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Abstract

Background/Objective: Relative proportion of cases in a multi-strain pandemic like
the COVID-19 pandemic provides insight on how fast a newly emergent variant
dominates the infected population. However, the behavior of relative proportion of
emerging variants is an understudied field. We investigated the emerging behavior of
dominant COVID-19 variants using nonlinear statistical methods and calculated the
time to dominance of each variant.

Method: We used a phenomenological approach to model national- and
regional-level variant share data from the national genomic surveillance system provided
by the Centers for Disease Control and Prevention to determine the best model to
describe the emergence of two recent dominant variants of the SARS-CoV-2 virus:
XBB.1.5 and JN.1. The proportions were modeled using logistic, Weibull, and
generalized additive models. Model performance was evaluated using the Akaike
Information Criteria (AIC) and the root mean square error (RMSE).

Findings: The Weibull model performed the worst out of all three approaches. The
generalized additive model approach slightly outperformed the logistic model based on
fit statistics, but lacked in interpretability compared to the logistic model. These
models were then used to estimate the time elapsed from emergence to dominance in
the infected population, denoted by the time to dominance (TTD). All three models
yielded similar TTD estimates. The XBB.1.5 variant was found to dominate the
population faster compared to the JN.1 variant, especially in HHS Region 2 (New York)
where the XBB.1.5 was believed to emerge. This research expounds on how emerging
viral strains transition to dominance, informing public health interventions against
future emergent COVID-19 variants and other infectious diseases.

Introduction 1

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, a member of the 2

coronavirus family, has had a significant impact on global health, economy, and 3

societies. Coronaviruses, including COVID-19, Middle East Respiratory Syndrome 4

(MERS), and Severe Acute Respiratory Syndrome (SARS), are a group of respiratory 5

viruses that can cause diseases in animals and humans. They are named after the 6

crown-like spikes on their surface. Human coronaviruses were first discovered in the 7
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mid-1960s, and public health officials closely monitor them. The SARS-CoV-2 virus, 8

prone to genetic alterations over time, experiences mutations during replication. Since 9

the emergence of the SARS-COV-2 virus, it has undergone dynamic evolution 10

characterized by various changes resulting in the emergence of different strains. The 11

ongoing mutation of SARS-CoV-2, a characteristic of RNA viruses, occurs due to errors 12

in viral replication, as RNA polymerases lack proofreading mechanisms. These genetic 13

changes lead to the emergence of new variants, some of which have significant public 14

health implications due to increased transmissibility or severity of illness [1]. These 15

mutations can cause an emergence of new variants that have different characteristics 16

such as vaccine resistance, immunity resistance and reinfection. Each strain has distinct 17

traits and health concerns of its own. Since the start of the pandemic, SARS-CoV-2 has 18

shown itself to be capable of genetic evolution. The ongoing mutation of SARS-CoV-2, 19

a characteristic of RNA viruses, happens because mistakes in viral replication are not 20

fixed as RNA polymerases do not have inspection mechanisms. The genetic 21

heterogeneity of the virus enables it to adapt and perhaps improve its ability to survive 22

and transmit. In order to address this issue, it is imperative that we closely monitor 23

these mutations and adjust our interventions accordingly. 24

Recently Emerged COVID-19 Variants 25

Since the onset of the pandemic, several variants of SARS-CoV-2 have been identified 26

and classified by health authorities as Variants of Interest (VOIs) or Variants of 27

Concern (VOCs). Notable variants include Alpha (B.1.1.7), first discovered in the 28

United Kingdom, Beta (B.1.351) from South Africa, Delta (B.1.617.2) from India, and 29

Omicron (B.1.1.529) in Botswana and South Africa each showing unique traits and 30

health impacts [1, 2]. 31

The Omicron variant (B.1.1.529) emerged in late 2021 in Botswana and South Africa 32

and quickly spread all over the world. The omicron variant of the SARS-COV-2 virus 33

was notable for its numerous spike protein mutations, raising concerns about immune 34

evasion and vaccine effectiveness [3, 4]. Two of the most recent variants that dominated 35

the infected population in the United States (US) are XBB.1.5, also known as the 36

