 ± 62.6 < 0.001
subgroup < 0.001

GBA 0 ( 0.0%) 281 (50.8%) 0 ( 0.0%) 0 ( 0.0%) 0 ( 0.0%) 119 (100.0%) 0 ( 0.0%)
GBA + RBD 0 ( 0.0%) 1 ( 0.2%) 0 ( 0.0%) 0 ( 0.0%) 0 ( 0.0%) 0 ( 0.0%) 0 ( 0.0%)
Healthy Control 242 (100.0%) 0 ( 0.0%) 0 ( 0.0%) 0 ( 0.0%) 0 ( 0.0%) 0 ( 0.0%) 0 ( 0.0%)
Hyposmia 0 ( 0.0%) 0 ( 0.0%) 567 (69.9%) 0 ( 0.0%) 0 ( 0.0%) 0 ( 0.0%) 0 ( 0.0%)
LRRK2 0 ( 0.0%) 245 (44.3%) 0 ( 0.0%) 0 ( 0.0%) 178 (96.2%) 0 ( 0.0%) 0 ( 0.0%)
LRRK2 + GBA 0 ( 0.0%) 24 ( 4.3%) 0 ( 0.0%) 0 ( 0.0%) 7 ( 3.8%) 0 ( 0.0%) 0 ( 0.0%)
PRKN 0 ( 0.0%) 0 ( 0.0%) 0 ( 0.0%) 5 (50.0%) 0 ( 0.0%) 0 ( 0.0%) 0 ( 0.0%)
RBD 0 ( 0.0%) 0 ( 0.0%) 244 (30.1%) 0 ( 0.0%) 0 ( 0.0%) 0 ( 0.0%) 2 ( 0.2%)
SNCA 0 ( 0.0%) 2 ( 0.4%) 0 ( 0.0%) 5 (50.0%) 0 ( 0.0%) 0 ( 0.0%) 0 ( 0.0%)
Sporadic PD 0 ( 0.0%) 0 ( 0.0%) 0 ( 0.0%) 0 ( 0.0%) 0 ( 0.0%) 0 ( 0.0%) 849 (99.8%)

imaging.protocol < 0.001
ADNI 506 (67.6%) 0 ( 0.0%) 0 ( 0.0%) 0 ( 0.0%) 0 ( 0.0%) 0 ( 0.0%) 0 ( 0.0%)
PPMI1 169 (22.6%) 538 (97.3%) 60 ( 7.4%) 3 (30.0%) 172 (93.0%) 110 (92.4%) 388 (45.6%)
PPMI2 73 ( 9.8%) 15 ( 2.7%) 751 (92.6%) 7 (70.0%) 13 ( 7.0%) 9 ( 7.6%) 463 (54.4%)
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Figure 1: The NRG format supports predictable and interpretable data storage
and processing that can easily be tied back to the LONI source dicom. The
filename proceeds from less specific information (Project ID at reader’s left)
to the most specific (unique image ID at reader’s right). A specific character
– here the dash – is reserved exclusively as a separator between the stages of
information.

that data to processing. The first is antspymm.generate_mm_dataframe which
generates the appropriate multiple modality subject dataframe that documents
on disk locations for image sets. The resulting dataframe defines the expected
input as well as output structures. The second key function runs the multiple
modality processing (antspymm.mm_csv) based on the multiple modality subject
dataframe. The “Usage Notes” section provides more details on this system
with an accompanying reproducible example based on freely accessible multiple
modality neuroimaging.

Semi-automated quality assessment

ANTsPyMM’s primary goal is reliable M3RI IDP generation. Of necessity, it also
addresses quality control (QC) with particular focus on the T1w modality i.e. the
core anatomical image that represents the most consistently collected MRI in
PPMI. T1w is the focus of QC because ancillary modality processing depends
heavily on anatomical labels (e.g. tissue segmentation, cortical parcellation)
derived from these images. As such, we developed an automated (deep learning
based) T1w reviewer that is trained on human (BA) QC reviews. Each T1w
image is therefore reviewed internally in the first stage of ANTsPyMM processing
by this resnetGrader (a deep learning model trained to predict image quality)
(B. Avants et al. 2023). The grader will abort processing if the T1w does not
achieve a given baseline level of quality. Human visual inspection was performed
on images that pass the grader by BA and serves as a sanity check to the
automated method. The resnetGrader successfully filtered unusable data and
we selected a quality cutoff at 1.02 to filter out low quality images. Similarly,
the rsfMRI and DTI were reviewed in post hoc fashion. This process involved
visually inspecting each estimated FA image and each estimated default mode
network connectivity map and its associated mean BOLD image. Particular
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Figure 2: Overview of ANTsPyMM outputs for T1-weighted MRI, diffusion MRI
and resting state fMRI. Panel (a) shows example input data; the package does
not require all modalities to be present – only T1w. It also handles arterial
spin labeling (perfusion), FLAIR and neuromelanin, not covered here. Panel
(b) illustrates core T1w outputs across several inter-related and PD relevant
systems in the brain. Panel (c) shows the standard outputs associated with DTI.
Whole brain tractography is also output but no evaluation results are available
to contextualize its performance and, as such, we do not recommend its use.
Panel (d) summarizes the various rsfMRI outputs for processing parameter set
number 129 referred to with a prefix rsfMRI_fcnxpro129.
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focus was paid to cases with high motion and/or low SNR; such images were
excluded from statistical analyses.

Neuroanatomical coordinate systems
The statistical interpretation of processed images is aided by automatic anatomic
labeling with pre-specified coodinate systems or maps overlaid on each subject’s
neuroimage. We leverage a recent homotopic parcellation (Yan et al. 2023),
the Desikan-Killiany-Tourville (DKT) system (Klein and Tourville 2012), the
CIT168 atlas (Pauli, Nili, and Tyszka 2018), the Johns Hopkins University (JHU)
white matter labels (Mori, Oishi, and Faria 2009), the Schmahmann cerebellar
parcellation (Lyu et al. 2024; Carass et al. 2018), brain stem labels (Iglesias et al.
2015), a medial temporal lobe schema (Rizvi et al. 2023) and labels derived from
probabilistic maps of the basal forebrain (Liu et al. 2015; Zaborszky et al. 2008).
These systems are described in detail in online data dictionary and associated
documentation for this project. These coordinate system enable PD researchers
to interrogate a variety of hypotheses related to, for example, known functional
networks, association hubs, cholinergic networks, the striatum or dopaminergic
systems.

