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Abstract 

The Difference-in-Differences Investigation Tool (‘DiD IT’) is a new tool used to 

estimate the impact of local threats to public health in England. ‘DiD IT’ is part of a 

daily all hazards syndromic surveillance service. We present a validation of the ‘DiD 

IT’ tool, using synthetic injects to assess how well it can estimate small, localised 

increases in the number of people presenting to health care. Furthermore, we 

assess how control settings within ‘DiD IT’ affect it’s performance. 

‘DiD IT’ was validated across ten different syndromic indicators, chosen to cover a 

range of data volumes and potential public health threats. Injects were added across 

different times of year and days of week, including public holidays. Also, different 

size of injects were created, including some with an impact spread to neighbouring 

locations or spread over several days. The control settings within ‘DiD IT’ were 

tested by varying the control location and periods, using, for example a ‘washout 

period’ or excluding nearest neighbours. Performance was measured by comparing 

the estimates for excess counts produced by ‘DiD IT’ with the actual synthetic injects 

added. 

‘DiD IT’ was able to provide a positive estimate in 99.8% of trials, with a mean 

absolute error of 1.5. However, confidence intervals for the central estimate could 

not be produced in 42.5% of trials. Furthermore, the 95% confidence intervals for the 

central estimates only included the actual inject count within 62.8% of the intervals. 

Unsurprising, mean errors were slightly higher when synthetic injects were not 

concentrated in one location on one day but were spread across neighbouring areas 

or days. Selecting longer control periods and using more locations as controls 

tended to lower the errors slightly. Including a washout period or excluding 

neighbouring locations from the controls did not improve performance. 

We have shown that ‘DiD IT’ is accurate for assessing the impact of local incidents 

but that further work is needed to improve the how the uncertainty of these estimates 

are communicated to users. 
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Introduction 

The Difference-in-Differences Investigation Tool (‘DiD IT’) was developed utilising 

real-time syndromic surveillance data to support risk assessments of the impact of 

local threats to public health [1]. ‘DiD IT’ estimates the excess number of cases 

reported daily to syndromic surveillance systems, due to a localised outbreak or 

incident.  

‘DiD IT’ uses a difference-in-differences statistical approach to account for temporal 

and spatial confounding and provide a direct estimate of impact due to incidents. 

Temporal confounding differences are estimated by comparing unaffected locations 

during and outside of exposure periods. Whilst spatial confounding differences are 

estimated by comparing unaffected and exposed locations outside of the exposure 

period. Therefore, any remaining differences after accounting for temporal and 

spatial confounding are the direct effect of the local incident. 

Importantly, ‘DiD IT’ is not an outbreak detection tool, but is designed to support 

situational awareness (one of the key aims of syndromic surveillance [2]); estimating 

the size of impact when the potential exposure period and location are already 

known by statistically comparing with similar time periods and geographies related to 

exposures with those thought not to impacted. To further establish the usefulness of 

this tool we need to validate the accuracy of ‘DiD IT’ so that incident directors and 

decision makers can have confidence in its use for situational awareness.  

The UK Health Security Agency (UKHSA) real-time syndromic surveillance 

programme includes the daily monitoring of over 130 different syndromic indicators 

across six national syndromic surveillance systems [3]. The indicators have been 

developed to monitor as wide a range as possible of potential public threats i.e. an 

‘all hazards approach [4]. Thus, ‘DiD IT’ can be applied to syndromic data in 

scenarios ranging from environmental incidents to mass gatherings or infectious 

disease outbreaks. However, many potential public health scenarios are rare and 

therefore little or no relevant historical data are available. Therefore, in this study we 

have validated ‘DiD IT’ using synthetic injects, adding simulated events to real-time 

series of syndromic daily counts. Using simulated data enables us to test a wide 

range of potential scenarios, and identify factors, such as public holidays, that might 

affect accuracy of the tool. We also test how different options for selecting controls 
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affect the sensitivity of estimates created by ‘DiD IT’. Thus, we aim to provide future 

guidelines for setting controls that maximise accuracy. 

 

Methods 

Data extraction 

The UKHSA real-time syndromic surveillance programme coordinates and monitors 

daily data from six national (England) systems that has been previous described [5-

7]. Here, we extracted daily counts for 10 syndromic indicators across five syndromic 

systems to represent the range of data used for daily surveillance (Table 1). For 

each system we chose two syndromic indicators, one with more counts on average 

than the other. 

