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ABSTRACT 
Despite the widespread application of Large Language Models (LLMs) in biomedical research, their clinical 

adoption faces significant challenges. These challenges stem from concerns about the quality, accuracy, 

and comprehensiveness of LLM-generated answers. Most existing work has focused on fine-tuning LLMs 

based on foundation models, which have not yet fully addressed accuracy and reliability issues. In this 

work, we propose an agent-based approach that aims to make LLM-based systems clinically deployable for 

precision oncology, while mitigating common pitfalls such as hallucinations, incoherence, and "lost-in-the-

middle" problems. To achieve this, we implemented an agentic architecture, fundamentally shifting an 

LLM's role from a simple response synthesizer to planner. This agent orchestrates a suite of specialized 

tools that asynchronously retrieve information from various sources. These tools include curated 

document vector stores encompassing treatment guidelines, genomic data, clinical trial information, drug 

data, and breast cancer literature. The LLM then leverages its planning capabilities to synthesize 

information retrieved by these tools, generating comprehensive and accurate responses. We demonstrate 

GeneSilico Copilot's effectiveness in the domain of breast cancer, achieving state-of-the-art accuracy. 

Furthermore, the system showcases success in generating personalized oncotherapy recommendations for 

real-world cases. 
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INTRODUCTION 
Cancer's inherent complexity, driven by both inter and intra-tumoral heterogeneity, presents a significant 

hurdle in clinical management. This genetic heterogeneity allows tumors to evade traditional treatments. 

However, the advent of precision oncology has led to the development of genome-targeted and genome-

informed therapies, which aim to address this challenge. From 2006 to 2020, the eligibility for genome-

targeted therapies in the U.S. increased from 5.13% to 13.60%, while the response rate improved from 

2.73% to 7.04%. Similarly, genome-informed therapies saw a rise in eligibility from 10.70% to 27.30% and 

an increase in response from 3.33% to 11.10% during the same period. Interestingly, most of the eligibility 

increase for genome-targeted therapies occurred after 2018, whereas most of the response increase was 

observed before 2018. These findings highlight a concerning trend: while eligibility for these therapies is on 

the rise, the actual response rate remains low1. Large Language Models (LLMs) offer a powerful opportunity 

to address these challenges2. By leveraging their ability to process and synthesize vast amounts of 

healthcare data, LLMs can assist oncologists in navigating the ever-expanding landscape of targeted 

therapies. They can analyze a patient's specific genetic profile, identify relevant clinical trials and treatment 

guidelines, and even suggest potential drug combinations tailored to the unique characteristics of the 

patient's cancer. While LLMs can correctly identify some key strategies and offer reasonable, albeit 

incomplete, suggestions even experts missed, they can also generate factual errors (hallucination), 

irrelevant, harmful, or biased content3. 

While multiple industries have adopted LLM-based models, adoption in biology and medicine is still 

lacking4. With the ever-evolving treatment guidelines and drug approval5,6 it is difficult for fine-tuned LLMs 

to stay updated. State of the art models like Med-PaLM 7, BioGPT 8, and BioBERT 9 are standalone systems 

that are trained and fine-tuned on domain-specific large-scale biomedical corpora. These have achieved 

notable results on medical question answering datasets. GatorTron10 is a similar model that has been 

designed and trained from scratch, and subsequently fine-tuned for tasks like clinical concept extraction, 

medical relation extraction, semantic textual similarity, natural language inference, and medical question 

answering. While there are domain-specific LLMs, they come with the same drawbacks of foundational 
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models. Foundational models such as ChatGPT 3.5 itself can act as a support tool for breast tumor board, 

but suffer from the lack of references, or the potential to produce seemingly credible but incorrect 

responses11. In the domain of radiation oncology, ChatGPT 3.5 showed high accuracy and completeness in 

radiation oncology queries, but higher-than-recommended readability levels suggest the need for 

refinement for improved patient accessibility and understanding12. Newer models such as GPT-4 and 

models from Anthropic provide better responses, but all LLMs continue to have clinically significant error 

rates, including examples of overconfidence and consistent inaccuracies13. In the context of treatment 

guidelines, ChatGPT provides concise, accessible supportive care advice including many non-medical 

support recommendations, but its recommendations lacked the specificity observed in National 

Comprehensive Cancer Network (NCCN) guidelines including often not suggesting any 

medications14. These discrepancies with guidelines raise concerns for patient-facing symptom 

management recommendations. This can be partly attributed to the fact that these models are trained on 

publicly available data and do not have sufficient specialized domain information. Models implemented on 

more focused domains have better performance. CancerBERT15 is an example of a model trained on a 

narrower domain, but the model has only been evaluated on named entity recognition (NER) tasks. The 

output of standalone models can be further optimized through retrieval augmented generation (RAG). In 

RAGs, the LLM retrieves information from pre-defined storage and synthesizes the response. External data 

can be used to augment the response, thereby providing more context and reducing false information. For 

example, in clinical trial screening, GPT-4 has shown promising performance when augmented with 

external data sources16. Similarly, GPT-4 has also been used for retrieving cancer guidelines. GPT-4 with 

RAG provided significantly higher correct responses when compared to the standalone LLM service17. 

