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ABSTRACT 
The clinical adoption of Large Language Models (LLMs) in biomedical research has been limited by concerns 

regarding the quality, accuracy, and reliability of their outputs, particularly in precision oncology, where 

clinical decision-making demands high precision. Current models, often based on fine-tuned foundational 

LLMs, are prone to issues such as hallucinations, incoherent reasoning, and loss of context. In this work, 

we present GeneSilico Copilot, an advanced agent-based architecture that transforms LLMs from simple 

response synthesizers to clinical reasoning systems. Our approach is centred around a bespoke ReAct 

agent that orchestrates a suite of specialized tools for asynchronous information retrieval and synthesis. 

These tools access curated document vector stores containing clinical treatment guidelines, genomic 

insights, drug information, clinical trials, and breast cancer-specific literature. To leverage large context 

windows of current LLMs, we implement a hybrid search strategy that prioritizes key information and 

dynamically integrates summarized content, reducing context fragmentation. Incorporating additional 

metadata further allows for precise, transparent and evidence-backed reasoning at each step of the thought 

process. The system ensures that at every stage, the agent can synthesize meaningful, context-aware 

observations that contribute to a coherent and comprehensive final response that aligns with clinical 

standards. Evaluations on real-world breast cancer cases show that GeneSilico Copilot significantly 

improves response accuracy and personalization. This system represents a critical advancement toward 

making LLMs clinically deployable in precision oncology and has potential applications in broader medical 

domains requiring complex, data-driven decision-making. 
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INTRODUCTION 
Cancer's inherent complexity, driven by both inter and intra-tumoral heterogeneity, presents a significant 

hurdle in clinical management. This genetic heterogeneity allows tumors to evade traditional treatments. 

However, the advent of precision oncology has led to the development of genome-targeted and genome-

informed therapies, which aim to address this challenge. From 2006 to 2020, the eligibility for genome-

targeted therapies in the U.S. increased from 5.13% to 13.60%, while the response rate improved from 

2.73% to 7.04%. Similarly, genome-informed therapies saw a rise in eligibility from 10.70% to 27.30% and 

an increase in response from 3.33% to 11.10% during the same period. Interestingly, most of the eligibility 

increase for genome-targeted therapies occurred after 2018, whereas most of the response increase was 

observed before 2018. These findings highlight a concerning trend: while eligibility for these therapies is on 

the rise, the actual response rate remains low1. Large Language Models (LLMs) offer a powerful opportunity 

to address these challenges2. By leveraging their ability to process and synthesize vast amounts of 

healthcare data, LLMs can assist oncologists in navigating the ever-expanding landscape of targeted 

therapies. They can analyze a patient's specific genetic profile, identify relevant clinical trials and treatment 

guidelines, and even suggest potential drug combinations tailored to the unique characteristics of the 

patient's cancer considering comorbidities and side effects. While LLMs can correctly identify some key 

strategies and offer reasonable, albeit incomplete, suggestions even experts missed, they can also generate 

factual errors (hallucination), irrelevant, harmful, or biased content3.   

While multiple industries have adopted LLM-based models, adoption in biology and medicine is still 

lacking4. With the ever-evolving treatment guidelines and drug approval5,6 it is difficult for fine-tuned LLMs 

to stay updated. State of the art models like Med-PaLM 7, BioGPT 8, and BioBERT 9 are standalone systems 

that are trained and fine-tuned on domain-specific large-scale biomedical corpora. These have achieved 

notable results on medical question answering datasets. GatorTron10 is a similar model that has been 

designed and trained from scratch, and subsequently fine-tuned for tasks like clinical concept extraction, 

medical relation extraction, semantic textual similarity, natural language inference, and medical question 

answering. While there are domain-specific LLMs, they come with the same drawbacks of foundational 
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models. Foundational models such as ChatGPT 3.5 itself can act as a support tool for breast tumor board, 

but suffer from the lack of references, or the potential to produce seemingly credible but incorrect 

responses11. In the domain of radiation oncology, ChatGPT 3.5 showed high accuracy and completeness in 

radiation oncology queries, but higher-than-recommended readability levels suggest the need for 

refinement for improved patient accessibility and understanding12. Newer models such as GPT-4 and 

models from Anthropic provide better responses, but all LLMs continue to have clinically significant error 

rates, including examples of overconfidence and consistent inaccuracies13. In the context of treatment 

guidelines, ChatGPT provides concise, accessible supportive care advice including many non-medical 

support recommendations, but its recommendations lacked the specificity observed in National 

Comprehensive Cancer Network (NCCN) guidelines including often not suggesting any 

medications14. These discrepancies with guidelines raise concerns for patient-facing symptom 

management recommendations. This can be partly attributed to the fact that these models are trained on 

publicly available data and do not have sufficient specialized domain information. Models implemented on 

more focused domains have better performance. CancerBERT15 is an example of a model trained on a 

narrower domain, but the model has only been evaluated on named entity recognition (NER) tasks. The 

output of standalone models can be further optimized through retrieval augmented generation (RAG). In 

RAGs, the LLM retrieves information from pre-defined storage and synthesizes the response. External data 

can be used to augment the response, thereby providing more context and reducing false information. For 

example, in clinical trial screening, GPT-4 has shown promising performance when augmented with 

external data sources16. Similarly, GPT-4 has also been used for retrieving cancer guidelines. GPT-4 with 

RAG provided significantly higher correct responses when compared to the standalone LLM service17. 

RefAI18 is a similar tool that uses retrieval augmented generation to fetch medical literature in real time and 

summarize them. These examples show the potential of retrieval augmented generation to mitigate the 

shortcomings of standalone LLM services.  

While LLMs with extended context windows—such as those seen in models like Gemini 1.5—show 

improvements in retrieving relevant facts, these models still fall short of maximizing recall. For example, 
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Gemini 1.5 demonstrated superior accuracy over GPT-4 at shorter context lengths but experienced a 

noticeable drop in recall when dealing with extended contexts19, achieving only around 60-80% recall at 

higher token limits. This gap means that even with the ability to handle massive amounts of information, 

the LLM may fail to retrieve a significant portion of available relevant data. This loss significantly 

undermines the system’s reliability in high-stakes fields like precision oncology, where critical pieces of 

information must not be overlooked.  