 

Table 1: Syndromic surveillance systems and syndromic indicators selected for use 

in the study 

Syndromic data source Syndromic indicator 

General practitioner in-hours consultations Gastroenteritis 

Vomiting 

General practitioner out-of-hours consultations Eye problems 

Respiratory 

Ambulance dispatch calls Allergic reactions 

Breathing problems 

National Health Service (NHS) 111 telehealth calls Eye problems 

Cough 

National Health Service (NHS) 111 online symptom checker Eye problems 

Cough 

 

Counts for each syndromic indicator were aggregated to postcode district area level 

(which was the lowest geographical area available). Data were extracted for the 

period April 2021 to August 2022 inclusive, which was when data was available for 

all five systems. The general practitioner (GP) surveillance systems (in-hours and 
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out-of-hours) are sentinel providing partial population coverage whilst the other 

systems cover the whole population of England. Dates were randomly selected to be 

used as the centre of exposure periods. One date was purposely randomly selected 

from the public holidays between April 2021 and August 2022. The other dates were 

randomly selected from dates that were not on public holidays and far enough away 

from public holidays that both exposure and control periods would not include public 

holidays. Twenty-one non-holiday dates were used, sampled as three random days 

plus the six preceding dates for each of the three. Thus, we were able to compare 

the accuracy of ‘DiD IT’ by day of the week and measure any impact of public 

holidays. Exposure locations were selected randomly from postcode districts that 

had at least one non-zero count for the syndromic indicator being tested during the 

exposure and control periods. 

Synthetic injects 

We created synthetic injects to simulate local incidents. To simulate different types of 

incidents, a range of injects were created. Two sizes of inject were created, a ‘small’ 

inject with a peak count of five cases, and ‘large’ with a peak of 15 cases. Also, 

injects were created to simulate different temporal and geographical spreads. Half of 

the injects were treated as single day exposures, the other half were spread 

symmetrically over five consecutive days, with the peak in cases on the middle date. 

Similarly, half the injects involved a single postcode district, whilst the other half 

included a peak in one district with lower numbers in surrounding districts. The 

combination of two sizes, two temporal and two geographical spreads gave eight 

different inject types. 

For each of the twenty-two dates randomly selected as described above a time 

series was created for each syndromic indicator using actual daily counts. For each 

of these series, eight new time series were created, each with additional counts from 

one of the eight different sizes and spreads of synthetic injects.  

Control options 

A range of different rules for selecting controls were tested. Four different options for 

control period were tested, either seven days long or the same as the exposure 

period (1 or 5 days depending on inject spread), and with or without a ‘washout’ 

period of seven days between control and exposure periods. Similarly, three different 
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options were tested for selecting control locations; using all available non-exposed 

postcode districts, using all except those bordering the exposure locations and using 

ten random districts that did not border the exposure. 

For the injects that were spread over several days, two exposure periods were 

tested, firstly the full five days and second just using the middle peak day. Similarly 

for injects that included neighbouring districts, two exposure locations were 

considered, just the central district or the district and its neighbours. Including these 

alternate options for exposure simulated incidents where the central location and 

date were known but the spread had not been identified. 

The combination of different exposure dates, syndromic indicators, inject types and 

control options resulted in 60,672 separate ‘trials’ used to validate ‘DiD IT’.  

DiD IT 

We applied ‘DiD IT’ to each of the separate 60,672 trials and recorded the number of 

extra cases estimated along with a confidence interval for the parameter estimate. 

The exposure location(s) and period were determined by the inject type, whilst 

control period and locations determined by the trial’s control options. ‘DiD IT’ was 

applied using a negative binomial regression to predict the daily syndromic count for 

each postcode district. Three binary variables were created as the independent 

variables; exposure period, exposure location and effect incident, ‘exposure period’ 

was a 1 for dates during the exposure period, ‘exposure location’ was a 1 for the 

exposed districts and ‘effect incident’ was the product of the first two variables. Thus, 

‘effect incident’ was a parameter used to estimate the additional cases due to an 

incident. For each trial the error was defined as the difference between the estimate 

for ‘effect incident’ and the number of extra cases added by the synthetic inject. 