Kraken variant, and JN.1. The XBB.1.5 variant is a descendent lineage of XBB, which is 37

a recombinant of Omicron BA.2.10 and BA.2.75 descendant lineages [5–7]. The XBB.1.5 38

emerged in New York City and rapidly spread in the region in November-December 39

2022 and was identified to be responsible for most of the cases in the national level in 40

early 2023. On the other hand, the JN.1 variant is the offspring of the Omicron BA.2.86 41

variant was first identified in the US in September 2023 and has already become the 42

dominant variant of COVID-19 infections in the US. The mathematical modeling of the 43

emergence and rapid spread of the XBB.1.5 and JN.1 variants remains a significant gap 44

in the current research landscape. As of press time, there have not been any published 45

research on the mathematical modeling of the JN.1 strain in the United States. Cheng 46

and colleagues [8] used a multi-strain SIR model and variant proportion data to 47

estimate the transmission rates and reproduction number of the XBB strain using 48

surveillance data and variant proportions data. One of their recommendations was to 49

include XBB.1.5 as a separate compartment as it dominated other XBB subvariants. 50

However, there was no discussion on how quickly the XBB.1.5 dominated the XBB 51

infections compared to other strains. Although there is a plethora of studies on the 52

mathematical modeling of multi-strain epidemics, most of these studies are concerned 53

with calculating transmissibility coefficients [9, 10], estimating reproduction 54

numbers [9, 11,12], and performing stability analyses [13,14]. Current epidemic models 55

often focus on well-established parameters, neglecting a crucial element: the emergence 56

and dominance of highly transmissible COVID-19 variants. Understanding how these 57

new variants arise and outcompete existing variants is essential for accurate modeling in 58
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multi-strain epidemics. Furthermore, it is vital to analyze the behavior of these 59

dominant variants within the US population to effectively predict future spread and 60

inform public health interventions. The relative rate of emergence of each variant can 61

be monitored using variant proportion data from genomic surveillance, which is 62

provided by the Centers for Disease Control and Prevention (CDC) [15] and the Global 63

Initiative on Sharing Avian Influenza Data [16], and wastewater surveillance [17,18]. An 64

important parameter in describing the rate of dominance of a newly emerged variant is 65

the time required for an emergent variant to reach the majority status in the infected 66

population, also known as the time to dominance (TTD). 67

Time to Dominance 68

With the rapid mutation of SARS-CoV-2 in the United States general population, there 69

is a critical need to determine how fast a newly emerged variant dominates the infected 70

population. Newly emerged variants might exhibit vaccine resistance, increased 71

transmissibility, and higher mortality rates. Once a newly emerged variant with these 72

characteristics make up the majority of the infections, stricter public health policies 73

might need to be reinstated to curb the spread of these variants. For instance, mask 74

mandates were reinstated in some parts of the United States in early 2022 because of 75

the emergence of the Omicron variant [19,20]. Public health officials have limited time 76

to decide on the best strategy to characterize and devise strategies against these new 77

emergent variants. One benchmark we can to measure the speed of emergence of a viral 78

strain is the time to dominance (TTD). We define the TTD as the time it takes for an 79

emergent viral strain to make up the overall majority, i.e. at least 50%, of the infected 80

cases in a multi-strain epidemic. Fudolig [21] performed a simulation-based experiment 81

to test the effect of vaccination and transmission on the TTD on a two-strain epidemic 82

model. A three-parameter logistic growth model was used to describe the increase of 83

variant share in the simulated epidemics and estimate TTD. Simulations showed that a 84

more transmissible emergent strain relative to the existing strains was found to 85

dominate the infected population faster. In addition, higher vaccination rates and 86

coverages could lead to lower TTD. However, this method was not applied to data from 87

real-world multi-strain epidemics such as COVID-19. While the use of the logistic 88

model to estimate the TTD values for each simulation was sufficient for simulated data, 89

other growth models such as a generalized logistic or Weibull growth models might yield 90

a better fit and explain the emergence behavior better than logistic models. 91

Semi-parametric approaches such as generalized additive models would also be a great 92

option in modeling the non-linear growth of rapidly emerging SARS-CoV-2 variants. To 93

the best of our knowledge, there has not been any prior research that compared the 94

model performance of different models of COVID-19 variant proportion shares. 95

Objectives and Significance of the Study 96

The JN.1 and XBB.1.5 variants were two of the most recently emerged variants to 97

record variant shares of over 50% based on genomic surveillance data. This study 98

estimated the duration required for the JN.1 and XBB.1.5 variants to dominate the 99