While simple Retrieval-Augmented Generation (RAG) systems attempt to address the challenges of context 

and relevance by fetching documents to augment the LLM's output, they often reduce the LLM to the role of 

a passive synthesizer. These systems rely heavily on external data sources, which the LLM incorporates 

without engaging its deeper reasoning capabilities. As a result, the LLM may act more like a writing 

assistant, handling content without participating in any meaningful decision-making process. This 

approach can be limiting, particularly in complex fields like precision oncology, where critical clinical 

decisions depend on integrating insights from multiple verticals—such as genomic profiles, treatment 

guidelines, and clinical trials. Simple retrieval mechanisms cannot adequately navigate these diverse data 

streams or provide the nuanced reasoning required for personalized patient care. 

To overcome these limitations, it is essential to move towards agentic systems that not only retrieve 

information but also actively reason over it. Unlike traditional RAG systems, which relegate LLMs to 

performing static retrieval tasks, agent-based frameworks empower LLMs to function as dynamic reasoning 

systems. In these frameworks, the LLM is not just a passive receiver of information, but an active 

participant in the decision-making loop, integrating data from various sources and engaging in logical 

synthesis. The GeneSilico Copilot (GSCP) exemplifies this agentic approach. Powered by a bespoke ReAct 

agent 20, GSCP actively orchestrates multiple tools to retrieve and process information from curated 

sources. This multi-tool architecture allows the system to engage in complex reasoning, synthesizing 

insights from a hybrid retrieval mechanism while dynamically filtering out irrelevant data. By leveraging 

these tools, GSCP transcends the limitations of both long-context-window models and basic RAG systems, 

ensuring that the LLM generates transparent, evidence-based responses that are contextually aware and 
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clinically relevant. This agentic reasoning system is vital in oncology, where accurate and context-specific 

responses can affect treatment choices. 

RESULTS 
GSCP, an agentic framework for precision oncology 
Precision oncology requires the integration of detailed information from multiple domains, such as drug 

dosages, treatment guidelines, and clinical trials. A single retrieval system is often inadequate for navigating 

this complexity. To address this, we propose an agent-based approach that enables the LLM to dynamically 

control multiple specialized tools based on conversational context. 

At the core of the GeneSilico Copilot (GSCP) is a modified ReAct agent, which improves upon the traditional 

reason-observation-action loop. When compared to commercially available language models services, 

what sets GSCP apart is its ability to show the thoughts and observations, along with links to the document 

sources while generating a response. The agent operates with two types of memory: conversational 

memory for user interactions and working memory for managing tool-based processes. This distinction 

ensures coherent communication with both users and tools. The observations from the tools may often 

serve as additional related information for oncologists. These include treatment guidelines, drug dosage 

information, adverse reactions and other such information. 

The GSCP retrieval system integrates a vector store with hybrid search (implemented via Qdrant) and a 

language model. The vector store handles semantic retrieval, while the language model generates insights 

based on the entire user query. After retrieving documents, the system re-ranks them for relevance before 

processing them further to create context-aware insights. 

While both the agent and tools utilize language models for interaction, only the agent makes decisions, 

driving the overall reasoning process. This process involves analysing the query, retrieving and filtering 

relevant information via tools, and synthesizing a comprehensive response. Tools play a crucial role in 

generating insights by filtering retrieved documents to those most relevant to the query. The agent then uses 

these insights to formulate a refined, evidence-based response (Figure 1). 
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For example, if tasked with recommending personalized therapies, the agent directs the appropriate tool to 

search the vector store. The tool retrieves and filters the results, selecting only the most relevant documents 

and generating insights, which are then passed to the agent for decision-making. Similarly, for drug dosage 

recommendations, a dedicated tool extracts and processes relevant data, providing refined insights for the 

agent to integrate into its reasoning loop (Figure 2). 

The GSCP employs a hybrid vector search strategy, combining dense embeddings (generated using Voyage 

AI) for capturing semantic relationships and sparse embeddings (using SPLADE) for extracting key features. 

The data corpus is categorized by source and use case, pre-processed, and siloed into collections, with 

each tool performing vector searches and tailored post-processing to ensure high-quality, relevant data 

retrieval. 

Systematic curation of relevant documents for the GSCP vector store 
Vector databases rely on document embeddings for indexing and retrieval based on semantic similarity. 

However, semantically similar documents, even if thematically unrelated, can have close vector 

representations, leading to improper partitioning of the search space (Figure 3a). This often results in 

clustering documents from different sources together, particularly in specialized domains like breast 

cancer. Previously, naive chunking of long documents further complicated retrieval by fragmenting context, 

often breaking critical information connections across document segments. 

In the proposed vector storage setup, we have eliminated chunking entirely, as modern LLMs can now 

accommodate entire documents in their context windows. This approach preserves the full document 

context, preventing the disruption caused by chunking and ensuring that essential relationships within the 

document remain intact. While this has addressed issues of context fragmentation, the embedding model 

is still limited by the number of tokens it can process. To resolve this, we now generate a summary of each 

document using LLMs and embed this summary. This ensures that the semantics are correctly encoded in 

the vector. During retrieval, both the full document and its corresponding summary, along with all the 

metadata are retrieved, allowing the agent to make use of both concise insights and the complete context 

of the document. 
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Our system also tackles the challenge of overlapping vector spaces that arise from thematically similar 

documents. For example, breast cancer guidelines from different sources (such as NCCN and ASCO) can 

have closely aligned content, leading to potential overlaps in the retrieval process. This issue is 

compounded by the imbalanced data volume across categories. For instance, breast cancer treatment 

guidelines from the National Comprehensive Cancer Network (NCCN) contain 17.1 thousand tokens, while 

clinical trial documents total 3.4 million tokens. The collated information from PubMed has a total of 460 

thousand tokens. The volume discrepancies are illustrated in Figure 3b. This can bias retrieval, with 

smaller but crucial datasets being overshadowed by larger document sets. Despite being much smaller in 

volume, the guidelines and the generic information were used to synthesize a lot of responses during the 

evaluation process that is further illustrated in Figure 4.   

To address these challenges, we propose a siloed abstractive vector storage system. This partitions the 

corpus into thematically distinct silos—such as NCCN Guidelines, ASCO Guidelines, PubMed, PharmGKB, 

Clinical Trials, and others. The storage of each silo is backed by a collection in the vector database. Each 

silo is managed by a dedicated retrieval module that applies tailored filtering, summarization, and 

processing techniques, ensuring that each source is retrieved and used independently. This prevents the 

intermixing of guidelines or documents from different sources, ensuring that responses are synthesized 

based on silo-specific information. For instance, responses that involve treatment guidelines are pulled 

exclusively from their relevant silo without contamination from other guideline sources. 