T1-weighted MRI processing

T1-weighted MRI processing is described in detail in (Tustison et al. 2023,
2021). This open-source software ecosystem includes tools for image registration,
segmentation, and super-resolution (SR) as customized for the human brain. The
derived measurements are tabulated by the neuroanatomical coordinates defined
above and include cortical and subcortical measurements and morphological
measurements of the hippocampus, basal forebrain and cerebellum. The results
of this stage are key to consistent processing of rsfMRI and DWI. We provide both
original resolution (OR) and SR results as part of this effort. For SR processing
of T1w, the network is applied – first – over the whole head T1w image to double
resolution along all axes within the brain parenchyma. Otherwise, SR and OR
processing are identical. SR training with 3D perceptual losses is documented
in the python package siq and is based on tensorflow implementations of
a volumetric deep back projection network (DBPN) (B. Avants et al. 2023;
Tustison et al. 2021; Haris, Shakhnarovich, and Ukita 2020) . See Figure 2 for
examples of these outputs. IDPs derived from the T1 processing are denoted by
prefixes T1w and T1Hier.

Diffusion weighted MRI processing

Diffusion tensor image (DTI) processing leverages best practices from both
ANTsX (B. B. Avants et al. 2015; Stone et al. 2023, 2020) and the open-source
DTI-focused project DiPy (Garyfallidis et al. 2014). This pipeline is specifically
designed to utilize DWI acquisitions with either a single or opposed phase
encoding directions. The functionality has been developed to address a broad
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Figure 3: Example ANTsPyMM SR outputs applied to T1-weighted MRI (upper
left) and diffusion MRI. T1w is super resolved to 0.5mm isotropic and DTI to
1mm.

spectrum of preprocessing requirements, such as motion correction, denoising,
dewarping and gradient reorientation, and enhancement through SR techniques,
culminating in an optimized DTI reconstruction. The SR stream applies to each
volume in the DWI timeseries after motion correction and distortion correction
but before tensor fitting i.e. in a relatively minimally invasive fashion. After
reconstruction, the pipeline integrates atlas-based labeling and template-based
normalization processes, thereby enhancing the anatomical interpretability of
the DTI metrics. Figure 4 summarizes the pipeline which follows these steps:

1. Input Preparation: The pipeline accepts either a single DWI or a pair
of DWI with reversed phase encoding. It also requires associated b-values
and b-vectors for each direction, alongside a T1-weighted image and a
brain mask for improved spatial accuracy in inter-modality registration.

2. Initial Reconstruction and Motion Correction: By default, the DWI
data is denoised before performing motion correction. This is skipped
when applying SR which integrates denoising. Motion correction aligns
DWI volumes within and across acquisitions to a reference mean B0 and
mean DWI, reducing artifacts due to subject movement.

3. Dewarping and Super-Resolution: Dewarping is applied to correct for
distortions between the DWI space and the T1-weighted image. Optionally,
SR is applied after dewarping but before the DiPy based reconstruction
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Figure 4: Overview of the DTI processing pipeline based on ANTsX and DiPy.

process.

4. Reconstruction of DTI Metrics: The function employs weighted least
squares to reconstruct DTI metrics such as Fractional Anisotropy (FA)
and Mean Diffusivity (MD) from the preprocessed DWI data. This step is
pivotal in quantifying the diffusion properties of brain tissue.

5. Atlas-Based Labeling and Registration: Utilizing the Johns Hopkins
University (JHU) atlas and corresponding labels (Mori, Oishi, and Faria
2009), the pipeline performs spatial registration of the DTI to the atlas
space. This process facilitates anatomical localization and quantification
of DTI metrics within predefined brain regions.

6. Output Generation: The pipeline yields a comprehensive output includ-
ing the reconstructed DTI metrics, summary statistics of these metrics
within atlas-defined regions, the spatial registration information, and addi-
tional diagnostic metrics such as framewise displacement and signal-to-noise
ratio (SNR) assessments spatially and temporally for both B0 and DWI.
An example output volumetric tensor image with labels is in Figure 3 and
5.

IDPs derived from the DWI processing are denoted by prefixes DTI_.

Resting state functional MRI processing

Resting state functional MRI (rsfMRI) processing builds on prior multi-view
M3RI analyses performed in this same ecosystem (B. B. Avants et al. 2015,
2019; B. B. Avants, Tustison, and Stone 2021). The procedure is based on the
findings described in three comprehensive evaluation studies (Shirer et al. 2015;
Parkes et al. 2018; Noble, Scheinost, and Constable 2019) and is designed to
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Figure 5: Example SR processing for DTI highligting the multiple coordinate
systems to aid interpretation.

compute both functional activity and correlation maps utilizing the recently
proposed homotopic labels to delineate major network systems (Yan et al. 2023).
The methodology described below is grounded in contemporary understanding
of resting-state fMRI analysis and incorporates recommendations from seminal
works regarding optimal preprocessing for minimizing motion artifacts and other
sources of noise (Shirer et al. 2015; Parkes et al. 2018). As such, our processing
reflects a comprehensive approach to resting-state fMRI IDP extraction for
real-world multi-site studies of neurodegenerative disease. Overall, the methods
aim to facilitate the reliable extraction of functional connectivity patterns that
are consistent with underlying neural mechanisms in PD (Tahmasian et al. 2015;
Esposito et al. 2013). Similar to the DWI processing, the procedure accepts
either a single image or a pair of images with reversed phase encoding direction.
The steps are outlined in Figure 6:

1. Input Preparation: Inputs include the raw BOLD fMRI time-series
data, a reference volumetric subject-specific fMRI template (automatically
generated), and T1-weighted anatomical images all from the same subject.
These inputs are foundational for aligning functional data with anatomical
landmarks and for ensuring that subsequent analyses are anatomically
informed. By default, the input fMRI is upsampled to 3mm isotropic
resolution and 8 initial volumes are discarded to allow for both signal and
subject stabilization.

2. Preprocessing: Initial steps include motion correction, application of
a despiking algorithm (a python implementation of AFNI’s 3dDespike
(Cox 2012)), and anatomical registration to align the fMRI data with the

11

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 24, 2024. ; https://doi.org/10.1101/2024.09.23.24313179doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.23.24313179
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 6: Overview of the rsfMRI processing pipeline based on ANTsX.

T1-weighted image. If a pair of images is passed, these same preprocessing
steps are applied and results are concatenated along the time axis.

3. Noise Reduction: Anatomical CompCor (aCompCor) is used to mitigate
physiological and other noise sources. This is based on recommendations
from studies examining the impact of preprocessing strategies on functional
connectivity (Shirer et al. 2015; Parkes et al. 2018).

4. Band-pass Filtering and activity calculation: The application of a
specific frequency range for filtering aligns with recommendations from both
Shirer et al. (2015) and Parkes et al. (2018), emphasizing the importance
of selecting appropriate frequency bands for resting-state analysis. The
default frequency bands are based on empirical evaluation studies described
below.