COVID-19 infected population in the United States. Specifically, we focused on 100

modeling the emergence of these variants using the following modeling approaches: the 101

logistic growth model, the Weibull model, and the generalized additive model (GAM). 102

These models were then used to estimate the TTD based on variant proportion data 103

reported by the CDC from 2021-2024 [15]. While the CDC provides model-based 104

projected estimates of the variant share for the weeks when samples are being processed, 105

the underlying data-driven model is not provided by the CDC. The results of this study 106

presents preliminary data that would inform future studies on the emergence of new 107
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variants in multi-strain epidemic models. Only the weighted estimates of the variant 108

share during reported dates were modeled in this study. The confidence limits provided 109

by the CDC were not analyzed. By investigating the behavior of variant proportion 110

shares of COVID-19, we addressed the literature gap on the behavior leading to the 111

dominance of emergent variants in multi-variant epidemics. 112

Materials and methods 113

Dataset 114

COVID-19 variant proportion data was downloaded from the CDC website [15] on May 115

7, 2024. The variant proportions were calculated based on sequenced samples collected 116

from different regions of the US. The regional division was defined by the United States 117

Department of Health and Human Services (HHS). The member states of each region 118

can be accessed through the following link: 119

https://www.hhs.gov/about/agencies/iea/regional-offices/index.html. The 120

dataset included variant proportions every two weeks from January 2022 to April 2024. 121

We investigated the most recent SARS-CoV-2 variants, JN.1 and XBB.1.5, that were 122

reported to have a majority of COVID-19 cases nationwide. 123

Theory and Calculation 124

Variant Proportions 125

Fig 1. National- and regional-level variant proportion data of the JN.1 subvariant.

Historically, there are multiple SARS-CoV-2 variants that coexist in different regions 126

of the US. Fig 1 shows the estimated proportion share of the JN.1 variant as reported 127

by the CDC. These estimates were recorded every two weeks based on empirical 128

genomic sequencing data. The share of SARS-CoV-2 variant proportions appear to 129

follow a non-linear trend in time. We modeled this non-linear trend using three different 130

approaches: generalized additive models (GAM), logistic function curve fit, and Weibull 131

function curve fit. 132

Modeling Non-linear Emergence 133

Generalized Additive Models 134

Generalized additive models (GAM) are generalized linear models that utilize 135

smoothing splines to accurately model non-linear trends [22]. GAMs are made up of a 136

linear combination of a linear predictor and smoothing functions to describe any smooth 137

monotonic curves, making it ideal to model variant proportion data. An intercept-only 138

GAM was used in this study which had the following form: 139

f(t) = β0 + s(t), (1)

where β0 is the model intercept and s(t) is the smooth function of the time t. The 140

semi-parametric nature of GAMs make it difficult to provide confidence intervals of 141

inverse estimates such as the case of estimating TTD values, which will be explained in 142

the section . The mgcv package in R was used to fit a GAM on the CDC variant 143

proportion share data. 144
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Logistic and Weibull Models 145