With the elimination of document chunking, each silo document now includes only a summarized 

abstraction, rather than a chunked representation. These summaries are designed to be context-specific, 

based on the silo's purpose. For example, a summary focusing on clinical trial eligibility criteria will differ 

from one that highlights key findings from a landmark drug trial, even though both originate from the same 

clinical trial document. This abstraction allows the agent to grasp document semantics more efficiently, 

reducing the number of reason-action loops required for response generation. 

We utilize document summaries for both embedding and vector searches. Each document is summarized 

using an LLM, and the summary is encoded into a vector for efficient retrieval. During vector search, these 
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encoded summaries are used to identify relevant documents. However, when retrieving, the system fetches 

the entire raw document, not just the summary, allowing the agent to have access to the full content. 

After retrieval, the relevant portion of the full document is selected based on the query and used to generate 

insights and observations. These insights are crucial for the reasoning-action loop, where the agent 

synthesizes information to generate a comprehensive response. By leveraging the full document content 

and not limiting retrieval to just the summary, the agent ensures that all contextually significant information 

is considered. This approach maintains the coherence of the original document while also benefiting from 

the efficiency of summarized content during vector search. This strikes a balance between the 

computational efficiency of summary-based vector searches and the depth of information available from 

full-document retrieval. 

GSCP agent improves response quality over general purpose LLMs and RAGs 
Agents act as a powerful approach for question answering tasks, particularly in the medical domain where 

access to comprehensive and informative answers is crucial. However, evaluating the effectiveness of these 

systems, especially in comparison to standalone LLMs or simpler RAG configurations, requires a rich and 

diverse set of evaluation datasets. Such datasets should encompass a variety of question formats, difficulty 

levels, and domains to provide a rigorous assessment of both context retrieval and response generation 

capabilities. 

The absence of dedicated breast cancer question-answering datasets necessitated the creation of a 

comprehensive evaluation suite. We combined publicly available medical question-answering datasets 

with domain-specific samples encompassing both objective (multiple choice) questions from sources like 

MedMCQA21 and MedQA22, and subjective (open ended) questions from sources like PubMedQA23 and 

internally constructed questions, all related to breast cancer (Figure 5). For objective dataset, a Python 

script was utilized to identify all potential answer choices within the dataset for each question. 

Subsequently, we searched for the corresponding responses for the presence of these choices. This 

approach was essential as the correct answer was frequently not explicitly listed among the provided 

options, thereby simplifying the downstream evaluation task.  
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The application employs meticulously designed system prompts to enable the Reaction-Action or the ReAct 

loop as well as the thought and response generation process. The ReAct system prompt that is used here is 

a standard public-domain prompt that generates “thoughts”, “actions”, and “observations”. To capture the 

full complexity and subtleties of user query and generate detailed responses with evidence, we have an 

additional system prompt that is used in the intermediate stages of the response generation process. 

However, for evaluation purposes, this system custom prompt from the application is replaced to generate 

responses that aligns with the format of the evaluation to facilitate fair and consistent assessment. These 

prompts for evaluation are discussed in detail in the Supplementary Information, Section 1.  

We employed state-of-the-art LLM services, GPT-4 and Claude Opus-3, known for their long context 

windows as well as their comparable performance on benchmark tests (Figure 6). The evaluation explored 

both simple RAG and agentic configurations. 

For Objective Question Answering (QA) containing 223 questions, four quantitative metrics (accuracy, 

precision, recall, F1-score) were used to assess performance. Agentic systems significantly outperformed 

both RAG and standalone LLMs across all metrics. The GPT-4 powered agentic setup consistently achieved 

the highest scores in accuracy, recall, F1-score. Both LLM services demonstrated comparable performance, 

with GPT-4 exhibiting a slight edge. Agentic (GPT-4) consistently achieved the highest scores in accuracy, 

recall, F1-score, and precision (0.83, 0.83, 0.83, and 0.83 respectively), followed by the Agentic setup with 

Claude Opus 3 with moderate success. Basic RAG models showed mixed results, with relatively strong 

precision but lower accuracy, recall, and F1-score. Standalone LLMs exhibited the lowest performance 

across all metrics.  

For Subjective QA consisting of 113 questions, the DeepEval framework evaluated retrieval and generation 

performance for subjective questions. Standalone LLMs were excluded due to the absence of a retrieval 

context in their responses. Context precision, context relevancy, faithfulness, and answer relevancy 

metrics were employed. Agentic systems achieved superior performance in both retrieval and generation 

tasks. In terms of context precision, Agentic (Claude Opus 3) led with a score of 0.44, followed by Agentic 

(GPT-4) at 0.37, while basic models struggled. Both Agentic models achieved high context relevancy scores 
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of 0.27, significantly surpassing the basic RAG models. For answer relevancy, Agentic (GPT-4) excelled with 

a score of 0.96, followed by Agentic (Claude Opus 3) at 0.90, while basic RAG models performed reasonably 

well. Finally, while faithfulness scores were comparable overall, Agentic (Claude Opus 3) achieved a perfect 

score of 1. 

A custom in-house dataset focusing on precision oncology and breast cancer genetics, containing 25 

questions, was created to simulate real-world healthcare complexities. This dataset, Precision Oncology 

QA, mimicked genetic markers, disease progression, and personalized treatment options. The same 

metrics used for subjective questions were applied. Agentic systems significantly outperformed basic 

systems in both context precision and relevancy. Agentic (Claude Opus 3) achieved a precision score of 0.51 

and a relevancy score of 0.82, while Agentic (GPT-4) scored 0.52 for precision and 0.80 for relevancy. In 

contrast, basic RAG systems showed lower scores, with Basic (Claude Opus 3) at 0.20 for precision and 

0.55 for relevancy, and Basic (GPT-4) at 0.15 for precision and 0.55 for relevancy. While answer relevancy 

and faithfulness scores were comparable across models, Agentic (Claude Opus 3) demonstrated slightly 

higher faithfulness with a score of 0.98 compared to Basic (Claude Opus 3) at 0.85. These evaluations 

demonstrate that moving from a RAG configuration to the proposed Agentic setup will improve performance 

no matter which LLM service is being used. 

To construct a faithful representation of the clinical setting, synthetic patient case studies were generated 

through a collaborative effort involving practicing oncologists and LLM services. Oncologists contributed 

essential clinical insights, ensuring the case studies accurately reflected real-world medical complexities. 