5. Censoring: Select volumes are censored based on both motion-based and
intensity-based outlier detection. The parameters for this stage derive
from empirical evaluation studies on public data as discussed below. Both
censored and imputed versions of the time series are created. A summary of
censoring results is recorded in several ways but perhaps most relevant are
the variables *minutes_original_data and *minutes_censored_data
which provides the length in minutes of the original versus processed data.

6. Network Correlation Analysis: This step involves calculating correla-
tion matrices for identified resting-state networks, utilizing labels described
above. Both inter and intra-network correlation values are computed for
each of the sub-networks provided by the homotopic parcellation.

7. Functional activity: is computed with three models: mfALFF, mALFF
and mPerAf as described in (Jia et al. 2020). These are versions of fALFF,
ALFF and PerAf where each is divided by the global mean in the brain.
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Summary values are averaged within each of 500 labels in the homotopic
label set which facilitates left/right asymmetry and mean values which are
critical to studying diseases with laterality effects.

Due to the relatively diverse needs of researchers and the variety of rsfMRI that is
generally present in public data, we run the above processing with three different
sets of parameters. These sets are named by their position in the parameter
search data frame as 122, 134 and 129. They encode 3 different choices for
outlier rejection (based on motion) and control of nuisance signal via aCompCor.
These three parameter choices led to rsfMRI IDPs that were the top performers
in terms of reliability and predictive power out of 78 that we tested empirically.
See this repository and the technical validation section for further details. IDPs
from the rsfMRI processing are denoted by prefixes rsfMRI_fcnxpro122 for 122
and similarly for 129 and 134.

Dimensionality reduction with SiMLR
Statistical power in cohorts with diverse composition may be challenged by
the number of individual predictors (here, 1178). To address this, we adopt
similarity-driven multi-view linear reconstruction (SiMLR) for dimensionality
reduction and apply the default settings recommended in prior work (B. B.
Avants, Tustison, and Stone 2021; Stone et al. 2023). SiMLR provides a
reduced number of predictors by creating “sparse feature sets” that are linked
across modalities, allowing for their combined use in joint prediction models.
As an unsupervised method, SiMLR identifies a joint low-dimensional space
that captures the common variability across these diverse modalities. This
enables integrated analyses of MRI and acquired non-imaging data (represented
as standard tabular outcomes) within the analytical framework of classical
regression. Importantly, this approach can be applied even when only a subset
of the variables is present.

Here, the SiMLR decomposition is trained in ADNI subjects and subsequently
applied to PPMI thereby decoupling the learning and inference stages. Six
matrices were decomposed into 100 joint components. The matrices included one
for tabular clinical data and five for neuroimaging including T1w related mea-
surements averaged across left and right, T1w related asymmetry measurements,
DTI related measurements averaged across left and right, DTI related asymmetry
measurements and resting state connectivity measurements. Although cognition
and functionally related clinical scores were employed during decomposition,
these were not retained for further application to PPMI. The technical validation
section will demonstrate how these learned patterns may be used in analyses
integrating PPMI IDPs and clinically relevant metrics both cross-sectionally and
longitudinally.
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Data Records
The PPMI IDPs for T1w, rsfMRI and DTI are located at (B. Avants 2024).
The neuroimaging and associated standard PPMI demographics and clinical
data is hosted in the LONI Imaging Data Archive (LONI IDA). The former is
stored in DICOM format and the latter in tabular csv format. Additionally,
data dictionaries describing all non-imaging column headers are available on the
LONI IDA.

We attach the neuroimaging IDPs to the PPMI Curated Data Cut (v.2024-01-
29 PPMI_Curated_Data_Cut_Public_20240129) from the LONI IDA. Code for
this merging process is within the subtyper package specifically the function
merge_ppmi_imaging_clinical_demographic_data. The M3RI IDPs are de-
scribed in detail here and are in a data table within the ANTsPyMM repository
(csv format). The full tabular IDPs for both OR and SR outputs are at this
location.

We supplement these PPMI data with subjects from ADNI due to the current
dearth of control longitudinal neuroimaging in PPMI. As with PPMI, we at-
tach ANTsPyMM IDPs to ADNIMERGE_10Feb2024 using the subtyper function
merge_ADNI_antspymm_by_closest_date. Select subjects from ADNI are con-
sidered for merging with PPMI if they are not diagnosed wtih Alzheimer’s disease
or mild cognitive impairment (MCI) and have acceptable quality neuroimaging.
The ADNI cohort is significantly older (mean of 72.3 years versus 63.9 in PPMI).

We also train a regression model on the matched subjects to adjust imaging
variables for systematic differences dut to study populations (ADNI vs PPMI),
MRI manufacturers (‘GE’, ‘Philips’, ‘Siemens’) and magnetic field strength.
Control subjects aged between 50 and 70 are designated as training samples.
The regression map is learned and applied to each IDP throughout the full
cohort using the subtyper function adjustByCovariates. The purpose of
this process is to mitigate the influence of different imaging protocols, en-
suring that subsequent analyses are less confounded by these factors. This
approach has been used in practical studies of ADNI MRI data (Risacher et
al. 2017). These merged and adjusted IDP data records are included in the file
ppmi_idps_trim_v1.4.0_SRF.csv. SiMLR derived variables are denoted t1PC*
(left-right averaged T1w derived feature sets), t1aPC* (asymmetry-related T1w
derived feature sets), dtPC* (left-right averaged DTI derived feature sets), dtaPC*
(asymmetry-related DTI derived feature sets) and rsfPC* (resting connectivity)
where the * varies from 1 to 100. These SiMLR derived variables limit the mul-
tiple testing considerations to 100 variables because these are typically grouped
together. That is, a given PC set (referred to as simIDP k

i ) is included in a single
model (e.g. if k = 1, then age ≈ t1PC1+t1aPC1+dt1PC1+dtaPC1+rsfPC1)
where simIDP1 = t1, simIDP2 = t1a, etc. We use this approach in a technical
validation section below.
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Technical Validation
Components of technical validity that are critical for quantitative methodology
in neuroimaging include: (a) generally robust performance across modalities;
(b) multi-site reproducibility; (c) disease-specific discrimination from controls in
particular over time in the clinical trial setting; (d) sensitivity to or relationship
with changes in clinically relevant symptoms at baseline and/or over time. We
provide evidence that the current IDPs satisfy these properties in the following
sections.