RefAI18 is a similar tool that uses retrieval augmented generation to fetch medical literature in real time and 

summarize them. These examples show the potential of retrieval augmented generation to mitigate the 

shortcomings of standalone LLM services.  

While simple RAG systems demonstrate proficiency in information retrieval and response synthesis, they 

remain susceptible to issues inherent in the retrieval process. These limitations include the retrieval of 
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irrelevant information, the failure to capture context during retrieval, and the improper re-ranking of 

retrieved documents. Agent-based frameworks represent the next step in evolution, enabling LLMs to utilize 

various tools for information gathering and subsequent response synthesis through their own inherent 

reasoning capabilities. These tools empower agents to function as multi-tasking systems, with each tool 

specializing in a specific task. This multi-faceted approach becomes particularly crucial in the domain of 

precision oncology, where expertise across various verticals is essential. 

The GeneSilico Copilot (GSCP) framework exemplifies an agent-based approach designed around a unique 

hybrid retrieval system. This system integrates a meticulously curated corpus with a novel retrieval 

approach. The GSCP employs a ReAct agent19 to generate reasoning traces alongside textual actions. These 

traces inform the model's internal state, ultimately enhancing its decision-making capabilities. Notably, the 

final response incorporates these reasoning traces. The model utilizes function calls (tools) to execute a 

reason-action loop. These tools, implemented as semantic search retrievers, connect to vector database. 

They process retrieved information by summarizing, refining, or reranking them. Using information from 

different tools, the agent finally generates the response. 

RESULTS 
GSCP, an agentic framework for precision oncology 
Precision oncology requires in-depth information but focuses on a finite number of key aspects, such as 

drug dosage information, treatment guidelines, or potential clinical trials. A single retrieval system might 

not be sufficient to navigate this complex and nuanced landscape. Here, we propose an agent-based 

approach that empowers the LLM to control and utilize multiple specialized tools based on evolving 

conversation. These tools can include retrievers, re-rankers, and summarizers, along with hybrid search 

functionalities. The agent uses its planning and reasoning to synthesize the response by selecting the most 

appropriate tool for each information need. This allows the agent to, for instance, recommend personalized 

therapy options by looking up relevant literature using a specific tool, or utilize another tool to suggest 

clinical trials suitable for the patient's specific condition. Similarly, the agent can recommend drugs and 

appropriate dosages by employing a tool specializing in drug information retrieval. The outputs from these 
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tools are then fed back into the LLM, informing its reasoning and synthesis processes, ultimately leading to 

the generation of a comprehensive and informative response tailored to the user's needs (Figure 1a). 

In contrast, traditional RAG systems typically rely on a single retrieval approach, which can be limiting in 

complex domains like precision oncology. For instance, a simple keyword search might miss relevant 

documents due to synonymous terminology or variations in phrasing. Our agent-based approach 

overcomes these limitations by providing greater control and transparency over the retrieval process. The 

ReAct agent can dynamically select the most suitable tool based on the current conversation state and the 

user's information requirements. A key benefit of the ReAct agent is its ability to expose the reasoning 

process behind the synthesized response (Figure 1b). 

For data retrieval, the tools in GSCP employ a hybrid vector search strategy. The vector database and search 

are implemented using Qdrant. This hybrid approach combines sparse and dense embeddings for each 

document, allowing for sematic similarity searches on both vector types. Dense embeddings are generated 

using Voyage AI, a proprietary service, while sparse embeddings are created with SPLADE. Furthermore, 

the data corpus is categorized based on its source and intended use. Data for each use case is pre-

processed and siloed into separate collections. Each silo is handled by a dedicated tool responsible for 

vector search and text post-processing tailored to the specific data source.  

Systematic curation of relevant documents for the GSCP vector store 

Vector databases rely on document embeddings for indexing and retrieval based on semantic similarity. 

However, semantically similar documents, even if thematically unrelated, can have close vector 

representations, leading to improper partitioning of the search space (Figure 2a). This results in clustering 

similar documents from different sources together, particularly in narrow domains like breast cancer. 

Additionally, naive chunking of long documents can fragment context.  