These expert-provided details, devoid of specific patient data, served as the foundation for the LLMs to craft 

comprehensive case studies. To further enhance the authenticity of these synthetic cases, oncologists were 

asked to review the generated case studies to validate their alignment with the real clinical reports. The 

performance of agentic models, specifically Claude Opus 3 and GPT-4, was assessed using these four 

synthesized patient health records. In these experiments, the models were tasked with formulating suitable 

treatment plans based exclusively on the presented patient data. The detailed model outputs along with 

can be found in Supplementary Information Section 2. 
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Decoding the coordination among tools that improve GSCP response quality 
A key strength of the GeneSilico Copilot (GSCP) agent lies in its ability to intelligently coordinate a suite of 

specialized tools for retrieval, processing, and reasoning across distinct topics. Each tool is responsible for 

accessing and processing content from specific silos, such as NCCN guidelines, PubMed, and clinical trial 

data, based on the nature of the query. Every tool along with their descriptions and number of documents 

that are retrieved from that silo is present in Supplementary Information, Section 3. This segmented 

approach ensures that the tool retrieves the most relevant information for a given query while maintaining 

transparency in the agent's decision-making process. By exposing its reasoning steps, the agent provides 

insight into how different sources contribute to the final response, allowing the end-user to better 

understand the weight and relevance of each information source (Supplementary Figure 1). 

Figure 7 breaks down the tool utilization over reasoning steps across different evaluation scenarios. For 

instance, in objective case study questions, the agent heavily relies on NCCN guidelines, which are critical 

for treatment protocols and recommendations. Meanwhile, PubMed is consistently utilized as a 

supplemental tool to enrich responses with broader biomedical literature. This balance between targeted 

guidelines and general literature highlights the flexibility of the agent in adapting to various types of 

questions and datasets. The coordination process typically occurs within a sequence of 3 to 5 reasoning 

steps, as shown in the Figure 7. In each step, the agent identifies the relevant tool while the tool retrieves 

information, integrates the insights, and helps the agent in evolving the response. This breakdown not only 

demonstrates the logical flow of the agent's reasoning but also showcases its ability to adaptively select the 

most appropriate tool based on the specific needs of the query. The tool orchestration within this siloed 

architecture significantly enhances the quality and precision of the responses generated, providing a 

powerful mechanism for clinical decision support (Supplementary Figure 2). 

DISCUSSION 
Large language models have demonstrated considerable potential across various domains, including 

healthcare and biomedical research. However, limitations in transparency and robust evaluation 

methodologies have hindered their full clinical integration. GeneSilico CoPilot (GSCP) addresses these 
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challenges by proposing an agent-based framework that leverages the inherent reasoning capabilities of 

LLMs to plan and execute tasks within the healthcare domain.  This work focuses on the specific domain of 

breast cancer, showcasing the advantages of the GSCP framework over standalone LLMs and Retrieval-

Augmented Generation (RAG) systems in both generic question answering and precision oncology tasks. 

A key differentiator of GSCP, when compared to commercially available language models is its ability to 

expose the reasoning process. Once the user provides a query, the agent, as instructed by system prompts, 

creates clinically relevant thoughts, actions and observations. Every observation is created with in-text 

citations. Users can directly go to the URLs to verify the content of the observations from the tools. 

Furthermore, while not all parts of the observations may be necessary in forming the final response, the 

observations themselves act as crucial supplementary information. The final response also provides URL 

references, improving the trustworthiness of the system. 

Evaluations conducted across public and private datasets demonstrate the superiority of the proposed 

agent-based framework compared to traditional RAG systems.  In precision oncology question answering, 

GSCP achieved an improvement of up to 15.29% in answer faithfulness compared to RAGs.  Retrieval 

metrics also showed significant improvement, with GSCP system achieving up to 200.83% and 47.27% 

better performance in context precision and context relevancy, respectively.  These results highlight the 

clear advantage of the agent's reasoning and retrieval mechanisms over basic RAG approaches. Similar 

improvements were observed in the subjective question answering dataset, where the GSCP agent achieved 

up to 93.65% and 2600% improvement in context precision and context relevancy, respectively.  The agent's 

retrieval mechanism facilitates a more robust reasoning process, and by incorporating these reasoning 

steps into the response generation, GSCP system enhances the trustworthiness and transparency of its 

answers. 

The GSCP framework surpasses the limitations of simple RAG systems by employing a highly specialized 

bespoke ReAct agent that integrates breast cancer-specific clinical rationale into the reasoning loop. The 

agent leverages a dynamic prompt selection mechanism to enhance its ability to process and synthesize 

information across various silos of biomedical data. 
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Furthermore, GSCP employs a suite of specialized tools, each designed to interact with specific types of 

data silos—such as guidelines, clinical trials, and biomedical literature. Each tool call is triggered by the 

ReAct prompt but powered by the custom retrieval prompt that changes based on the user query and the 

silo, which ensures that the tool extracts relevant information from the documents. The tool uses LLMs to 

assess the retrieved documents based on the agent's query, generating observations that contain evidence, 

citations, and insights. The insights are critical, as they provide statements that logically support the user 

query, contributing to the reasoning flow of the agent. The agent's final response is an outcome of the logical 

synthesis of these observations. It uses the custom system prompt to generate a comprehensive and 

coherent response, incorporating the relevant insights and evidence. This step ensures that GSCP agent 

produces detailed, evidence-backed responses, offering clinicians greater confidence in the accuracy and 

relevance of the system's output. This approach represents a significant evolution over traditional RAG 

systems, improving both the depth and precision of the agent’s responses. 

Our evaluation revealed that Claude Opus 3 produced well-structured responses that resonated with 

oncology experts, despite achieving lower overall evaluation scores compared to OpenA’s GPT-4. While 

Opus 3 exhibited slower response generation times, often requiring up to three minutes to complete a 

response using provided tools, its outputs were characterized by superior readability. In terms of medical 

accuracy, Opus 3 offered more detailed explanations, including comprehensive drug and dosage 

information, while GPT-4 produced simpler responses. 

Although both systems demonstrated comparable levels of medical accuracy, the significant disparity in 

human-perceived readability suggests an inability of the DeepEval evaluation framework to fully capture 

the nuanced aspects of response quality, particularly when considering human factors such as readability. 