• We quantify reproducibility and reliability in each modality through analy-
sis of three traveling subject cohorts (addressing (a) and (b) above). These
cohorts collect imaging data at different sites from the same individuals.
Reliability data based on such cohorts are highly relevant for multisite
trials which are always impacted by site-specific variation. By aggregating
data from the traveling subject cohorts, we offer precise, reproducible
reliability estimates (via intra-class correlation) manifested across different
scanner types and imaging modalities.

• We derive effect sizes from statistical models that test established hypothe-
ses comparing biomarker classified PD subjects versus control subjects.
These show expected effects of PD are detectable in these data. This
addresses (c) above.

• We finalize the technical validity section with examples of how scientists
may relate IDP measures of brain health to rate of symptom change in PD
in a multiple modality (integrative) context. This addresses (d) above.

The scale of the current data supports control for a subset of important PD
relevant covariates including disease duration, educational level, sex, age and
levodopa dose equivalent daily dose (LEDD). These variables are included in
reference models with additional details below.

Robust performance
The technical validity of these methods is supported by previous work, including
various open quantitative MRI analysis challenges (Menze et al. 2015; Murphy
et al. 2011; Baheti et al. 2021) that span modalities and organ systems.
The foundational methods also support applications to non-human data (Allan
Johnson et al. 2019; Hopkins and Avants 2013). Furthermore, the consistency
of the methodology naturally enables multivariate statistical inference and/or
prediction (Stone et al. 2023) even within the multi-study context (Dadu et al.
2024).

Multi-site reproducibility
Traveling subject studies involve scanning the same subjects on multiple MRI
scanners at different locations. These studies help in assessing consistency and/or
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agreement of image quantification where the only variables are the machines
themselves. This is crucial for understanding power in multi-site studies of
natural history or intervention and for ensuring that the observed changes in
brain structure or function are due to actual physiological changes rather than
variations in the imaging process itself.

In this study, we employ traveling cohort data (Hawco et al. 2022; Tanaka et al.
2021; Tong et al. 2019) to assess the agreement of IDPs pooled across multiple
sites for the purposes of statistical inference. These data will establish expecta-
tions of repeatability for T1w, DTI and rsfMRI as measured by ANTsPyMM
processing and are described briefly here:

1. the SRPBS Traveling Subject MRI Dataset (Tanaka et al. 2021):

• 9 healthy subjects travel to 12 sites to be imaged;

• of the 12 sites, 9 have consistently available T1w and rsfMRI in 6 subjects.

2. traveling subject DTI cohort (Tong et al. 2019):

• 3 healthy subjects travel to 4 sites to be imaged;

• T1w and multi-shell DWI/DTI are available.

3. Hawco’s traveling subject MRI dataset (Hawco et al. 2022) is available
here:

• 4 healthy male subjects travel to 6 sites to be imaged with T1w, rsfMRI
and DTI.

Thus, we use these data to characterize the consistency and reliability of these
tools when applied to data that has known systematic biases due to site and
scanner differences. The results confirm that findings and conclusions drawn from
ANTsPyMM are reliable and not overwhelmed by scanner-specific differences or
inconsistencies. This knowledge is critical for a foundational framework such as
ANTsX/ANTsPyMM upon which scientific studies, machine learning platforms
and other methodological comparisons are based. These cohorts represent
variability in both MRI manufacturer and MRI model (high variability) that
would exceed standard (within-scanner, within-site) test-retest analysis. Results
therefore provide a lower-bound on reliability; i.e. within-site (e.g. longitudinal)
studies would be expected to have higher reliability in general.

We employ the intra-class correlation to assess results. ICC ranges may be
interpreted as (Koo and Li 2016):

• below 0.50: poor

• between 0.50 and 0.75: moderate

• between 0.75 and 0.90: good

• above 0.90: excellent

16

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 24, 2024. ; https://doi.org/10.1101/2024.09.23.24313179doi: medRxiv preprint 

https://openneuro.org/datasets/ds003011
https://doi.org/10.1101/2024.09.23.24313179
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 7: Summary reproducibility results from aggregated traveling subject data.
T1 IDPs represent high reproducibility in all categories (cerebellum, CIT168,
cortical volume, cortical thickness, basal forebrain and medial temporal lobe).
DTI IDPs are also highly reproducible with FA in the cortical gray matter (gm)
nearly equaling that of major white matter regions in the JHU atlas. Resting
state connectivity shows good to excellent reproducibility; PerAF, fALFF and
ALFF are relatively less reproducible – on average – though variability across
regions is also high.
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We find that ANTsPyMM IDPs derived from the same subjects imaged at different
sites with MRI from various manufacturers show overall good to high reliability
with a few exceptions within resting state derivatives (fALFF specifically). This
provides empirical evidence that multiple modality MRI may be used to derive
quantitative phenotypes on which predictive models may be based. Statistical
control for site effects should still be applied at the population level using, for
example, random effects. The data and code for reproducing these results is
available in this location. Figure 7 shows the key summary output for this ICC
comparison.

Diagnostic effects in pre-defined structural, white matter
and resting functional measurements

Table 2. PD IDPs in ANTsPyMM: T1w L/R average and asym.
IDP anat
t1.vol.sup.parietal.ctx Superior Parietal Cortex
t1.vol.inf.parietal.ctx Inferior Parietal Cortex
t1.vol.paracent.ctx Paracentral Cortex
t1.vol.postcent.ctx Postcentral Cortex
t1.vol.precent.ctx Precentral Cortex
t1.vol.sncdp. Substantia Nigra Compacta
t1.vol.bn.str.pudp. Basal Nucleus Striatum, Putamen
t1.vol.bn.gp.gpidp. Globus Pallidus Internal Segment
t1.vol.bn.gp.gpedp. Globus Pallidus External Segment
t1.vol.nbm.antbf Nucleus Basalis Meynert, Anterior Basal Forebrain
t1.vol.nbm.midbf Nucleus Basalis Meynert, Middle Basal Forebrain
t1.vol.nbm.posbf Nucleus Basalis Meynert, Posterior Basal Forebrain
t1.vol.dg.ca3mtl Dentate Gyrus, CA3 Region of Medial Temporal Lobe
t1.midbrain.pons.ratio Midbrain Pons ratio

Table 3. PD IDPs in ANTsPyMM: DTI L/R average and asym for
both fractional anisotropy (FA) and mean diffusion (MD) (not shown).
IDP anat
dti.fa.sup.l.fasc Superior Longitudinal Fasciculus FA
dti.fa.deep.snc Deep Substantia Nigra Compacta FA
dti.fa.snc Substantia Nigra Compacta FA
dti.fa.sup.cor.rad Superior Corona Radiata FA
dti.fa.fornixlravg Fornix FA
dti.fa.ant.int.cap Anterior Internal Capsule FA
dti.fa.ext.cap External Capsule FA
dti.fa.post.int.cap Posterior Internal Capsule FA
dti.fa.rent.int.cap. Retrolenticular Part of Internal Capsule FA
dti.fa.sup.frnt.occ.fasc Superior Frontal-Occipital Fasciculus FA
dti.fa.deep.bn.str.pu Deep Basal Nucleus Striatum, Putamen FA
dti.fa.bn.str.pu Basal Nucleus Striatum, Putamen FA
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Table 4. PD IDPs in ANTsPyMM: rsfMRI bilateral inter
or intra-network connectivity (Yan, et. al. homotopic
parcellation nomenclature).

