
How floods may affect the spatial spread of

respiratory pathogens: the case of

Emilia-Romagna, Italy in May 2023

Claudio Ascione1, Eugenio Valdano1,*
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Abstract

The negative impact of floods on public health has been increasing, as climate

change makes these events more frequent and intense. Floods are known to cause

direct injury and favor the spread of many waterborne and vector-borne pathogens.

Their effect on the circulation of respiratory pathogens, like influenza and SARS-

CoV-2, is, however, still unclear. In this study, we quantify this effect through the

analysis of large-scale behavioral data coupled to mathematical models of epidemic

spread. We focus on the devastating floods occurred in Italy in 2023 and measure

how they impacted human contact patterns within and between communities. We

find a substantial increase in contacts occurring 3 weeks after the floods, both among

residents of the affected areas and between them and those living in distant, unaf-

fected areas of Italy. Then, through mathematical simulations, we determine that

these disrupted contact patterns can carry a circulating pathogen to previously un-

affected geographic areas, as well as increasing infection counts across the country.

Our findings may help set up protocols to use large-scale human contact data to con-

tain epidemic outbreaks before, during and in the aftermath of floods.

Introduction

Climate change is increasing the frequency and intensity of floods [1–3]. This poses a

clear threat to public health, as floods increase the risk of direct injury [4], hamper ac-

cess to healthcare [5] and facilitate the emergence and circulation of infectious disease

epidemics. In this context, floods are known to increase the spread of pathogens that are

transmitted through environmental exposure[6], like those causing cholera [7], other di-

arrheal diseases [8], skin and soft-tissue infections [9], Legionnaires’ disease [10]. They
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also increase the risk of zoonoses, like leptospirosis [11], and mosquito-borne diseases,

like Chikunguya [12]. The effect of floods on the epidemics of directly-transmitted res-

piratory pathogens, like influenza viruses and coronaviruses (notably SARS-CoV-2) is,

instead, less known. Here, we posit that the changes in human contact patterns that floods

bring about may have a considerable effect on the circulation of respiratory pathogens,

and aim to quantify this effect.

Human contact patterns are heavily disrupted during, and in the aftermath of, extreme

climatic events [13–16]. In the case of floods, people may be confined at home in the

beginning, and then relocated to shelters [17]. At the same time, aid may need to flow

in from unaffected areas. These kinds of changes in the patterns of close-proximity in-

teractions and time spent indoors are known, from other contexts, to influence the spread

of respiratory diseases [18–24], and their effects are being studied also in the contexts of

other extreme climatic events, like wildfires [25].

In this study, we aimed to characterize the potential link between floods and epidemic

of respiratory pathogens mediated by changes in human contact patterns. To this end,

we focused on the floods occurred in the Italian region of Emilia-Romagna in May, 2023

(see Fig.1). 12,241 hectares of urban and agricultural land as well as roads and infras-

tructure were flooded for five weeks after anomaloulsy intense rain [26]. This caused the

displacement of around 30, 000 people and an estimated damage of C10 billion [27, 28].

We reconstructed and analyzed human contact patterns before, during and in the after-

math of the event using data provided by Meta’s Data for Good Lab [29]. Then, we used

a mathematical model to simulate the spread of a COVID-19-like epidemic and estimate

the effect that the flood had on its spread by means of the changes in contact patterns.

Our findings may help step up public health preparedness for a type of compound

emergency – floods – that climate change is making graver and more common.

Data and Methods

Timeline of the Floods in Emilia-Romagna

The major flood in Emilia-Romagna, Italy started on May 16th. We set a weekly time

scale to match that of the contact data and set the week from May 8th to May 15th to be

week 0, and counted time relative to it. This means that the flood started between week

0 and week 1. In the analysis of contact patterns we specified one time point using this

unit and resolution, i.e., the week of the measured contacts relative to week 0. Also, for

epidemic simulations, we specified the start time – the week, relative to week 0, when
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Fig.1|Location of Italy in Europe (red outline), Emilia-Romagna in Italy (red), the areas affected by the

flood in May 2023 according to [26] (red in inset) overlaid on the provinces of Emilia-Romagna (white

outline in inset).

the outbreak started – and the observation time – the week, relative to week 0, when we

measured the epidemic size. Also, we defined a baseline period from week −3 to week

0 included, which we used to compute relative variations in contacts attributable to the

flood and to design the counterfactual scenario for the simulated epidemics.