Figure 2b demonstrates the volume imbalance across silos in the vector database, highlighting the low 

volume of crucial guidelines compared to clinical trials and PubMed data. For example, the guidelines 

related to breast cancer treatment from the National Comprehensive Cancer Network has total of 17.1 
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thousand tokens whereas all the clinical trial documents have 3.4 million tokens. The collated information 

from PubMed has a total of 460 thousand tokens. Despite being much smaller in volume, the guidelines and 

the generic information were used to synthesize a lot of responses that is further illustrated in Figure 4.  

The corpus used in this work had documents that were thematically similar and hence, the vector 

embeddings from two separate but similar topics were naturally similar to each other. This created an issue 

as often guidelines from different sources would get intermixed as there was a significant overlap in the 

vector search space for these guidelines. To address the challenges associated with an overlapping search 

space and imbalanced data volume, we propose a Siloed Abstractive Vector Store (SVS) system. The SVS 

leverages collections within the vector database to partition the corpus into thematically distinct silos, such 

as NCCN Guidelines, ASCO Guidelines, PubMed, PharmGKB, Clinical Trials, and others. Each silo employs 

a dedicated retrieval module with tailored filtering, processing, and summarization techniques. The agent 

utilizes tools for asynchronous access to each silo, preventing information intermixing. This ensures, for 

example, that responses involving guidelines are synthesized based on information from a specific silo 

without contamination from other guidelines. This siloed approach allows the agent to present accurate 

information from various sources within a single coherent response. 

Furthermore, each silo document includes a summarized abstraction alongside its chunked content. These 

summaries and chunks are linked via metadata. When a chunk is retrieved, its corresponding summary is 

retrieved simultaneously. These summaries are context-specific based on the silo's purpose. For instance, 

a summary recommending relevant clinical trials might differ from a summary highlighting a landmark drug 

trial, even if both originate from the same clinical trial document stored in separate silos. In our hand, this 

abstraction empowers the agent to grasp document semantics more effectively, reducing the number of 

reason-action loops required for response generation. For documents where chunk order is crucial, the 

summary guides the agent in re-ordering chunks using an LLM. Finally, depending on the utilized tool, 

retrieved document chunks undergo further LLM refinement before being forwarded to the agent, along 

with the document source metadata. 
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GSCP agent improves response quality over general purpose LLMs and RAGs 
Agentic RAG systems act as a powerful approach for question answering tasks, particularly in the medical 

domain where access to comprehensive and informative answers is crucial. However, evaluating the 

effectiveness of these systems, especially in comparison to standalone LLMs or simpler RAG 

configurations, requires a rich and diverse set of evaluation datasets. Such datasets should encompass a 

variety of question formats, difficulty levels, and domains to provide a rigorous assessment of both context 

retrieval and response generation capabilities. 

The absence of dedicated breast cancer question-answering datasets necessitated the creation of a 

comprehensive evaluation suite. We combined publicly available medical question-answering datasets 

with domain-specific samples encompassing both objective (multiple choice) questions from sources like 

MedMCQA20 and MedQA21, and subjective (open ended) questions from sources like PubMedQA22 and 

internally constructed questions, all related to breast cancer (Figure 3a). For objective dataset, a Python 

script was utilized to identify all potential answer choices within the dataset for each question. 

Subsequently, we searched the corresponding responses for the presence of these choices. This approach 

was essential as the correct answer was frequently not explicitly listed among the provided options, thereby 

simplifying the downstream evaluation task. 

We employed state-of-the-art LLM services, GPT-4 and Claude Opus-3, known for their comparable 

performance on benchmark tests (Figure 3b). The evaluation explored both simple RAG and agentic 

configurations. 

For Objective Question Answering (QA) containing 223 questions, four quantitative metrics (accuracy, 

precision, recall, F1-score) were used to assess performance. Agentic systems significantly outperformed 

both RAG and standalone LLMs across all metrics. The GPT-4 powered agentic setup consistently achieved 

the highest scores in accuracy, recall, F1-score. Both LLM services demonstrated comparable performance, 

with GPT-4 exhibiting a slight edge. Agentic systems significantly outperformed both basic and standalone 

LLMs across all metrics. Agentic (GPT-4) consistently achieved the highest scores in accuracy, recall, F1-

score, and precision (0.83, 0.83, 0.83, and 0.83 respectively), followed by the Agentic setup with Claude 
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Opus 3 with moderate success. Basic RAG models showed mixed results, with relatively strong precision 

but lower accuracy, recall, and F1-score. Standalone LLMs exhibited the lowest performance across all 

metrics.  