IDP connectivity
rsf.p2.sommotb.2.temppar Temporal Parietal Region
rsf.p2.sommotb.2.contc Control Network Component C
rsf.p2.sommotb.2.contb Control Network Component B
rsf.p2.sommotb.2.conta Control Network Component A
rsf.p2.sommotb.2.sommotb Somatomotor Area B
rsf.p2.sommotb.2.sommota Somatomotor Area A
rsf.p2.sommotb.2.visperi Peripheral Visual Area
rsf.p2.sommotb.2.viscent Central Visual Area
rsf.p2.sommotb.2.striatum Striatum
rsf.p2.sommotb.2.dopamine Dopaminergic system
rsf.p2.sommotb.2.basalganglia Basal Ganglia
rsf.p2.sommotb.2.midbrain Midbrain
rsf.p2.sommota.2.temppar Temporal Parietal Region
rsf.p2.sommota.2.contc Control Network Component C
rsf.p2.sommota.2.contb Control Network Component B
rsf.p2.sommota.2.conta Control Network Component A
rsf.p2.sommota.2.sommotb Somatomotor Area B
rsf.p2.sommota.2.sommota Somatomotor Area A
rsf.p2.sommota.2.visperi Peripheral Visual Area
rsf.p2.sommota.2.viscent Central Visual Area
rsf.p2.sommota.2.striatum Striatum
rsf.p2.sommota.2.dopamine Dopaminergic system
rsf.p2.sommota.2.basalganglia Basal Ganglia
rsf.p2.sommota.2.midbrain Midbrain

Sensitivity to differences from controls
Symptoms of Parkinson’s disease (PD) exhibit heterogeneity both across indi-
viduals and within a single patient over time. MRI is suited to objective in vivo
characterization of the neural basis of these changes longitudinally with a variety
of structural and functional measurements. Here, we assess longitudinal and
cross-sectional effect sizes in T1w, DTI and rsfMRI IDPs that are pre-defined
for PD relevance. These regions are listed in Table 2 (T1w), Table 3 (DTI)
and Table 4 (rsfMRI) and span motor, associative and limbic systems that may
be impacted in PD and associated disorders (Ryman and Poston 2020). These
include motor and parietal cortex (Filippi et al. 2020; Sokołowski et al. 2024),
midbrain and striatal regions and basal forebrain (Batzu et al. 2023) from
T1w. Due to known concomitant, AD-related pathology in some PD subjects,
we also include a medial temporal lobe IDP (Das, Hwang, and Poston 2019).
Relatedly, we select mean diffusion and FA derived from DTI in the striatum
and substantia nigra (Hu et al. 2023) as well as major white matter tracts (Gat-
tellaro et al. 2009; Pietracupa et al. 2018), the fornix and external and internal
capsule; a recent large-scale study demonstrated sensitivity of these measures
to PD (Owens-Walton et al. 2024). Interestingly, DTI metrics in early PD –
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Group differences in IPDs from controls.

Figure 8: Partial regression plots for example significant IDPs illustrate the trends
of differences from controls. The bar plots at left show 95 percent confidence
intervals along with estimated means for each group. The line plots at right show
the estimated change over time (0 to 4 years) along with 95 percent confidence
intervals. Table 5 and 6 detail the associated significance levels and effect sizes.
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within both the current study and the recent worldwide study (Owens-Walton
et al. 2024) – appear to trend in directions that are opposite to that of other
neurodegenerative diseases which provides an interesting opportunity for future
work and more nuanced stage-based statistical modeling. In rsfMRI, we focus
on connectivity between sensorimotor regions and other networks, in particular
visual and cognitive control (Caspers et al. 2021; Wang et al. 2021; Tahmasian
et al. 2015). In total, we test 99 different measurements which include left-right
averaged as well as asymmetry metrics:

avg(xl, xr) = 1
2(xl + xr); asym(xl, xr) = |xl − xr|

derived from those regions which are bilateral. This strategy is a generalizable
way of testing laterality effects across all groups, including those without an
established dominant side of disease (controls and pre-symptomatic PD subjects).

We provide exemplar linear mixed-effects models (LMMs) that seek to elucidate
the complex relationships between neuroimaging biomarkers and the progression
of Parkinson’s Disease (PD). The analytical framework was constructed using
the R programming environment, leveraging the lme4 package (Kuznetsova,
Brockhoff, and Christensen 2017; Bates et al. 2014). This methodology allows
for the exploration of hierarchical data structures commonly encountered in
longitudinal neuroimaging studies, where multiple observations per subject
are standard. These models were designed to investigate differences between
biomarker-confirmed PPMI PD groups and controls. We accentuate that these
models are for demonstration only and do not constitute fully-vetted “official”
PPMI results. While these models may not account for all relevant covariates,
they do provide evidence of validity by confirming the sensitivity of these IDPs
to diagnostic group differences. These models are of the form:

IDP ≈ (1|ID) + (1|Site) + BVbl + Edu + durationyrs+
modality_specific_covariates + agebl+

Sexbio + yearsbl ∗ DX

where IDP is the imaging outcome, ID is a random effect for subject ID, Site is
a random effect for data collection site, BVbl is baseline brain volume, Edu is ed-
ucational attainment and modality_specific_covariates covaries for modality-
specific variability due to site and related effects. Age at baseline and biological
sex are additional covariates. The primary predictors of interest are yearsbl ∗DX
i.e. the interaction between time from baseline of the IDP measurement (in years)
and the diagnostic group which includes SAA positive and negative PD subjects
in addition to controls and MCI. The cross-sectional/longitudinal sample sizes
and results for each group within the DX variable are denoted in Table 5 (cross-
sectional) and 6 (longitudinal) where a postfix of “.x” indicates a cross-sectional
estimate and “.y” a longitudinal one. The columns anv.x and anv.y reflect
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omnibus model p-values; d indicates effect size for the corresponding group
either cross-sectionally or longitudinally. The sig column indicates whether the
corrected p-value survives family-wise error (fwe) or false discovery rate (fdr)
correction. In the longitudinal cohort, subjects are required to have two or more
visits.