We fit non-linear functions such as the logistic and Weibull functions to model the 146

non-linear increase of JN.1 and XBB.1.5 variant proportions upon emergence. 147

Fudolig [21] previously used the logistic function to model the increase in emerging 148

variant proportion in a multi-strain epidemic in calculating TTD values. The 149

five-parameter generalized logistic function can be expressed as 150

f(t) = c+
d− c

[1 + exp(b(t− e))]f
, (2)

where the time t will be measured in days from the first emergence. b is the scale 151

factor, c and d are the respective upper and lower asymptotes of the logistic curve, e is 152

the inflection point, and f is the asymmetry factor. The logistic function is also known 153

as the Boltzmann sigmoidal function [23]. A closely related model to the logistic 154

function is the Weibull function. The Weibull function is another function typically 155

used to model growth curves that provides more flexibility in modeling non-monotonic 156

functions. The Weibull function can be expressed as 157

f(t) = c+ (d− c)(exp[− exp(b(log(t)− e))]), (3)

where b is a scale factor, c is the lower asymptote, d is the upper asymptote, and e is 158

the point of inflection. Both models have been used to describe growth of the infected 159

population in epidemics [24–28], but there is a literature gap in using these models to 160

describe variant proportion shares. Curve fitting for both functions can be implemented 161

using the R package drc, which is commonly used to model dose response curves [23]. 162

Even though both logistic and Weibull models are lacking in flexibility compared to the 163

GAM, both logistic and Weibull models offer easily interpretable results that could 164

translate to action items for policy makers and public health officials. 165

Estimating the Time to Dominance (TTD, tD) 166

The time t = 0 was set two weeks before a share greater than 0.01% was reported for 167

the variant. Based on the criterion for t = 0 being the reporting date before the variant 168

proportion share was reported to be above 0.01%, the start of the emergence occurred 169

on October 15, 2022 for XBB.1.5 and Sept 2, 2023 for JN.1. All models were 170

implemented from t = 0 to tMAX , the time at which the variant proportion share is 171

maximum for each region and variant. The fit of each model was assessed using the 172

Akaike information criteria (AIC) and the root mean square error (RMSE). Lower AIC 173

and RMSE values imply a better model fit on the data. 174

The values of tD were estimated for regional and national level data. The TTD value, 175

denoted by tD, were estimated for each model by numerically solving for tD such that 176

f(t = tD) = 0.5. The R packages drc and mgcv were used to implement the logistic, 177

Weibull, and generalized additive models on the regional and national variant proportion 178

estimates from the CDC. We wish to clarify that the tD does not equate to ED50 as 179

neither JN.1 and XBB.1.5 reached a maximum share equal to 1. The root finding 180

function uniroot in R was used to estimated tD for both JN.1 and XBB.1.5. The TTD 181

estimates obtained from each model were compared and analyzed for each region. 182

Results and Discussion 183

Model Performance 184

Figs 2 and 3 show the graph of the absolute values of the AIC and RMSE values for 185

each model as applied to the national and regional COVID-19 variant proportion data. 186
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Lower AIC and RMSE values suggest a better model fit. The Weibull model appears to 187

perform the worst out of the three models, while the logistic model and GAM 188

performed comparably well in estimating the variant proportion curve during the 189

emergence of the two variants. 190

Fig 2. The magnitude of the AIC values (-AIC) for each fit function plotted for the
national and regional variant proportions data set. All calculated AIC values were
negative. A higher magnitude of the AIC corresponds to a better fit.

Fig 3. The root mean square error (RMSE) values for each fit function plotted for the
national and regional variant proportions data set. A lower magnitude of the RMSE
corresponds to a better fit.

The GAM outperformed both logistic and Weibull curve fits in modeling the 191

emergence of both variants at the national level. Figs 4 and 5 show the three different 192

models superimposed with the actual variant share data for XBB.1.5 and JN.1, 193

respectively. The GAM and logistic model cannot be visually perceived implying very 194

similar fit. Upon visual inspection, the Weibull model seems to underestimate the 195

”knee” of the sigmoid curve of the XBB.1.5 variant share. The Weibull model fails to 196

correctly account for the gradual increase of the variant share at t = 70 and t = 84, but 197

appears to intersect the other two models close to the line y = 0.5. This behavior is 198

reflected in Fig 3 which displays how the RMSE of the Weibull model is significantly 199

higher compared to the other two models. 200

Fig 4. The actual variant proportion data for XBB.1.5 in the US, shown as black dots,
plotted with the GAM (black line), logistic model (red), and Weibull model (green)
fitted values. The blue dashed line marks the 50% share level used for calculating the
TTD values.