For Subjective QA consisting of 113 questions, the DeepEval framework evaluated retrieval and generation 

performance for subjective questions. Standalone LLMs were excluded due to the absence of a retrieval 

context in their responses. Context precision, context relevancy, faithfulness, and answer relevancy 

metrics were employed. Agentic systems achieved superior performance in both retrieval and generation 

tasks. In terms of context precision, Agentic (Claude Opus 3) led with a score of 0.44, followed by Agentic 

(GPT-4) at 0.37, while basic models struggled. Both Agentic models achieved high context relevancy scores 

of 0.27, significantly surpassing the basic RAG models. For answer relevancy, Agentic (GPT-4) excelled with 

a score of 0.96, followed by Agentic (Claude Opus 3) at 0.90, while basic RAG models performed reasonably 

well. Finally, while faithfulness scores were comparable overall, Agentic (Claude Opus 3) achieved a perfect 

score of 1. 

A custom in-house dataset focusing on precision oncology and breast cancer genetics, containing 25 

questions, was created to simulate real-world healthcare complexities. This dataset, Precision Oncology 

QA, mimicked genetic markers, disease progression, and personalized treatment options. The same 

metrics used for subjective questions were applied. Agentic systems significantly outperformed basic 

systems in both context precision and relevancy. Agentic (Claude Opus 3) achieved a precision score of 0.51 

and a relevancy score of 0.82, while Agentic (GPT-4) scored 0.52 for precision and 0.80 for relevancy. In 

contrast, basic RAG systems showed lower scores, with Basic (Claude Opus 3) at 0.20 for precision and 

0.55 for relevancy, and Basic (GPT-4) at 0.15 for precision and 0.55 for relevancy. While answer relevancy 

and faithfulness scores were comparable across models, Agentic (Claude Opus 3) demonstrated slightly 

higher faithfulness with a score of 0.98 compared to Basic (Claude Opus 3) at 0.85. These evaluations 

demonstrate that moving from a RAG configuration to the proposed Agentic setup will improve performance 

no matter which LLM service is being used. 
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To construct a faithful representation of the clinical setting, synthetic patient case studies were generated 

through a collaborative effort involving practicing oncologists and LLM services. Oncologists contributed 

essential clinical insights, ensuring the case studies accurately reflected real-world medical complexities. 

These expert-provided details, devoid of specific patient data, served as the foundation for the LLMs to craft 

comprehensive case studies. To further enhance the authenticity of these synthetic cases, oncologists were 

asked to review the generated case studies to validate their alignment with the real clinical reports. The 

performance of agentic models, specifically Claude Opus 3 and GPT-4, was assessed using these three 

fabricated patient health records. In these experiments, the models were tasked with formulating suitable 

treatment plans based exclusively on the presented patient data. The detailed model outputs along with 

can be found in Supplementary Information Section 1. 

Decoding the coordination among tools that improve GSCP response quality.  
A key strength of the GSCP agent lies in its ability to leverage a suite of specialized tools for information 

retrieval and processing within distinct topic silos. By segmenting the corpus and employing dedicated 

tools per topic, the agent exposes its thought process during response generation. This allows the end-user 

to understand the weight given to various information sources and how they contribute to the final 

response. Furthermore, this targeted approach ensures retrieval and processing of the most relevant 

content for each query. Figure 4 exemplifies how much the agent employs each tool during different 

evaluation scenarios. Notably, NCCN guidelines are heavily relied upon for synthesizing responses to 

objective case study questions. Across all evaluations, PubMed consistently features as a high-usage tool, 

serving to supplement information gleaned from NCCN guidelines. Figure 5 illustrates the step-by-step 

sequence of tool utilization. In most instances, response generation occurs within 3 steps, with some 

reaching 5 steps. This sequential breakdown offers insights into the agent's reasoning process and its adept 

use of specialized tools within the siloed architecture.  

DISCUSSION 
Large language models have demonstrated considerable potential across various domains, including 

healthcare and biomedical research. However, limitations in transparency and robust evaluation 
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methodologies have hindered their full clinical integration. GeneSilico CoPilot (GSCP) addresses these 

challenges by proposing an agent-based framework that leverages the inherent reasoning capabilities of 

LLMs to plan and execute tasks within the healthcare domain.  This work focuses on the specific domain of 

breast cancer, showcasing the advantages of the GSCP framework over standalone LLMs and Retrieval-

Augmented Generation (RAG) systems in both generic question answering and precision oncology tasks. 