This finding underscores the limitations of relying solely on automated metrics to assess model 

performance, particularly in complex domains such as medicine. While medical accuracy is undeniably 

crucial, it is essential to recognize that it is not the sole determinant of response quality. A comprehensive 

evaluation should consider additional factors, such as response clarity, coherence, and overall clinical 

utility, as perceived by human experts. 
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The GSCP system's transparent planning process, which can be visualized through tool usage, provides 

valuable insights into the relative importance of information sources. For example, our observations 

indicate a clear preference for NCCN guidelines over American Society of Clinical Oncology (ASCO) and 

European Society for Medical Oncology (ESMO) guidelines. It is noteworthy that NCCN guidelines 

underwent a meticulous manual paraphrasing process to convert them into plain text while preserving the 

information conveyed in the original flowcharts. In contrast, ASCO and ESMO guidelines primarily relied 

on LLM-based summarization. PubMed also emerged as a significant information source. While PubMed 

offers a wealth of open-access articles containing general knowledge, our focused initial retrieval process 

effectively transformed the PubMed collection into a more specialized corpus tailored to the domain of 

oncology. Analysis of tool usage statistics can be leveraged to inform future optimizations of the data 

sources, potentially leading to the deprecation, consolidation, or replacement of certain sources based on 

their effectiveness within the agent's framework. 

Future endeavours include expanding our testing to encompass real-life patient cases and evaluating the 

GSCP system's capabilities in therapeutic decision support. This necessitates the development and 

implementation of robust and reproducible evaluation metrics. Current frameworks like DeepEval, which 

rely on LLM services for evaluation, are susceptible to inconsistencies. Therefore, there is a pressing need 

for more sophisticated evaluation methods with human-in-the-loop specifically designed to assess the 

planning and reasoning capabilities of LLMs. 

The GSCP system currently faces some limitations in terms of processing speed. The tool usage and 

frequent communication with the LLM service contribute to a processing delay, with complex cases 

requiring up to five minutes for final response generation.  

Developing a patient-specific treatment regimen requires meticulous evaluation of various factors, 

including the patient's medical history, comorbidities, prior treatments, and potential drug toxicities. This 

necessitates a comprehensive review of the patient's medical records, encompassing laboratory results, 

imaging studies, and medication history. A thorough understanding of the patient's current health status 

and any coexisting conditions is also essential. Once this data is collected, the physician can begin 
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exploring treatment options aligned with established clinical guidelines from NCCN, ASCO, and ESMO. 

These guidelines provide evidence-based recommendations informed by the latest research and clinical 

experience. However, it is equally important to consider the patient's individual needs and preferences, as 

well as their eligibility for ongoing clinical trials offering access to potentially groundbreaking therapies. 

This complex decision-making process necessitates the synthesis of information from diverse sources. The 

GSCP system addresses this challenge by leveraging its knowledge base to recommend personalized 

treatment plans for each patient case. This streamlines the physician's workflow, facilitates informed 

decision-making, and ultimately contributes to enhanced patient care. 

In conclusion, this work demonstrates the potential of developing domain-specific agentic systems. By 

focusing on a particular domain, such as oncology, the system can be optimized to effectively process and 

generate information within the context of a vast and complex data landscape. 

FIGURES 
Figure 1: Illustration of the working of the GeneSilico CoPilot 

Schematic workflow depicting the overall functionality of the agentic framework for precision oncology. The 

first step involves the collection and pre-processing of diverse medical data sources including literature, 

clinical trials, drug information and treatment guidelines – these serve as the tools. The second step 

involves the retrieval process where to efficiently extract relevant information given a query by employing 

appropriate tool selection, hybrid search, re-ranking, and summarization. Further, the information 

retrieved is fed into a ReAct Agent that implements a cycle of reasoning, action (tool calls), and observation 

to generate insights. The final step involves the synthesis of the response containing the medical insights 

and recommendations that caters to the use cases such as personalized therapy recommendations, clinical 

trial suggestions, genomic data analysis, and patient summaries. 

Figure 2: Flow of the process from a patient case to treatment plan 

An oncologist provides a patient case study and prompts GSCP to recommend a treatment plan. Upon 

receiving this query, GSCP engages in a structured Reason-Action-Observation process and synthesize the 
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response based on the patient’s specific clinical details. Step 2 through 4 runs in a loop till the agent has 

enough information to form a coherent response using its clinical reasoning abilities.  

Figure 3: Representation of the data in the vector database 

A) The U-Map in 3D to visualize the vector space that highlights the overlaps and intersections among 

various topics; B) The distribution of information across diverse topics within the vector database, 

illustrated through token counts, offers a comprehensive view of the content richness and topical breadth. 

Token count was generated using the tiktoken library. 

Figure 4: Representation of tool usage for diverse question-answering tasks 

Tool usage distribution across three distinct question answering (QA) tasks: Objective QA, Subjective QA, 

and Precision Oncology QA (from left to right). In Objective QA, the NCCN Guidelines represent the largest 

reference source at 43.8%, followed by PubMed (17.7%) and Wikipedia (14.8%). Subjective QA shows a 

dominant reliance on PubMed (39.9%), with NCCN Guidelines (20.1%) and ASCO Guidelines (11.4%) also 

contributing significantly. In Precision Oncology QA, PubMed is the predominant source (62%), with NCCN 

Guidelines accounting for 14.1%. Each task demonstrates a distinct pattern of reference source utilization, 

with NCCN Guidelines and PubMed playing major roles across all categories. 

Figure 5: Distribution of the QA dataset 

The donut chart presents the breakdown of 361 total questions across the different types of question 

answering tasks. Objective QA comprises 223 questions, sourced from MedQA (124 questions) and 

MedMCQA (99 questions). Subjective QA includes 113 questions, derived from PubMedQA (61 questions) 

and InternalQA (52 questions). Additionally, Precision Oncology QA, developed in-house dataset 

contributes 25 questions. 

Figure 6: Assessment of the performance of GSCP on question answering tasks 

Performance evaluation of GSCP across three different types of question answering (QA) tasks: Objective 

QA, Subjective QA, and Precision Oncology QA. The metrics used for Objective QA include Accuracy, F1-
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score, Precision, and Recall, while for Subjective QA and Precision Oncology QA, the performance is 

evaluated using Faithfulness, Answer Relevancy, Context Precision, and Context Relevancy. The bar plots 

provide a comparative view of these metrics across different datasets and models, highlighting the variation 

in performance. 

Figure 7: Methodical use of tools in step-by-step response synthesis 

The Sankey diagrams illustrate the utilization of various tools across multiple steps in the response 

generation process for Objective QA, Subjective QA, and Precision Oncology QA tasks. Each chart 

represents the flow of tool usage from Step 1 through to Step 5, detailing the number of steps taken to 

generate responses and the specific tool used at each stage. 