Fig 5. The actual variant proportion data for JN.1 in the US, shown as black dots,
plotted with the GAM (black line), logistic model (red), and Weibull model (green)
fitted values. The blue dashed line marks the 50% share level used for calculating the
TTD values.

This large discrepancy in model performance is also observed in the regional level. 201

The Weibull model performed relatively poorly in modeling the emergence of JN.1 and 202

XBB.1.5 in all regions. Fig 6 displays the performance of the three models against the 203

actual XBB.1.5 variant proportion data in HHS Region 5 (Chicago), which also shows 204

the Weibull underestimation at t = 70 and t = 84 and the similarity between GAM and 205

logistic models observed in the national data. The same trend was observed in the JN.1 206

variant proportion as shown in Fig 7, which includes the three models and the actual 207

JN.1 variant share data in HHS Region 1 (Boston). 208

Fig 6. The actual variant proportion data for XBB.1.5 in HHS Region 5, shown as
black dots, plotted with the GAM (black line), logistic model (red), and Weibull model
(green) fitted values. The blue dashed line marks the 50% share level used for
calculating the TTD values.

It is noteworthy that the Weibull model underestimation at the ”knee”, specifically 209

t = 70 and t = 84, occur for both strains at the national level. For XBB.1.5, the dates 210
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Fig 7. The actual variant proportion data for JN.1 in HHS Region 1, shown as black
dots, plotted with the GAM (black line), logistic model (red), and Weibull model
(green) fitted values. The blue dashed line marks the 50% share level used for
calculating the TTD values.

corresponding to t = 70 and t = 84 are December 24, 2022 and January 7, 2023, 211

respectively. During these weeks, festive holidays such as Christmas, Hanukkah, and 212

New Year’s Eve often entail numerous social gatherings and meetups that could have 213

potentially lead to super-spreader events. After these dates, the variant proportion 214

increased before plateauing at the maximum which was recorded in mid-March (March 215

18, 2023). As for JN.1, t = 70 and t = 84 occurred on November 11, 2023 and November 216

25, 2023. These weeks include Thanksgiving 2023, which was celebrated in the US on 217

November 17, 2023. Like the aforementioned holidays, Thanksgiving is a holiday in the 218

US that involves social and family gatherings all over the country. It is possible that the 219

Weibull model could not account for the sudden increase in variant share leading up to 220

reaching the simple majority of the variant proportion cases for both cases. 221

The poor performance of the Weibull model in this study contrasts with previous 222

studies that assess the performance of the Weibull function in modeling COVID-19 223

incidence, prevalence, and mortality data. Attanayake and colleagues [29] determined 224

phenomenologically that the Weibull growth curve performed the best in modeling the 225

cumulative number of COVID-19 infections in the US from the case of first appearance 226

to July 2, 2020. Al-Ani and colleagues [24] also found that the Weibull model performed 227

the best in modeling the cumulative number of COVID-19 cases in Saudi Arabia. There 228

is a plethora of research that use modified Weibull distributions to model daily and 229

cumulative number of cases and deaths of COVID-19 patients from all over the 230

world [28,30,31]. Despite its wide usage in modeling other aspects of the COVID-19 231

pandemic, the Weibull function appears to perform underwhelmingly in modeling 232

COVID-19 variant proportion share data in the United States. Based on our findings, 233

the logistic or generalized additive models are more recommended to use in modeling 234

the share of emerging COVID-19 variants that achieve majority dominance in the 235

United States. While both logistic model and GAM perform similarly, the two models 236

provide different insights about the curve. The logistic model provides more information 237

on the shape of the curve, i.e. asymptotes, slopes, and inflection point. Moreover, it can 238

provide an estimate of the share at any given time. Its limitations lie when we want to 239

model the behavior of the variant proportion share past the emergence phase. After 240