Cross-sectional models used standard linear regression (lm in R) with the same
structure as described above but without random effects. Linear mixed-effects
models (LMMs) were constructed using the lmer function from the lme4 package
and fitted to the data. This process included the standardization of variables
within the equation, a critical step given the varying scales and distributions of
neuroimaging metrics. Comparative model analysis was conducted to ascertain
the significance of various predictors, employing the anova function to contrast
models with and without DX and the interaction between DX and yearsbl.
This anova assesses the “omnibus” model improvement due to the joint addition
of both DX and the interaction between DX and yearsbl. As we are only
reporting high level results here, we do not investigate p-values within individual
diagnostic groups. These results are shown in Table 5 (for the DX term) and
Table 6 (for the longitudinal term). Effect sizes (d.x and d.y) for each term are
estimated from the t−value and degrees of freedom for each cross-sectional and
longitudinal model. Very small effect sizes are those with absolute value less
than 0.2. The effects of DX on these IDPs are visualized through predictor effect
plots (Larsen and McCleary 1972; Fox and Weisberg 2018) of diagnosis by time
generated for each diagnostic category as in Figure 8. These IDPs are significant
under family wise error (fwe) multiple comparisons correction at p-value ≤ 0.05
(after correction based on the above-mentioned anova). These plots and other
regression plots are displayed with the R packages jtools and interactions.

Baseline IDP to longitudinal MDS-UPDRS effects in struc-
tural, white matter and resting functional measurements
We use LMMs to estimate the relationship of IDP values to clinical observations as
evaluated by MDS-UPDRS 1, 2, 3 (off), total (off) and related scores. While these
clinical measurements have well-documented limitations in terms of reliability
and interpretability (on behalf of the Parkinson’s Progression Markers Initiative
et al. 2023), they are consistently available in PPMI. These exemplar assessments
differ from the prior section in that they focus only on PPMI subjects as these
measurements are absent in ADNI. These models are of the form:

UPDRSXdelta ≈ (1|ID) + UPDRSXbl + BVbl + Edu + LEDD+

agebl + Sexbio + yearsbl ∗ (
5∑

i=1
simIDP k

i )

The outcome is UPDRSXdelta indicating change in a given MDS-UPDRS score.
The majority of these variables are as defined previously. However, we introduce
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Table 5. Time independent group effects in PPMI/ADNI. Top-k per modality.
voi n.x (CN,Sp-,Sp+) anv.x d.x.Sp- d.x.Sp+ sig.x sig.y
t1.vol.bn.str.pudp. 747/44/574 p = 6.4813e-06 -0.27 -0.08 fwe.x fwe.y
t1.midbrain.pons.ratio 747/44/574 p = 6.6242e-08 -0.23 -0.26 fwe.x fwe.y
t1.vol.sncdp. 747/44/574 p = 2.2643e-16 -0.41 -0.30 fwe.x fwe.y
t1.vol.bn.gp.gpidp. 747/44/574 p = 4.5784e-18 -0.47 0.05 fwe.x fdr.y
t1.vol.bn.gp.gpe.asymdp. 747/44/574 p = 3.6180e-07 0.29 0.13 fwe.x fdr.y
t1.vol.bn.gp.gpi.asymdp. 747/44/574 p = 2.0369e-06 0.27 -0.01 fwe.x fdr.y
t1.vol.bn.str.pu.asymdp. 747/44/574 p = 7.2291e-22 0.54 0.04 fwe.x n.s.
t1.vol.bn.gp.gpedp. 747/44/574 p = 4.1291e-17 -0.33 0.27 fwe.x n.s.
t1.vol.snc.asymdp. 747/44/574 p = 0.0004 0.21 0.01 fwe.x n.s.
t1.vol.nbm.midbf 747/44/574 p = 0.0002 -0.23 -0.06 fwe.x n.s.
t1.vol.nbm.antbf 747/44/574 p = 0.0022 -0.18 0.01 fdr.x n.s.
dti.mean.md.snc 327/29/365 p = 0.0002 0.07 0.31 fwe.x fwe.y
dti.mean.md.deep.snc 327/29/365 p = 0.0005 0.06 0.29 fwe.x fwe.y
dti.fa.bn.str.pu 327/29/365 p = 0.0029 0.02 -0.24 fdr.x fdr.y
rsf.p2.sommotb.2.striatum 327/26/277 p = 0.0035 0.20 0.23 fdr.x n.s.
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Table 6. Longitudinal group effects in PPMI/ADNI. Top-k per modality.
voi n.y (CN,Sp-,Sp+) anv.y d.y d.y.Sp- d.y.Sp+ sig.y sig.x
t1.vol.bn.str.pudp. 422/20/286 p = 1.4056e-11 -0.56 -0.48 -0.28 fwe.y fwe.x
t1.midbrain.pons.ratio 422/20/286 p = 0.0002 -0.15 -0.23 -0.23 fwe.y fwe.x
t1.vol.sncdp. 422/20/286 p = 0.0005 -0.14 -0.27 -0.13 fwe.y fwe.x
t1.vol.bn.gp.gpidp. 422/20/286 p = 0.0018 -0.40 -0.26 0.04 fdr.y fwe.x
t1.vol.bn.gp.gpe.asymdp. 422/20/286 p = 0.0066 -0.01 0.23 0.04 fdr.y fwe.x
t1.vol.dg.ca3mtl 422/20/286 p = 0.0144 -0.58 -0.10 0.18 fdr.y n.s.
t1.vol.bn.gp.gpi.asymdp. 422/20/286 p = 0.0156 0.04 0.21 -0.03 fdr.y fwe.x
dti.fa.sup.cor.rad 158/18/250 p = 1.9327e-05 0.01 0.33 0.39 fwe.y n.s.
dti.mean.md.snc 158/18/250 p = 4.5422e-05 0.07 -0.30 -0.39 fwe.y fwe.x
dti.fa.rent.int.cap. 158/18/250 p = 8.8642e-05 0.05 0.35 0.32 fwe.y n.s.
dti.mean.md.deep.snc 158/18/250 p = 0.0001 0.05 -0.25 -0.38 fwe.y fwe.x
dti.fa.sup.l.fasc 158/18/250 p = 0.0001 0.06 0.30 0.35 fwe.y n.s.
dti.fa.ant.int.cap 158/18/250 p = 0.0003 -0.03 0.31 0.31 fwe.y n.s.
dti.mean.md.sup.cor.rad 158/18/250 p = 0.0004 -0.01 -0.28 -0.33 fwe.y n.s.
dti.fa.fornixlravg 158/18/250 p = 0.0004 -0.07 0.24 0.34 fwe.y n.s.
dti.mean.md.ant.int.cap 158/18/250 p = 0.0006 0.04 -0.30 -0.30 fwe.y n.s.
dti.mean.md.sup.frnt.occ.fasc 158/18/250 p = 0.0008 0.06 -0.27 -0.31 fwe.y n.s.
dti.mean.md.sup.l.fasc 158/18/250 p = 0.0010 -0.08 -0.28 -0.29 fwe.y n.s.
dti.mean.md.fornixlravg 158/18/250 p = 0.0011 0.03 -0.22 -0.33 fwe.y n.s.
dti.fa.deep.snc 158/18/250 p = 0.0013 -0.00 0.20 0.34 fwe.y n.s.
dti.mean.md.post.int.cap 158/18/250 p = 0.0024 0.00 -0.24 -0.29 fdr.y n.s.
dti.mean.md.rent.int.cap. 158/18/250 p = 0.0025 -0.05 -0.26 -0.27 fdr.y n.s.
dti.fa.snc 158/18/250 p = 0.0033 -0.02 0.16 0.32 fdr.y n.s.
dti.mean.md.ext.cap 158/18/250 p = 0.0036 0.00 -0.26 -0.26 fdr.y n.s.
dti.fa.bn.str.pu 158/18/250 p = 0.0039 -0.08 0.25 0.26 fdr.y fdr.x
dti.mean.md.deep.bn.str.pu 158/18/250 p = 0.0045 -0.02 -0.27 -0.24 fdr.y n.s.
dti.mean.md.bn.str.pu 158/18/250 p = 0.0050 -0.02 -0.26 -0.24 fdr.y n.s.
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Figure 9: Select predictor effect plots for SiMLR mapping between M3RI and
PD symptomology. Plots headed with “X” relate to cross-sectional effects while
“L” is longitudinal. Significance for the class of effects is also noted in the main
title of each figure pair (“p = . . . .”). Shaded regions in all panels show 95
percent confidence intervals. In the “L” plots, the predictor effect plots visualizes
interaction between time from baseline and the given SiMLR IDP. The darker
lines indicate the relationship of higher values in the given imaging score with
the change in the outcome. Lighter dashed lines indicate the relationship of
lower values in the given imaging score with the change in the outcome. For
example, higher values in t1PC33 are associated with MOCA preservation over
time (or increased learning) as is decreased asymmetry. The SiMLR50 plots
(middle panels) show robust cross-sectional association with total score but no
evidence of longitudinal association. The SiMLR70 plots (bottom pair) show
association of both DTI and resting state IDPs with REM sleep disturbance
changes over time.