METHODS 
Data sources 
GSCP leverages a collection of manually curated data sources specific to breast cancer, compiled with the 

support of practicing oncologists. These sources include standard breast cancer guidelines from the 

National Comprehensive Cancer Network (NCCN), American Society of Clinical Oncology (ASCO), and 

European Society for Medical Oncology (ESMO). 

Targeted Drug and Gene Information: To incorporate relevant drug and gene information, a curated list of 

68 genes (including HRR and pharmacogenomics genes) and their targeted drugs was compiled. A 

customized GeneSilico gene panel for breast cancer therapy recommendations was designed, 

encompassing these 68 genes. The selection criteria for these genes included: genes associated with 

therapies (FDA-approved, Phase 3, and Phase 4 clinical trials); genes with high research significance and 

frequent alterations in databases like Human Somatic Mutation Database (HSMD) 

(digitalinsights.qiagen.com/hsmd/) and cBioPortal (www.cbioportal.org); genes associated with 

homologous recombination repair (HRR) mechanism; pharmacogenomic (PGx) genes relevant to breast 

cancer; normalized codon length of genes; and key genes present in other somatic panels such as MSK-

IMPACT (www.mskcc.org/msk-impact), Foundation Medicine CDx diagnostic panel 
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(https://www.foundationmedicine.in/our-services/cdx.html), and MedGenome panel 

(diagnostics.medgenome.com). The rankings from these criteria were combined using a rank aggregation 

algorithm to determine the final list of top genes, which were then manually validated. Pathogenic and likely 

pathogenic variants in breast cancer were selected using the HSMD, COSMIC24, and ClinVar25 databases. 

Additionally, the GeneSilico gene panel for breast cancer includes all exonic and a few selected intronic 

variants for the 68 genes as well as 32 microsatellite instability (MSI) hotspots.  

Subsequently, this targeted drug-gene list was used to extract drug data from Drugbank Open Data 

(go.drugbank.com/releases/latest#open-data) 26, FDA drug labels (labels.fda.gov), RxList (www.rxlist.com), 

Therapeutic Target Database27, Drugs.com (www.drugs.com), and Wikipedia. Drug approval details were 

obtained from the FDA and ClinicalTrials.gov. We used the OpenFDA API and the Clinical Trials API to 

access the information. PubMed information was gathered using the PMC E-Utilities. PharmGKB and 

JNCCN provided further breast cancer-specific literature.  

Data Abstraction and Summarization with Contextual Focus: To enhance context for lengthy documents, 

all documents were summarized using LLM services. Instead of generic summaries, task-specific 

summaries were created. This context-aware process facilitated the summarization of pertinent sections 

rather than entire documents. The summarization was performed using Google Gemini 1.0 Pro. The 

summarization prompt was provided depending on the requirement. For summarization of clinical trials 

for eligibility criteria, the prompt was “Make the following clinical trial information 

concise, highlighting the key eligibility criteria. Simply respond with the 

shortened text in markdown format.” For clinical trials which contained drug approval 

information, the prompt was changed to “Give an abstract of the trial highlighting the 

drug approval information. Simply respond with the shortened text in markdown 

format.” In every case, the summary was formatted with markdown tags. In our experiments, using 

markdown tags improved the retrieval quality. This allowed the tools to fetch fewer documents and helped 

optimize the context window use. Although storing documents with multiple summaries creates 
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redundancy across silos, this approach enhanced agent performance. This summarization process was 

applied to all data sources containing long-form textual content. 

Data Staging for Manageability and Retrieval: Data staging was implemented to improve manageability and 

retrieval efficiency. Before embedding, a copy of the data, along with extracted metadata, summaries, and 

URLs (for public domain documents), was stored in a NoSQL datastore. This was implemented using 

MongoDB. This approach simplifies and automates the embedding process. The stored URLs and metadata 

are utilized by system prompts for response refinement.  

Manual Curation for Complex Documents: Documents such as NCCN guidelines containing complex 

diagrams and flowcharts, underwent manual paraphrasing and conversion into plain text while preserving 

the step-by-step narrative. Furthermore, NCCN documents were segmented based on cancer subtype, 

treatment phase, and treatment nature. Most other documents, including guidelines from ASCO and ESMO, 

were summarized using LLMs followed by manual inspection. Each summary was further segmented and 

annotated with markdown tags to enhance the agent's contextual understanding and facilitate the 

generation of more relevant responses. 

Vector stores 
In our vector store implementation, we employ a hybrid search strategy that leverages both dense and 

sparse vector embeddings to enhance retrieval performance. Specifically, we generate and store two types 

of embeddings for each document: a dense embedding provided by a closed-source algorithm from 

VoyageAI, and a sparse embedding generated using SPLADE. During retrieval, we utilize a multi-stage 

process involving sparse vector matching, dense vector search, and Reciprocal Rank Fusion (RRF) to 

produce the final ranked list of documents. 

Embedding Generation: For the dense embeddings, we use a proprietary model from VoyageAI that maps 

each document summary 𝒅𝒅 and query 𝒒𝒒 into a 1536-dimensional dense vector space. The embeddings are 

represented as: 

ddense ∈  R𝟙𝟙𝟙𝟙𝟙𝟙𝟙𝟙 ,  qdense ∈  R𝟙𝟙𝟙𝟙𝟙𝟙𝟙𝟙 
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These embeddings capture the semantic representations of the documents and queries in a continuous 

vector space, facilitating similarity computations based on their geometric properties. Even though the 

document summaries are encoded, the summaries themselves contain the semantics of the whole 

document and therefore, should contain the semantics of the entire document.  

Similarly, the sparse embeddings are generated using SPLADE, which produces high-dimensional sparse 

vectors reflecting the term importance within the vocabulary space. Let 𝑵𝑵 denote the size of the vocabulary. 

The sparse embeddings for documents and queries are: 

𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∈  𝑅𝑅𝑁𝑁 ,  𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∈  𝑅𝑅𝑁𝑁 

Here, N = 30522. Each element 𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑖𝑖 or qsplade,i  corresponds to the importance of the ith term in the 

vocabulary for the document or query, respectively. The sparsity of these vectors ensures computational 

efficiency during matching. 