 

Results 

The regression method used by ‘DiD IT’ does not always converge, due to sparse 

data, in which case no estimate can be provided. Also, on rare occasions the 

estimate for number of extra cases due to an incident may be negative, which can be 

considered as a failure to provide a positive estimate. However, 60,540 of the trials 

(99.8%) resulted in a positive estimate for the number of excess cases.  
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Importantly, ‘DiD IT’ does not just provide an estimate for the number of extra cases 

but tries to illustrate the uncertainty around this estimate by also providing a 

confidence interval. The current method for calculating confidence intervals did not 

converge for 25,766 trials, (42.5% of the total). For 10,406 trials (17.2%) a 95% 

confidence interval was calculated but it spanned zero. For the 24,399 trials (40.3%) 

where the lower confidence interval was positive, 15,323 (62.8% of those with a CI) 

correctly included the inject total within the 95% interval. For these confidence 

intervals that did not span zero, the mean interval length was 11.57, with half of the 

intervals being 7.77 or less. The widest confidence interval was where the estimate 

was 124.4 excess counts, 95% confidence interval (11.3 – 179.5), in this trial the 

actual inject total was 106 spreading over 5 days, including neighbouring districts. 

Thirty-three trials resulted in confidence intervals where the upper estimate was over 

100 more than the positive lower estimate. 

The average absolute error in estimates was 1.50, with an interquartile range for the 

errors of -0.64 to 0.58. The underestimate that was least accurate was 129.8 (95% 

CI 77.3 – 162.2) where 171 extra counts were injected, and the least accurate 

overestimate was 183 (95% CI 158.4 – 195.0) when 145 extra had been injected. 

Syndromic indicator factors 

When considering daily data at the smallest geographical area available the mean 

count is low, with many zeroes. For each system the mean absolute error was 

greater for the syndrome with higher counts. For the rarer syndromic indicators, the 

errors were less than 1 for each system (Table 2). For the more common syndromic 

indicators, mean absolute errors ranged from 1.78 for NHS 111 online cough 

assessments to 2.66 for NHS 111 cough calls. The GP in-hours system resulted in 

less trials where a positive estimate could be obtained. Unlike the other systems, GP 

in-hours is a five-day system with nearly no data available for weekends and public 

holidays. 
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Table 2: Mean absolute error by syndromic indicator 

Syndromic 

data source 

Syndromic 

indicator 

Daily count 

in postcode 

district 

Number of 

trials with 

positive 

estimates 

Mean error 

(absolute 

difference 

between estimate 

and extra cases 

injected) 

Mean Max 

GP in-hours Gastroenteritis 0.79 20 4,966 2.50 

Vomiting 0.13 7 4,985 0.65 

GP out-of-

hours 

Eye problems 0.08 4 6,336 0.30 

Respiratory 

conditions 

1.15 48 6,296 2.57 

Ambulance 

dispatch 

calls 

Allergic 

reactions 

0.10 5 6,326 0.50 

Breathing 

problems 

0.96 36 6,318 2.29 

NHS 111 

calls 

Eye problems 0.31 11 6,334 0.79 

Cough 0.94 24 6,317 2.66 

NHS 111 

online 

Eye problems 0.17 10 6,335 0.98 

cough 0.44 12 6,327 1.78 

All syndromic indicators 60,540 1.50 

 

Inject factors 

Unlike the size of the daily counts in each syndromic indicator, the size of the inject 

had little impact on the mean absolute error, small injects had an average error of 

1.48, large 1.51 (Table 3). 

Errors were higher when the exposure was not focussed on a single day or location. 

The magnitude of the increase in errors was very similar for geography and temporal 

spread. The mean absolute error for trials where the exposure was a single day was 

0.93 and 0.99 for a single postcode district, rising to 2.55 for a five-day exposure and 

2.51 for an exposure including neighbouring districts. These results were cumulative, 

so that the error for trials involving a single exposure date and district was 0.57 and 
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for trials with an exposure period of five days and neighbours being 4.12. The 

accuracy of peak estimates for the central date or central district were very similar, 

whether the inject involved temporal or geographical spread. 