Evaluations conducted across public and private datasets demonstrate the superiority of the proposed 

agent-based framework compared to traditional RAG systems.  In precision oncology question answering, 

the GSCP achieved an improvement of up to 15.29% in answer faithfulness compared to RAGs.  Retrieval 

metrics also showed significant improvement, with the GSCP system achieving up to 200.83% and 47.27% 

better performance in context precision and context relevancy, respectively.  These results highlight the 

clear advantage of the agent's reasoning and retrieval mechanisms over basic RAG approaches. Similar 

improvements were observed in the subjective question answering dataset, where the GSCP agent achieved 

up to 93.65% and 2600% improvement in context precision and context relevancy, respectively.  The agent's 

retrieval mechanism facilitates a more robust reasoning process, and by incorporating these reasoning 

steps into the response generation, the GSCP system enhances the trustworthiness and transparency of its 

answers. 

The GSCP departs from simple RAGs by employing pre-processed documents. These documents undergo 

summarization and are tagged with markdown annotations to facilitate hierarchical chunking by topic. This 

allows the agent to generate more coherent responses by leveraging a deeper understanding of the 

document structure and content. Furthermore, the GSCP system utilizes a suite of specialized tools, each 

optimized for retrieving different information volumes through a combination of dense and sparse 

embedding techniques. This multifaceted approach empowers the agent to perform more effective 

information retrieval, ultimately leading to a more comprehensive planning process for response 

generation. 

Our evaluation revealed that Claude Opus 3 produced well-structured responses that resonated with 

oncology experts, despite achieving lower overall evaluation scores compared to OpenAI models. While 
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Opus 3 exhibited slower response generation times, often requiring up to two minutes to complete a 

response using provided tools, its outputs were characterized by superior readability. In terms of medical 

accuracy, Opus 3 offered more detailed explanations, including comprehensive drug and dosage 

information, while OpenAI models produced simpler responses. 

Although both systems demonstrated comparable levels of medical accuracy, the significant disparity in 

human-perceived readability suggests an inability of the DeepEval evaluation framework to fully capture 

the nuanced aspects of response quality, particularly when considering human factors such as readability. 

This finding underscores the limitations of relying solely on automated metrics to assess model 

performance, particularly in complex domains such as medicine. While medical accuracy is undeniably 

crucial, it is essential to recognize that it is not the sole determinant of response quality. A comprehensive 

evaluation should consider additional factors, such as response clarity, coherence, and overall clinical 

utility, as perceived by human experts. 

The GSCP system's transparent planning process, which can be visualized through tool usage, provides 

valuable insights into the relative importance of information sources. For example, our observations 

indicate a clear preference for NCCN guidelines over American Society of Clinical Oncology (ASCO) and 

European Society for Medical Oncology (ESMO) guidelines. It is noteworthy that NCCN guidelines 

underwent a meticulous manual paraphrasing process to convert them into plain text while preserving the 

information conveyed in the original flowcharts. In contrast, ASCO and ESMO guidelines primarily relied 

on LLM-based summarization. PubMed also emerged as a significant information source. While PubMed 

offers a wealth of open-access articles containing general knowledge, our focused initial retrieval process 

effectively transformed the PubMed collection into a more specialized corpus tailored to the domain of 

oncology. Analysis of tool usage statistics can be leveraged to inform future optimizations of the data 

sources, potentially leading to the deprecation, consolidation, or replacement of certain sources based on 

their effectiveness within the agent's framework. 

Future endeavors include expanding our testing to encompass real-life patient cases and evaluating the 

GSCP system's capabilities in therapeutic decision support. This necessitates the development and 
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implementation of robust and reproducible evaluation metrics. Current frameworks like DeepEval, which 

rely on LLM services for LLM evaluation, are susceptible to inconsistencies. Therefore, there is a pressing 

need for more sophisticated evaluation methods specifically designed to assess the planning and reasoning 

capabilities of LLMs. 

The GSCP system currently faces some limitations in terms of processing speed. The tool usage and 

frequent communication with the LLM service contribute to a processing delay, with complex cases 

requiring up to two minutes for response generation. Additionally, the vector store resides on a basic setup, 

resulting in slow retrieval times. Future improvements will focus on accelerating the vector store using 

quantization techniques. 

Developing a patient-specific treatment regimen requires meticulous evaluation of various factors, 

including the patient's medical history, comorbidities, prior treatments, and potential drug toxicities. This 

necessitates a comprehensive review of the patient's medical records, encompassing laboratory results, 

imaging studies, and medication history. A thorough understanding of the patient's current health status 

and any coexisting conditions is also essential. Once this data is collected, the physician can begin 

exploring treatment options aligned with established clinical guidelines from NCCN, ASCO, and ESMO. 

These guidelines provide evidence-based recommendations informed by the latest research and clinical 

experience. However, it is equally important to consider the patient's individual needs and preferences, as 

well as their eligibility for ongoing clinical trials offering access to potentially groundbreaking therapies. 