Storage of embeddings: Both the dense and sparse embeddings are stored using 16-bit floating-point 

precision (float16) to maintain a balance between storage efficiency and computational accuracy. This dual-

storage approach allows us to utilize the strengths of both embedding types during retrieval. To facilitate 

efficient similarity searches during retrieval, we index the embeddings using the Hierarchical Navigable 

Small World (HNSW) algorithm, implemented via Qdrant. The HNSW index is particularly well-suited for 

high-dimensional data, making it an ideal choice for our dense embeddings of dimension 1536 and sparse 

embeddings corresponding to the vocabulary size. The HNSW index is configured with the following 

parameters: 

m=16: This parameter determines the number of bi-directional links created for each element during the 

construction of the HNSW graph. A higher m value increases the connectivity of the graph, potentially 

improving search accuracy but also increasing memory consumption and indexing time. By setting m=16, 

we achieve a balance between index performance and resource utilization. 

ef_construct=100: This parameter controls the size of the dynamic list of nearest neighbors during the index 

construction phase. A larger ef_construct value leads to a more accurate and robust index at the cost of 
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longer indexing time. With ef_construct=100, we enhance the quality of the index without incurring 

excessive computational overhead. 

full_scan_threshold=10000: This threshold defines the dataset size below which the system will perform a 

full brute-force scan instead of using the HNSW index. For datasets smaller than 10,000 vectors, a full scan 

is often more efficient due to the overhead associated with indexing. This ensures that we optimize retrieval 

performance across different dataset sizes. 

Retrieval: The retrieval process consists of three main stages: sparse vector pre-fetching, dense vector 

searching, and Reciprocal Rank Fusion. Initially, we pre-fetch n candidate documents from the corpus 

using sparse vector matching based on the SPLADE embeddings. The matching score between a query q 

and a document d is computed using an inverse document frequency (IDF)-weighted inner product: 

Scoresplade(𝑞𝑞,𝑑𝑑) = �𝐼𝐼𝐼𝐼𝐼𝐼(𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

⋅ 𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖 ⋅ 𝑑𝑑splade,i 

Here, IDF(i) is the inverse document frequency of the i-th term, which emphasizes the significance of less 

frequent terms in the matching process. The top n documents with the highest Scoresplade(𝑞𝑞,𝑑𝑑) are selected 

for further processing. Within the pre-fetched set of n documents, we perform a dense vector search to 

retrieve the top m documents m < n that are most semantically like the query. The similarity between the 

dense embeddings of the query and a document is calculated using cosine similarity: 

Simdense(𝑞𝑞,𝑑𝑑) = cos(𝑞𝑞dense, ddense) =
𝑞𝑞𝑠𝑠𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠
⏉ ddense

‖𝑞𝑞dense‖ ∙ ‖ddense‖
 

The documents are ranked based on Simdense(𝑞𝑞,𝑑𝑑) and the top m documents are selected for the final stage. 

To combine the strengths of both the sparse and dense retrieval methods, we apply Reciprocal Rank Fusion 

(RRF) on the m documents obtained from the previous stage. RRF is an effective method for aggregating 

rankings from different sources by assigning higher scores to documents that appear near the top of 

multiple rankings.  
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Let 𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑑𝑑) be the rank of document d in the initial sparse ranking and 𝑟𝑟𝑠𝑠𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠(𝑑𝑑) be its rank in the dense 

ranking. The RRF score for each document is computed as: 

RRF(𝑑𝑑) = �
1

𝑐𝑐 + 𝑟𝑟𝑠𝑠(𝑑𝑑)
𝑠𝑠∈{splade,dense}

 

where c is a constant to control the impact of the rank positions. The documents are then sorted based on 

their RRF scores, and the top k documents (k<m) are selected as the final retrieval results. The values of 

n=10, m=7, and k=5 is chosen based on empirical performance evaluations, ensuring that n>m>k to 

progressively refine the candidate set. 

The ReAct agent 
The GSCP employs a bespoke ReAct agent, designed to simulate clinical reasoning processes for precision 

oncology decision-making. The agent is built ground up using the LlamaIndex’s Workflows, an event-driven 

architecture. Based on the general ReAct architecture but has been significantly modified to address the 

unique requirements of clinical workflows. 

ReAct Architecture Overview: The ReAct architecture is a framework that enables agents to perform 

complex reasoning and action sequences by iteratively generating thoughts and actions based on user 

inputs. In this architecture, a system prompt guides the agent to utilize a set of tools to achieve the desired 

outcome. The workflow begins with the agent receiving a user query. The agent then formulates a thought 

on how to address the query, which often involves selecting an appropriate tool to use. The action is the 

execution of this tool, and the result is an observation that informs the agent's next thought. This thought-

action-observation loop continues until the agent arrives at a final response, effectively solving the user's 

query through a combination of reasoning and tool usage. The initial system prompt, referred to as the 

ReAct system prompt, provides general instructions to the agent on how to perform these steps. 

Modifications for Clinical Reasoning: While the standard ReAct prompt is effective for general-purpose 

reasoning, it lacks the specificity required for clinical reasoning in oncology. To address this, we introduced 

a second system prompt, the clinical reasoning system prompt. This specialized prompt takes precedence 
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over the default ReAct prompt during key stages of the agent's workflow, particularly those involved with 

thought formation and output generation from observations. 

This override is essential during these stages because clinical decision-making, especially in complex fields 

like oncology, demands more than basic reasoning. The agent must process detailed patient data, cross-

reference clinical guidelines, and synthesize information from diverse sources such as clinical trials and 

drug information databases. By using a specialized prompt, the agent can: 

• Simulate the collective clinical reasoning typically exhibited by a virtual tumour board, considering 

factors like patient history, disease progression, and personalized treatment options. 

• Ensure that the thoughts generated by the agent are aligned with clinically appropriate logic, driving 

the selection of the most relevant tools and observations. 

• Prioritize and refine observations based on the established clinical standards, making the agent’s 

decision-making loop more suited to precision oncology tasks. 

Agent Workflow: The ReAct agent's workflow is broken down into four distinct functions: 

1. Get User Query: The agent receives the user’s input, typically a clinical question or patient case, 

which forms the starting point of the reasoning process. This is where the ReAct system prompt is 

also introduced.  

2. Prepare the Chat History: The agent structures the previous interactions and context into a coherent 

history, ensuring it can build upon prior information effectively. This is where the clinical reasoning 

system prompt takes over.  

3. Generate Tool Calls (Create Thought): Now, using the clinical reasoning system prompt, the agent 

forms a thought and decides which tool to call. This thought is shaped by clinical logic, guiding the 

selection of appropriate tools for the query. 