The accuracy of ‘DiD IT’ was slightly worse when the inject was on a public holiday, 

mean absolute error of 1.83 and weekends had slightly higher errors then other 

days, with Thursdays and Fridays having the lowest errors of 1.35 and 1.39 (Table 

3). 
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Table 3: Absolute mean error by inject factor 

Inject factor Number of trials with 

positive estimates 

Average error (absolute 

difference between estimate 

and extra cases injected) 

Size of inject – number of cases at peak 

5 30,215 1.48 

15 30,325 1.51 

Temporal spread of inject 

Single day 19,732 0.93 

Five days, test peak day 

only 

19,718 0.93 

Five days exposure 

period 

21,090 2.55 

Geographical spread of inject 

Single district 20,172 0.99 

District and neighbours, 

test central district only 

20,171 0.99 

District and neighbours 

used for exposure 

20,197 2.51 

Day of the week of peak exposure 

Public holiday 2,490 1.83 

Saturday 7,465 1.63 

Sunday 7,484 1.56 

Monday 8,617 1.49 

Tuesday 8,623 1.48 

Wednesday 8,596 1.49 

Thursday 8,633 1.35 

Friday 8,632 1.39 
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Control factors 

The mean absolute errors were slightly less when a full seven days were used for 

the control period, as opposed to being the same as the exposure period (1 or 5 

days). Also, errors were slightly lower when the control period was immediately 

preceding the exposure period, rather than with a ‘washout’ period of seven days 

between control and exposure (Table 4). 

Mean absolute errors were higher (1.61) when only 10 districts were used as 

controls. Excluding neighbouring districts made no significant difference when using 

all available control districts. 

 

Table 4: Absolute mean error by control factor 

Control factor Number of trials with 

positive estimates 

Average error 

(absolute difference 

between estimate 

and extra cases 

injected) 

Control period 

7 days before exposure 15,159 1.32 

7 days with washout of 7 days 

before exposure 

15,166 1.49 

Same length as exposure 15,116 1.55 

Same length as exposure with 

washout of 7 days 

15,099 1.63 

Control locations 

Non-neighbouring districts 15,146 1.38 

All non-exposed districts 15,152 1.39 

Ten random non-neighbours 30,242 1.61 

 

The biggest variation in errors was between syndromic indicators, followed by inject 

factors. By contrast the differences between control factors or day of the week were 

less important (Figure 1). 
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Figure 1: syndromic indicators shown in blue, inject factors in purple, control factors 

in red and day of week in teal.

 

 

Discussion 

Key findings 

‘DiD IT’ was able to estimate the number of extra cases due to the synthetic incident 

with a high level of accuracy, the mean error was 1.5 with most estimates being less 

than 1 away from the total added. However, the current method for calculating 

uncertainty around the estimates needs improvement. In a large proportion of trials 
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(42.5%) ‘DiD IT’ was unable to calculate a confidence interval around the central 

estimate. Furthermore, only 62.8% of the actual inject totals were within the 95% 

confidence interval for the parameter used as the central estimate for excess counts. 

Clearly, the 95% confidence interval should not be interpreted as representing very 

strong confidence that the actual number of excess cases is within the interval.  

The main factor affecting the accuracy of ‘DiD IT’ estimates was the mean number of 

counts in the background data. Syndromic indicators which had higher daily counts, 

and therefore higher variance, resulted in bigger mean errors. The next most 

important factor affecting accuracy was whether an incident involved a single spike 

in cases or if the incident was spread over several days and/or districts. Incidents 

that were more spread out were less easy to quantify than single spikes in activity. 

What we already know 

The difference-in-differences (DiD) method has been applied to answer many 

counterfactual questions in epidemiology [8, 9]. For instance, Branas at-al used DiD 

in a ten-year study to estimate the health benefits of greening vacant urban space 

[10], whilst Harper at-al used DiD to estimate the impact of marijuana laws [11]. 

Similarly, Xiongfeng et-al used DiD to estimate the impact on air pollution of a Smart 

Logistics policy [12]. In other environmental studies spatial difference-in-differences 

models have also been used to estimate impact whilst considering potential lags and 

spill-over across areas [13, 14]. Many DiD studies, even when daily data is collected 

are comparing differences between months or years of aggregated data, compared 

to the short periods for which ‘DiD IT’ is designed [15, 16]. Studies covering shorter 

periods enable rapid assessments of public health interventions, such as introducing 

and removing containment measures introduced following the SARS-CoV-2/Covid-

19 pandemic [17, 18]. 

Implications 

The validation trials presented here have shown that ‘DiD IT’ usually provides a good 

close estimate to the number of excess cases in a specific location. Furthermore, 

where confidence intervals were calculated the majority were sufficiently narrow to 

provide useful information to decision-makers. However, further work is needed to 

provide intervals that are easier to interpret for users.  
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‘DiD IT’ has been tested across a range of syndromic systems and indicators utilised 

in UKHSA, and dates and different types of incidents represented by different 

synthetic injects. Thus, we can be confident that ‘DiD IT’ will work for a wide range of 

incidents. The main factor affecting the absolute size of errors was the mean number 

of daily counts in the background data. It is to be expected with count data that 

variance and therefore the absolute size of errors will increase with volume. We 

found that ‘DiD IT’ was less likely to provide an estimate for the GP in-hours system, 

which is probably due to the spareness of data at weekends and during public 

holidays. 