This complex decision-making process necessitates the synthesis of information from diverse sources. The 

GSCP CoPilot system addresses this challenge by leveraging its knowledge base to recommend 

personalized treatment plans for each patient case. This streamlines the physician's workflow, facilitates 

informed decision-making, and ultimately contributes to enhanced patient care. 

In conclusion, this work demonstrates the potential of developing domain-specific agent-based RAG 

systems. By focusing on a particular domain, such as oncology, the system can be optimized to effectively 

process and generate information within the context of a vast and complex data landscape. 
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FIGURES 
Figure 1: Illustration of the working of the GeneSilico CoPilot 

A) Schematic workflow depicting the entire pipeline of the agentic framework for precision oncology. The 

first step involves the collection and pre-processing of diverse medical data sources including literature, 

clinical trials, drug information and treatment guidelines – these serve as the tools. The second step 

involves the retrieval process where to efficiently extract relevant information given a query by employing 

appropriate tool selection, re-ranking, summarization and hybrid search. Further, the information retrieved 

is fed into a ReAct Agent that implements a cycle of reasoning, action and observation to synthesize the 

response to the query. The final step involves the generation of the response containing the medical insights 

and recommendations that caters to the use cases such as personalized therapy recommendations, clinical 

trial suggestions, genomic data analysis, and patient summaries; B) An oncologist provides a patient case 

study and prompts the GSCP to recommend a treatment plan. Upon receiving this query, GSCP engages in 

a structured Reason-Action-Observation process and synthesize the response based on the patient’s 

specific clinical details 

Figure 2: Representation of the data in the vector database 

A) The 3D U-Map visualizes the vector search space, highlighting overlaps and intersections among various 

topics; B) The distribution of information across diverse topics within the vector database, illustrated 

through token counts, offers a comprehensive view of the content richness and topical breadth 

Figure 3: Assessment of the performance of GSCP on question answering tasks. Distribution of the QA 

dataset and performance of GSCP on three different types of question answering tasks 

Figure 4: Representation of tool usage during the three different types of question answering tasks (from 

left to right: Objective QA, Subjective QA and Precision Oncology QA) 

Figure 5: Methodical use of tools in step-by-step response synthesis. The Sankey charts demonstrate how 

different tools were utilized across every step for response generation and the number of steps taken for 

generating a response for the given tasks 
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METHODS 
Data sources 
GSCP leverages a collection of manually curated data sources specific to breast cancer, compiled with the 

support of practicing oncologists. These sources include standard breast cancer guidelines from the 

National Comprehensive Cancer Network (NCCN), American Society of Clinical Oncology (ASCO), and 

European Society for Medical Oncology (ESMO). 

Targeted Drug and Gene Information: To incorporate relevant drug and gene information, a curated list of 

68 genes (including HRR and pharmacogenomics genes) and their targeted drugs was compiled. A 

customized GeneSilico gene panel for breast cancer therapy recommendations was designed, 

encompassing these 68 genes. The selection criteria for these genes included: genes associated with 

therapies (FDA-approved, Phase 3, and Phase 4 clinical trials); genes with high research significance and 

frequent alterations in databases like Human Somatic Mutation Database (HSMD) 

(digitalinsights.qiagen.com/hsmd/) and cBioPortal (www.cbioportal.org); genes associated with 

homologous recombination repair (HRR) mechanism; pharmacogenomic (PGx) genes relevant to breast 

cancer; normalized codon length of genes; and key genes present in other somatic panels such as MSK-

IMPACT (www.mskcc.org/msk-impact), Foundation Medicine CDx diagnostic panel 

(https://www.foundationmedicine.in/our-services/cdx.html), and MedGenome panel 

(diagnostics.medgenome.com). The rankings from these criteria were combined using a rank aggregation 

algorithm to determine the final list of top genes, which were then manually validated. Pathogenic and likely 

pathogenic variants in breast cancer were selected using the HSMD, COSMIC23, and ClinVar24 databases. 

Additionally, the GeneSilico gene panel for breast cancer includes 32 microsatellite instability (MSI) 

hotspots.  

Subsequently, this list was used to extract drug data from Drugbank Open Data 

(go.drugbank.com/releases/latest#open-data) 25, FDA drug labels (labels.fda.gov), RxList (www.rxlist.com), 

Therapeutic Target Database26, Drugs.com (www.drugs.com), and Wikipedia. Web scraping was done using 

Selenium and Beautiful Soup. Drug approval details were obtained from the FDA and ClinicalTrials.gov. We 
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used the OpenFDA API and the Clinical Trials API to access the information. PubMed information was 

gathered using the PMC OA Web Service API. PharmGKB and JNCCN provided further breast cancer-

specific data.  