4. Process Tool Calls (Get Observations): The selected tool returns observations, which are integrated 

back into the reasoning loop. This also collates and generates the citations. 
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Steps 2, 3, and 4 are repeated iteratively until the final thought leads to a comprehensive response.  

Iterative Reasoning with Tool Feedback: Each tool used by the agent operates with its own tool system 

prompt, which follows a shared template but is customized based on the tool’s function. The tools include 

modules for retrieving clinical trial data, drug information, precision oncology guidelines, and general 

literature searches. The tool system prompt is tasked with generating a summary relevant to the agent's 

current query, given the documents or data it has accessed. This process involves distilling complex 

medical information into actionable insights that the agent can use in its reasoning loop. Depending on the 

tool's nature, the prompt may instruct the tool to perform a tree-summarization—breaking down 

information into hierarchical components—or to compact or refine information to highlight the most critical 

elements. As the agent processes observations from the tools, it continually refines its thoughts and 

actions. The clinical reasoning system prompt guides this iterative process, encouraging the agent to 

consider alternative hypotheses, weigh evidence, and explore different facets of the patient's case. This 

iterative loop continues until the agent synthesizes a comprehensive response that reflects a deep 

understanding of the clinical scenario. 

Incorporation of Citations and Metadata: An essential aspect of clinical reasoning is the ability to reference 

authoritative sources. Both the ReAct and clinical reasoning system prompts instruct the agent to generate 

citations from metadata associated with the retrieved documents. Our vector store is constructed to 

include URLs and other reference information, allowing the agent to provide precise citations at each step 

of its reasoning. This feature not only adds credibility to the agent's responses but also enables users to 

verify and further explore the referenced material. 

Memory Architecture: To handle complex medical queries while efficiently managing the limited context 

window, the ReAct agent uses two distinct types of memory: 

1. Conversational Memory: This memory stores the user’s messages and the final agent responses. It 

handles the primary conversation between the agent and the user, ensuring that important 

interactions are preserved for continuity without overloading the context window. 
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2. Working Memory: This memory tracks the internal conversations between the agent and the tools. 

It stores the agent's tool-specific queries and the corresponding observations, keeping these 

interactions separate from the user conversation. By isolating the tool interactions, the agent can 

manage detailed queries and observations while freeing up space in the context window for ongoing 

user interactions. 

This separation of memory ensures efficient management of complex interactions, but it comes with one 

limitation: the user cannot directly reference or ask questions about tool-generated observations since 

these observations are stored in working memory. This drawback can prevent the user from delving into 

specific details generated by a tool unless the agent explicitly includes them in the final response. This 

highlights a limitation in flexibility when it comes to user-driven exploration of tool-generated insights. 

Context Overflow Handling: In scenarios where the response generation requires numerous reasoning loops 

and observations begin to quickly fill up the context window, GSCP employs insight extraction and 

compression to manage context overflow efficiently specifically within the working memory. This process 

ensures that the agent can continue its reasoning tasks without losing critical information or running out 

of context window capacity. Here, we compress the middle portion of the conversation while preserving 

the most critical parts—the initial user input and the current reasoning step. When the content of the 

current working memory has exceeded the context window, we then use another instance of the same LLM 

to create a compressed representation of the past observations by extracting the necessary insights. By 

compressing the middle sections of working memory and retaining the most important insights and final 

observations, the agent ensures that it can continue its reasoning process without disruption. The final 

response is generated based on these insights, ensuring a comprehensive and logical outcome. 

Experimental setup 
We evaluated the proposed method using datasets constructed from public sources and real-life cases. 

Standard public datasets for breast cancer are unavailable. Therefore, we extracted breast cancer-related 

questions from multiple sources and categorized them as subjective (requiring long-form answers) or 

objective (multiple-choice). A simple keyword-based search facilitated extraction, followed by manual 
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review by practicing oncologists to ensure question correctness. The objective dataset comprised 223 

questions from MedMCQA and MedQA (USMLE), while the subjective dataset consisted of 113 questions 

extracted from PubMedQA and an in-house dataset (InternalQA). For objective questions lacking a single 

clear answer where oncologists identified multiple correct options, the questions were reworked as 

subjective ones. To simulate the complexities encountered by medical professionals in real-world oncology 

practice, we constructed a custom in-house dataset, the Precision Oncology dataset, of 25 questions 

focused on precision oncology and breast cancer genetics. This dataset embodies case-study like 

scenarios, mimicking an oncologist's investigative process. The internal dataset as well as the precision 

oncology datasets were created with the support of practicing oncologists. The dataset for evaluation is 

provided in Supplementary Data.  

Accuracy, F1 score, precision, and recall were used to assess system performance for simple multiple-

choice questions. For the subjective and precision oncology datasets, the DeepEval framework 

(https://docs.confident-ai.com/) evaluated our system and compared its performance to a RAG system. This 

framework employs Contextual Precision (ranking relevant information), Contextual Relevancy (overall 

retrieved context relevance), Faithfulness (factual alignment between response and retrieved context), and 

Answer Relevancy (ratio of relevant statements in the answer) to measure the retrieval and generation 

performance. 

DATA AVAILABILITY 
The datasets used in this study are available in the supplementary materials. Supplementary Data file 

contains evaluation datasets, including the objective questions extracted from MedMCQA and MedQA 

(USMLE), subjective questions from PubMedQA and our in-house dataset (InternalQA), and custom 

Precision Oncology dataset. Our in-house datasets (InternalQA and Precision Oncology) were created with 

the support of practicing oncologists and are included in the supplementary materials. The DeepEval 

framework used for performance evaluation is publicly accessible at https://docs.confident-ai.com/. Any 

additional data that supports the findings of this study are available from the corresponding author upon 

reasonable request. 
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SUPPLEMENTARY INFORMATION 
Files 
Supplementary Information 

Section 1: Contains description of the datasets present in Supplementary Information Data and the 

prompts used to generate the responses for the evaluation.  

Section 2: Contains selected synthetic case studies for intervention plan. These case studies were 

designed by oncologists based on real-life cases. The file contains the entire response provided by 

GSCP when presented with the case studies.  

Section 3: Contains the configuration file of the different tools used by the agent. The “top k” and 

the “sparse k” determine the number of results fetched based on the dense and the sparse vector 

match respectively.  

Supplementary Figure 1: Implementation of the agent. 

Supplementary Figure 2: A visual explainer of the reasoning process for a case study.  

Supplementary Data 

Excel spreadsheet consisting of the questions and the corresponding ground truth for the datasets 

– Subjective, Objective and Precision Oncology. 
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Figure 6
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