COVID-19 variants reach their maximum share, the variant share would naturally start 241

decreasing as the number of cases decrease. This decrease can be naturally observed or 242

could have been caused by the emergence of a more transmissible variant. The GAM 243

approach would be more useful if a researcher intends to investigate the entire variant 244

share curve. GAMs provides precise estimates for variant proportion shares during and 245

after the emergence phase without constraint. While the GAM is generally the better 246

performing model, the model does not have an interpretable closed form because of the 247

general nature of the smoothing function s(t). It is essential to establish specific 248

research questions to determine which of the two models should be used in analyzing 249

variable proportion shares. In the next section, we illustrate how these models can be 250

used to measure the time to dominance of the XBB.1.5 and JN.1 strains, which is an 251

important aspect in characterizing a variant’s emergent pattern. 252

Model Application: Estimating TTD (tD) 253

Fig 8 shows the estimates of the tD values for the two variants for all models as applied 254

to national and regional level data. While there are discrepancies between the models 255
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Fig 8. National- and regional-level estimates of the tD values for JN.1 and XBB.1.5.

with respect to their AIC and RMSE values, the differences between tD estimates of the 256

three models are quite low. The highest difference between the tD estimates from each 257

model was 1.70 days for JN.1 (HHS Region 10, GAM vs. Weibull) and 2.04 days for 258

XBB.1.5 (HHS Region 4, GAM vs. Weibull). In most cases, the GAM estimates are 259

slightly higher compared to both logistic and Weibull estimates. Even though it did not 260

perfectly capture the entire growth curve, the Weibull model’s performance in 261

estimating tD was promising for JN.1 and XBB.1.5. This observation was not surprising 262

as Figs 4 to 7 showed the three curves converging close to y = 0.5 as mentioned in 263

Model Performance section in the Results. For ease of reporting from this point 264

onwards, we averaged the tD estimates from all three models. 265

Fig 9. Side-by-side comparison of tD values for JN.1 and XBB.1.5 evaluated for each
model.

Fig 9 shows the side-by-side comparison of the tD values for both JN.1 and XBB.1.5 266

variants in each region. The XBB.1.5 variant yielded lower time to dominance estimates 267

across all regions except HHS Region 9 (San Francisco), in which the JN.1 variant had a 268

slightly lower estimate. Even though the CDC insinuated that the JN.1 is more 269

transmissible compared to other variants present in December 2023, the CDC did not 270

find an increased risk to public health. Individuals who have updated vaccinations were 271

also reported to be protected from the JN and XBB variants [32]. HHS Region 2 (New 272

York) yielded the lowest tD value for both XBB.1.5 and JN.1 with respective tD 273

estimates of 79.28 and 107.82 days. On the other hand, the highest tD GAM estimates 274

for XBB.1.5 was recorded to be in HHS Region 10 (Seattle) at 124.73 days. It is 275

important to highlight that the time to dominance for HHS Region 2 was typically the 276

time where the ”knee” of the logistic curve occurred. We can observe in Fig 10 that the 277

”knee” appeared earlier compared to other regions shown in Figs 4 to 7. According to 278

Luoma [5], New York could be the epicenter of the XBB.1.5 rapid spread which can 279

explain the lower time to dominance in HHS Region 2 and surrounding HHS regions. 280

HHS Regions 1 (Boston, tD = 88.58 days) and 3 (Philadelphia,tD = 95.97) closely follow 281

as second and third lowest TTD values. On the other hand, HHS Region 10 (Seattle) is 282

located in the opposite coast of the country and has a lower population density than 283

HHS Regions 1,2, and 3, which could have contributed to a slower spread of the variant. 284

Meanwhile, the highest tD estimates for JN.1 was observed in HHS Region 5 at 125.63 285

days. The rapid dominance of JN.1 and XBB.1.5 variants in eastern HHS Regions (1, 2, 286

and 3) likely stems from the extensive interconnectivity of urban centers in these 287

regions. Air, land, and water transport between these urban centers are possible, which 288

could not be said for other HHS regions. 289

Fig 10. The actual variant proportion data for XBB.1.5 in HHS Region 2, shown as
black dots, plotted with the GAM (black line), logistic model (red), and Weibull model
(green) fitted values. The blue dashed line marks the 50% share level used for
calculating the TTD values.