‘DiD IT’ was less accurate when trying to quantify an incident spread over several 

days or locations but with a central peak in activity. However, the accuracy was still 

high when trying to estimate just the peak day or central district. Therefore, ‘DiD IT’ 

will be most useful when focussed on the centre of any known exposure, with 

accuracy likely to diminish if trying to estimate any additional spill over to 

neighbouring districts or days. Reassuringly, estimating the extra cases in the central 

peak does not seem to be adversely affected by failing to exclude spill over effects 

from controls.  

We did not find that including a washout period or excluding neighbours to exposed 

districts improved the accuracy of ‘DiD IT’. In practice, including as many locations 

as possible in controls and using a full week for the control period gave better results 

than trying to replicate the size of exposure. 

Limitations 

Syndromic surveillance was initially designed for national surveillance where higher 

aggregated data provides more confidence around emerging trends. When we drill 

down to local areas the data becomes sparse with many zero counts. By contrast, 

any significant incident may appear large and obvious within the data. Therefore, it is 

possible that the synthetic injects we are using provide too easy a target for ‘DiD IT’ 

and it is not surprising the accuracy is good. However, to include injects smaller than 

a peak of five cases in a day would mean we are simulating events that are in 

general too small to be relevant for public health surveillance. Furthermore, we are 

only considering incidents where a minimum number of cases present to health care. 
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We cannot estimate the number of people affected who do not seek care and thus 

do not appear in the syndromic data. 

Interpretation of low or negative estimates from ‘DiD IT’ should not be taken as 

reassurance that an incident has had no impact unless we are confident that the 

syndromic systems have good coverage in the exposure location. Therefore, real-

time assessments of system coverage need to accompany reports. 

With some types of incidents it is quite likely that the exact timing of the exposure 

duration or its location are uncertain. Although, we have shown ‘DiD IT’ is robust to 

some exposure spread it will not be accurate if the peak is miss-identified. For 

example, the timing of patients presenting to health care may be affected by 

unknown factors causing a lag between exposure and presentation with symptoms. 

‘DiD IT’ uses unaffected locations and dates as controls. An alternative method 

would be to use syndromic indicators that should be unrelated to the incident as 

negative controls, for instance gastrointestinal symptoms when considering air 

pollution [19].  

‘DiD IT’ provides a single central estimate for the number of excess cases due to an 

incident. However, incident directors may want to know how an incident is evolving 

over time, or whether some locations are more adversely affected than others. 

Furthermore spatial or temporal changes in an incident may not be linear or 

heterogenous across ages etc. Further work is needed before ‘DiD IT’ could provide 

this level of detailed analysis. 

‘DiD IT’ focuses on a count of excess cases, however teams managing the incident 

response may find it more useful to see an estimate for changes in local incidence. 

Although calculating incidence rates is possible, care needs to be taken with 

syndromic data because many different diseases and illnesses present with similar 

symptoms. 

Future work 

The application of ‘DiD IT’ alongside the existing use of syndromic surveillance for 

will further enhance the usability of syndromic data for supporting the response to 

incidents or emergencies. However, as highlighted in this validation, further work is 

needed to replace confidence intervals with  data or prediction intervals [20] that 
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provide users with meaningful information about the uncertainty of estimates. One 

approach would be to use our trial data to train an algorithm to construct intervals 

that capture a known percentage of inject totals. The utility of ‘DiD IT’ depends not 

just in providing accurate estimates but also in providing confidence that the 

estimates are accurate. 

A further validation could include testing ‘DiD IT’ against real known incidents, 

particularly those where we know how many people presented to health care. In 

additional to further validating ‘DiD IT’, this approach could also evaluate the 

detection capabilities of syndromic surveillance systems. For example, if we could 

identify norovirus outbreaks in known locations and dates we could test whether the 

outbreaks resulted in a measurable increase in syndromic indicators. Furthermore, a 

meta-analysis could provide an overall estimate for the typical impact of local 

norovirus outbreaks.  
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