Data Abstraction and Summarization with Contextual Focus: To enhance context for lengthy documents, 

all documents were paraphrased using LLM services. Instead of generic summaries, task-specific 

summaries were created, extracting only relevant information. This context-aware process facilitated the 

summarization of pertinent sections rather than entire documents. The summarization was performed 

using Anthropic Claude Opus 3. The summarization prompt was provided depending on the requirement. 

For summarization of clinical trials for eligibility criteria, the prompt was “Make the following clinical trial 

information concise, highlighting the key eligibility criteria. Simply respond with the shortened text in 

markdown format.” For clinical trials which contained drug approval information, the prompt was changed 

to “Give an abstract of the trial highlighting the drug approval information. Simply respond with the 

shortened text in markdown format.” In every case, the summary was formatted with markdown tags. In 

our experiments, using markdown tags improved the response quality of the agent. Consequently, the 

retrieval module could fetch documents along with their summaries, improving retrieval performance by 

reducing the number of necessary documents and optimizing the context window. Although storing 

documents with multiple summaries creates redundancy across silos, this approach enhances agent 

performance. This summarization process was applied to all data sources containing long-form textual 

content. 

Data Staging for Manageability and Retrieval: Data staging was implemented to improve manageability 

and retrieval efficiency. Before embedding, a copy of the data, along with extracted metadata and 

summaries, was stored in a NoSQL datastore. This was implemented using MongoDB. This simplifies and 

automates the embedding process while enabling retrievers to leverage full-text search on summaries for 

retrieving alternative results for a given query. 

Manual Curation for Complex Documents: Certain documents, such as NCCN guidelines containing 

complex diagrams and flowcharts, underwent manual paraphrasing and conversion into plain text while 
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preserving the step-by-step narrative. Furthermore, NCCN documents were segmented based on cancer 

subtype, treatment phase, and treatment nature. Most other documents, including guidelines from ASCO 

or ESMO, were summarized using LLMs followed by manual inspection. Each summary was further 

segmented and annotated with markdown tags to enhance the agent's contextual understanding and 

facilitate the generation of more relevant responses. 

Vector stores 
A well-designed vector store is crucial for precise retrieval and minimizing the agent's reason-observation-

action loops during response generation. Our implementation creates both dense and sparse embeddings 

for summaries and raw content. Dense embeddings, generated by a proprietary service – VoyageAI 

(https://www.voyageai.com/), capture nuanced data relationships. Sparse embeddings were created using 

SPLADE27, enhance the search by focusing on key features. This approach enables direct hybrid search on 

the vector store. 

Hybrid search leverages both sparse and dense vector embeddings within the vector database, facilitating 

full vector hybrid search on the indices. Sparse vectors offer computational efficiency and capture key 

document features, while dense vectors capture more nuanced data relationships. The hybrid search is 

configured to retrieve n elements using sparse vector search and m elements using dense vector search (n 

> m, typically n = 20, m = 10). The result list is generated using Reciprocal Ranked Fusion (RRF). 

The ReAct agent. 
By constructing a well-organized and semantically searchable corpus, we designed a ReAct agent 

specifically tuned for precision oncology. This involved identifying the agent's functionalities and 

developing corresponding tools. Each tool is a combination of query engines, response synthesis systems, 

re-rankers, and post-processors, categorized as follows: 

• Clinical Trial Information Retrieval: This tool retrieves summarized clinical trial information from 

documents relevant to the patient's medical history and the prompt. Focusing on breast cancer, it 

searches over 900 trials (recruiting and past) for details like eligibility, duration, status, and location. 

The retrieval process involves a hybrid search on summaries followed by re-ranking for refinement. 
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Finally, the agent fetches raw documents linked to the selected summaries to infer the most 

appropriate trial and synthesize a detailed response. 

• Drug and Therapy Information Retrieval: A combination of tools addresses drug information 

needs. For generic drug inquiries, a single tool retrieves data on standard dosages, toxicities, and 

mechanisms of action from FDA drug labels, RxList, and other sources. Personalized responses 

leverage a combination of tools that consult various cancer treatment guidelines before response 

synthesis. 

• Precision Oncology Guideline Retrieval: Given patient history context, a routing tool selects tools 

that fetch relevant NCCN, ASCO, and ESMO guidelines. These tools operate independently to 

provide individual patient-specific guidelines. Additionally, tools for generic literature search are 

invoked to supplement retrieved information. 

• Generic Literature Search: This category encompasses manually curated sources like PubMed 

searches on drug-gene pairs and breast cancer therapies. Information is also retrieved from JNCCN 

and PharmGKB, providing comprehensive data on standard care protocols, drug information, 

patient outcomes, and generic therapy guidelines. 