25

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 24, 2024. ; https://doi.org/10.1101/2024.09.23.24313179doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.23.24313179
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 7. Significant SiMLR IDP to clinical measurements: (up to) top five for each score.
cog voi n.x n.y anv.x anv.y d.x d.y S.m1.1 S.m2.1 sig
MOCA 33 1032 346 p = 0.0185 p = 2.4209e-06 0.16 0.55 t1.thk.asym.parahippocampal.ctx t1.thk.isthmus.cingulate.ctx fwe
MOCA 72 1032 346 p = 0.0385 p = 0.0002 0.16 0.32 rsf.p2.salventattnb.2.striatum dti.fa.asym.sup.frontal fdr
MOCA 60 1032 346 p = 0.0463 p = 0.0006 0.15 0.31 t1.thkasymviibcerebellum rsf.p2.defaulta.2.defaultc fdr
MOCA 98 1032 346 p = 0.2848 p = 0.0007 0.14 0.34 dti.fa.asym.isthmus.cingulate NA fdr
MOCA 57 1032 346 p = 0.4910 p = 0.0006 0.10 0.24 rsf.p2.dorsattna.2.limbicb dti.fa.post.int.cap.asym fdr
pigd 50 1002 314 p = 0.0008 p = 0.0016 0.28 0.38 t1.thk.sncdp. NA fdr
pigd 71 1002 314 p = 0.3645 p = 0.0001 0.10 0.43 t1.thkasymcrus.icerebellum rsf.p2.dorsattnb.2.dorsattnb fdr
pigd 55 1002 314 p = 0.1774 p = 0.0006 0.15 0.31 dti.fa.inf.frnt.occ.fasciculus.asym t1.vol.rostral.ant.cingulate.ctx fdr
pigd 18 1002 314 p = 0.2038 p = 0.0009 0.15 0.23 t1.thk.asym.sup.frontal.ctx rsf.p2.limbicb.2.dorsattna fdr
pigd 47 1002 314 p = 0.8463 p = 0.0005 0.07 0.30 t1.vol.fusiform.ctx rsf.p2.conta.2.sommota fdr
rem 70 1030 345 p = 0.0564 p = 5.6526e-05 0.17 0.36 dti.fa.ch13 rsf.p2.defaultc.2.conta fwe
rem 71 1030 345 p = 0.2772 p = 2.0027e-05 0.10 0.42 dti.fa.die.hth rsf.p2.dorsattnb.2.dorsattnb fwe
rem 37 1030 345 p = 0.0321 p = 0.0002 0.21 0.35 rsf.p2.contb.2.sommota dti.fa.corticospinal.tract.asym fwe
rem 68 1030 345 p = 0.0159 p = 0.0006 0.13 0.31 dti.fa.nbm.pos rsf.p2.basalganglia.2.limbica fdr
rem 5 1030 345 p = 0.0608 p = 0.0011 0.14 0.26 dti.fa.bn.gp.gpe.asym NA fdr
updrs.totscore 50 980 308 p = 3.3886e-07 p = 0.8243 0.33 0.12 t1.thk.sncdp. NA fwe
updrs.totscore 55 980 308 p = 0.0233 p = 3.2863e-05 0.18 0.50 dti.fa.inf.frnt.occ.fasciculus.asym rsf.p2.defaultc.2.dorsattna fwe
updrs.totscore 23 980 308 p = 3.5218e-06 p = 0.8743 0.21 0.10 t1.thk.post.cingulate.ctx dti.fa.nbm.asym.pos fwe
updrs.totscore 62 980 308 p = 0.0001 p = 0.6615 0.25 0.15 rsf.p2.defaulta.2.basalganglia t1.thk.snc.asymdp. fwe
updrs.totscore 4 980 308 p = 0.1119 p = 0.0008 0.15 0.38 rsf.p2.conta.2.dopamine NA fdr
updrs1 27 1026 341 p = 0.1107 p = 8.2712e-05 0.14 0.31 dti.fa.bn.gp.vep.asym t1.volasymxcerebellum fwe
updrs1 48 1026 341 p = 0.2937 p = 0.0008 0.12 0.25 t1.thk.asym.parahippocampalmtl dti.fa.bn.str.pu.asym fdr
updrs2 50 1033 345 p = 0.0002 p = 0.0052 0.28 0.26 t1.thk.sncdp. NA fwe
updrs2 55 1033 345 p = 0.0003 p = 0.0324 0.23 0.30 t1.thk.nbm.asym.midbf NA fwe
updrs2 62 1033 345 p = 9.9211e-05 p = 0.2060 0.22 0.21 rsf.p2.defaulta.2.basalganglia t1.thk.snc.asymdp. fwe
updrs2 36 1033 345 p = 0.0005 p = 0.1851 0.22 0.21 t1.thk.asym.postcent.ctx t1.midbrain.pons.ratio fwe
updrs2 76 1033 345 p = 0.0004 p = 0.3169 0.18 0.20 rsf.p2.limbica.2.limbicb NA fwe
updrs3 50 992 314 p = 3.2232e-07 p = 0.6948 0.32 0.18 t1.thk.sncdp. dti.fa.sup.frnt.occ.fasc.asym fwe
updrs3 4 992 314 p = 0.0676 p = 1.3955e-05 0.13 0.42 rsf.p2.conta.2.dopamine t1.thk.medial.orbitofrontal.ctx fwe
updrs3 23 992 314 p = 1.1930e-05 p = 0.1760 0.23 0.22 dti.fa.nbm.asym.pos t1.vol.nbm.asym.antbf fwe
updrs3 55 992 314 p = 0.0527 p = 0.0001 0.17 0.45 dti.fa.inf.frnt.occ.fasciculus.asym rsf.p2.defaultc.2.dorsattna fwe
updrs3 63 992 314 p = 0.2878 p = 5.8129e-05 0.09 0.44 dti.fa.tapetum.asym NA fwe
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covariates for treatment effects (Levodopa Equivalent Daily Dose, LEDD) as
well as baseline values of the given score. This latter variable approximates a
control for subject and domain-specific disease severity. As such, these models are
relatively conservative in terms of their attribution of variance to IDP values. The
predictor of interest, here, is yearsbl ∗ (