Limitations of the Study 290

The phenomenological approach of the study provides insight on the temporal behavior 291

of variant proportions for XBB.1.5 and JN.1. However, we must remain cautious of 292

generalizing this approach to previous dominant variants like the Alpha, Delta, and 293
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early Omicron variants because of the different public health interventions in place at 294

the time of emergence. XBB.1.5 and JN.1 emerged after vaccines were provided to the 295

public, mask mandates were dropped, and social distancing protocols were not enforced. 296

We directed our study to the two most variants as they are the more relevant to current 297

public health officials dealing with relaxed interventions. A separate study must be 298

done to investigate the time to dominance for earlier variants. 299

We would also emphasize that these trends were analyzed from the genomic 300

surveillance data of COVID-19 in the United States provided by the CDC. While this 301

study focused on genomic sequencing data, future research will incorporate estimated 302

variant proportions from wastewater surveillance. This rich data source holds promise 303

for revealing potentially divergent trends in newly emerged COVID-19 variants. 304

Conclusion 305

We have modeled the variant share data during the emergence of two variants that 306

dominated the COVID-19 infected population in the US most recently: XBB.1.5 and 307

JN.1. Logistic, Weibull, and generalized additive models (GAMs) were considered for 308

both national and regional-level data for the proportion of confirmed XBB.1.5 and JN.1 309

cases provided by the CDC. After evaluating model performance based on AIC and 310

RMSE values, the Weibull model was determined to perform the worst among the three 311

models. The logistic and GAM approaches yielded similar results, with GAM providing 312

slightly lower RMSE values. The advantage in model performance and versatility 313

provided by GAM could be compensated with the interpretability of the logistic model 314

in modeling variant emergence in a multi-variant epidemic such as COVID-19. 315

We were also able to calculate the time to dominance (TTD) tD, which measures the 316

time required for the variants to reach majority status in the infected population. 317

Despite its subpar performance in modeling variant emergence, the tD estimates from 318

the Weibull model did not deviate largely from the tD estimates from the logistic model 319

and GAM. We also determined that the TTD was the lowest in HHS Region 2 (New 320

York), which indicates a faster spread of XBB.1.5 and JN.1 during emergence compared 321

to other regions. The dominance of JN.1 and XBB.1.5 variants concentrated in eastern 322

HHS Regions (1, 2, and 3) likely stems from these regions’ unique characteristics. These 323

regions boast densely populated urban centers extensively interconnected by air, land, 324

and water transportation networks, facilitating rapid viral spread compared to other 325

regions, where public transport linking urban centers is limited. The TTD estimates for 326

both variants ranged from 2.6 to 4 months depending on the region, which could be 327

used as an early temporal checkpoint to assess whether current strategies against 328

COVID-19 infections should change to fight against these new variants. 329

We also observed how the timing of the ”knee” of the variant share curve could 330

affect whether new variants could dominate the population. The rapid increase of both 331

XBB.1.5 and JN.1 variant shares occurred during holiday seasons in which people in the 332

US typically gather in large groups, which might have made it easier for these variants 333

to dominate. This temporal association suggests that holiday gatherings might act as a 334

catalyst in decreasing the TTD of new variants in the US. We could use the findings of 335

this study to analyze the similarities in the emergence of the FLiRT variants (KP.2, 336

KP.3, KP.1.1) compared to the previously dominant variants such as JN.1 and XBB.1.5 337

in this period where COVID-19 policies is less stringent compared to the policies during 338

the pandemic. While none of these FLiRT variants have a 50% share of the cases as of 339

press time, the results of the study could inform which one of these variants could 340

dominate the infected population in the US in the following weeks, especially after the 341

independence day weekend celebrations. 342

In addition to researching future emerging COVID-19 variants. further research is 343
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needed to determine relative model performance between logistic, Weibull, and GAM 344

approaches hold for other variants of interest (VOIs) such as BA.2.86 that achieved 345

majority status before the relaxation of COVID-19 public health and social measures. 346

We would also like to include VOIs that did not achieve majority status such as EG.5 347

and HV.1 in future work. Expanding the study on data from outside the United States 348

is also recommended to enable us to compare different optimal control strategies in 349

containing the spread of newly emergent COVID-19 variants all around the world. 350
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