A complete configuration of these tools is presented as a JSON file in Supplementary Information Section 

2.  

Experimental setup 
We evaluated the proposed method using datasets constructed from public sources and real-life cases. 

Standard public datasets for breast cancer are unavailable. Therefore, we extracted breast cancer-related 

questions from multiple sources and categorized them as subjective (requiring long-form answers) or 

objective (multiple-choice). A simple keyword-based search facilitated extraction, followed by manual 

review by practicing oncologists to ensure question correctness. The objective dataset comprised 223 

questions from MedMCQA and MedQA (USMLE), while the subjective dataset consisted of 113 questions 

extracted from PubMedQA and an in-house dataset (InternalQA). For objective questions lacking a single 

clear answer where oncologists identified multiple correct options, the questions were reworked as 
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subjective ones. To simulate the complexities encountered by medical professionals in real-world oncology 

practice, we constructed a custom in-house dataset, the Precision Oncology dataset, of 25 questions 

focused on precision oncology and breast cancer genetics. This dataset embodies case-study like 

scenarios, mimicking an oncologist's investigative process. The internal dataset as well as the precision 

oncology datasets were created with the support of practicing oncologists. The dataset for evaluation is 

provided in Supplementary Data.  

Accuracy, F1 score, precision, and recall were used to assess system performance for simple multiple-

choice questions. For the subjective and precision oncology datasets, the DeepEval framework 

(https://docs.confident-ai.com/) evaluated our system and compared its performance to a RAG system. This 

framework employs Contextual Precision (ranking relevant information), Contextual Relevancy (overall 

retrieved context relevance), Faithfulness (factual alignment between response and retrieved context), and 

Answer Relevancy (ratio of relevant statements in the answer) to measure the retrieval and generation 

performance. 

DATA AVAILABILITY 
The datasets used in this study are available in the supplementary materials. Supplementary Data file 

contains evaluation datasets, including the objective questions extracted from MedMCQA and MedQA 

(USMLE), subjective questions from PubMedQA and our in-house dataset (InternalQA), and custom 

Precision Oncology dataset. Our in-house datasets (InternalQA and Precision Oncology) were created with 

the support of practicing oncologists and are included in the supplementary materials. The DeepEval 

framework used for performance evaluation is publicly accessible at https://docs.confident-ai.com/. Any 

additional data that supports the findings of this study are available from the corresponding author upon 

reasonable request. 

SUPPLEMENTARY FILES 
Supplementary Information Section 1: Contains selected synthetic case studies for intervention plan. 

These case studies were designed by oncologists based on real-life cases. The file contains the entire 
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response provided by GSCP when presented with the case studies. The following system prompt was used: 

“Based on the provided case study, suggest a comprehensive treatment plan with evidence and cancer 

management approach for the patient, taking into consideration their condition, history, family history, and 

comorbidities. Outline the recommended course of action, available treatment options with evidence and 

follow up plan. Also, suggest if rebiopsy, genomics (NGS), additional biomarkers required or not. 

Additionally, identify relevant ongoing clinical trials that the patient may be eligible for, and provide survival 

statistics.  

Break down the response into section and try to answer these questions: 

What should be the next line of treatment? 

Is genomics required in this case? 

How should be the follow up? 

Genetic counselling required? 

Any role of immunotherapy?” 

Supplementary Information Section 2: Contains the configuration file of the different tools used by the 

agent. The “top_k” and the “sparse_k” determine the number of results fetched based on the dense and the 

sparse vector match respectively. The “output_type” specifies how the LLM service in each tool should 

aggregate the information from the documents after the reranking process. 

Supplementary Data: Consists of the questions and the corresponding ground truth for the datasets – 
Subjective, Objective and Precision Oncology.  
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Figure 2
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Figure 3
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Figure 4

�� ���
��������
�����

 ������������
�����

��  �
�����

 ������������
�����

��
��
����

 ����������������������
�����

������� ������������
�����

������
��������
�����

�  ������������
�����

�
����
���

�
  �

��
��������

�����
�������������

��
���������

�����

�
����
�����

�  ���
��������

����

�� ���
��������
�����

��
���
��
�

���
��

��
  

�
��
�
�

 ������������
�����

 ����������������������
�����

������� ������������
�����

�  ������������
����

������
��������
����

�  ���
��������
�����

�
��
��

�����

���������
�����

��
 �
��

��
���
��

�
���

�
�

��
���
��
�

��
��
�

������������ ������������� ��������������������

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted September 24, 2024. ; https://doi.org/10.1101/2024.09.20.24314076doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.20.24314076


Figure 5
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