∑5
i=1 simIDP k

i ) which estimates change
in the given MDS-UPDRS score (or derived score / subscore) in relation to brain
structure (including asymmetry) and function as measured by three modalities.
The p-value associated with each of the k in 1 · · · 100 models is determined by
the amount of additional variance that is explained by the SiMLR IDPs (R anova
function). We determine significance from the omnibus p-value returned by
anova. The effect sizes are derived from the single most predictive SiMLR IDP
in each model; additional influence by secondary IDPs would augment estimates.
These models are assessed in the range of baseline to 2.25 years change. As in
the prior section, cross-sectional results are derived with standard regression
(lm); the outcome in this case, however, is the raw score, not its change.

The effects are visualized, in Figure 9, through effect plots for select IDPs of
interest. Effect sizes for each significant (fdr or fwe) pair of outcomes and
IDPs in Table 7 where S.m1.1 indicates the top IDP feature contributing to the
model. If S.m2.1 is present, this means that a second predictor also contributes
significantly to the association (uncorrected p ≤ 0.05 based on the t-value for
a given simIDP k

i where i indexes the individual type of measurement and k
indicates the kth component). The clinical measurement and its most highly
weighted IDP is also listed. In several cases, two or more distinct modalities
contribute effectively. Moreover, although SiMLR’s multivariate feature learning
was performed on a separate cohort, several reasonable associations are brought
out by this analysis: involvement of hypothalamus FA (dti.fa.die.hth) with
REM sleep disturbance (rem), connectivity between dopaminergic regions and
cognitive control regions (rsf.p2.conta.2.dopamine) and MDS-UPDRS-III
scores and thickness of substantia nigra pars compacta (t1.thk.sncdp) with
several measures including postural instability and gait disturbance (PIGD).
Recall that we are only reporting, in Table 7, the top features; each simIDP k

i

involves many regions. Region names are described in detail online in the data
dictionary and associated documentation.

This SiMLR study demonstrates that brain state – as measured jointly by
these modalities – may contribute to acceleration/deceleration of changes in
MDS-UPDRS and related scores. However, we accentuate that these models
are relatively simple and linear; as such, they yield only rough suggestions that
additional modeling effort may be warranted to understand the differential value
of these IDPs across the spectrum of PD symptomology. Furthermore, this
analysis grouped all PPMI subjects together (excluding controls); as such, it
lacks the specificity that may be needed to parse subgroup relationships or those
that only occur within specific stages of PD. The subjects comprising these
results span a variety of PD-related subgroups: PDGBA: 8 / PDLRRK2: 14 /
PDSNCA: 1 / PDSporadic: 367 / ProdromalGBA: 8 / ProdromalLRRK2: 24
/ ProdromalSporadic: 533 (median across results for the baseline cohort; the
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longitudinal cohort subjects are fewer as they are required to have two or more
visits: PDGBA: 6 / PDLRRK2: 7 / PDSporadic: 172 / ProdromalGBA: 7 /
ProdromalLRRK2: 16 / ProdromalSporadic: 133). Despite these limitations,
Table 7 demonstrates that all three modalities studied here may jointly influence
clinical presentation and/or symptoms. Furthermore, several of these models
indicate that multiple IDPs are changing in concert with symptom progression.

In summary, these data and reference results demonstrate the potential of
multimodal neuroimaging and integrative statistical approaches in PD and
neurodegenerative disease research more generally. This tabulated multi-modality
MR IDP dataset for PPMI – derived from deeply validated open source methods
– represents a valuable opportunity to help standardize as well as advance PD
M3RI research. It simplifies – to the extent that is currently possible – the
analysis of complex imaging data and potentially accelerates the discovery of
novel insights into PD progression and effects. The timing of this data release is
critical given the newly available SAA biomarker. Additionally, this methodology
holds promise for broader applications, potentially benefiting research into other
neurological conditions.

Usage Notes
An example of processing used here is shown in the github respository https://gi
thub.com/stnava/ANTPD_antspymm where we combine easily accessible multi-
view neuroimaging with our open source methods for demonstration purposes.
All images referred to in this research were processed in a style identical to this
example.

Code availability
Core image processing was done with python 3.9 while document creation was
achieved with R version 4.3.0 – “Already Tomorrow”. ANTsPyMM is installable
via pypi and available at github. The version used for this work is 1.4.0 along
with tensorflow 2.11.0, antspyx 0.5.0, antspynet 0.2.8 and antspyt1w 0.9.4.
Subtyper v1.0.0 and ANTsR 0.6.2 contain many utilities used in the creation
of this compilable document which was built with Rmarkdown (Xie, Dervieux,
and Riederer 2020).
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