Data

Flood

We gathered data from the ESA Copernicus Database, which is a European program for

global satellite monitoring. One of its features is emergency management, in which they

study the effect of critical climatic events on the local impacted areas, quantifying it in

terms of land coverage, economic loss and acres affected. For our purposes, we used

data about the Emilia-Romagna Floods of May 2023 to determine the geographical areas

impacted by the climatic event [26].
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Contacts

Human close-proximity contact data was provided by Meta Data for Good Database [29]

in the form of Colocation maps. Colocation maps measure the rate at which two indi-

viduals, residing one in spatial community x and the other in spatial community y, are

found themselves in close proximity. They have a weekly time resolution and, in Italy,

the spatial resolution of provinces, level-2 administrative divisions broadly matching the

European Union standard NUTS-3. Details on how Colocation maps are built from lo-

cation data from mobile devices can be found in [29]. For contacts occurring among

residents of the same province, colocation maps are stratified on whether contacts oc-

curred when two people were both the level-16 Bing tile where they were estimated to

reside, or not. We could then discriminate between contacts attributable to be occurring

between members of the same household or in the community. We referred to household

contacts and community contacts, respectively. For our purposes, we selected data from

Italy across 33 weeks from April 17th, 2023 to December 4th, 2023. This gave 33 Colo-

cation maps for household contacts and 33 Colocation maps for community contacts, at a

weekly resolution.

We also used social contact rates from the SOCRATES project, a broadly used source

to inform epidemic modeling, stratified by location (household, community) [30, 31].

Methods

Internal and external contact rate

To analyze contacts among residents of the same province and among residents of dif-

ferent provinces, we defined three metrics: household contacts, community contacts and

external contacts. Let CH
ij (t) be the within-household and CZ

ij(t) the outside-household

Colocation map between community i and community j at time t. These quantities in-

herently define two matrices: the within-household contact rate matrix CH ∈ Rn,n and

the outside-household contact rate matrix CZ ∈ Rn,n, with n indicating the number of

provinces. Note that CH
ij (t) = 0 ∀i ̸= j as people cannot reside in the same household but

in different provinces. Let then Ni be the resident population of province i, obtained from

Ref. [32]. Then, following the methodology described in Ref. [29], CH
ii (t)Ni measures

the household contact rate in i, CZ
ii (t)Ni the community contact rate i and

∑
j ̸=iC

Z
ij(t)Nj

the external contact rate of j, i.e., the rate at which residents of i establish contacts with

residents of other provinces. Denoting C̄H
ij , C̄

Z
ij the Colocation maps average over the

baseline period, we then could compute the relative variation of each contact rate, at dif-
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ferent times, with respect to the baseline.

Epidemic model

To simulate the population-level spread of an epidemic of a directly-transmitted respi-

ratory pathogen we used a stochastic metapopulation model. We assumed a Susceptible-

Exposed-Infected-Removed compartmental model to describe disease natural history[33–

36], whereby infectious individuals can transmit the disease to susceptible ones, which

become exposed (infected but not yet infectious). At predetermined rates, exposed indi-

viduals become infectious and infectious individuals become removed, i.e., are no longer

infectious and cannot be re-infected.

At initialization, all individuals in all provinces are in the susceptible compartment.

If Si measures the number of susceptible individuals in province i then Si = Ni at the

start. We then initialized the outbreak by setting one infectious individual in the province

where the outbreak had origin. We selected the province of Rimini as it was the most

strongly affected by the flood (for alternative choices, see Supplemental Material). If

Ii is the number of infectious individuals in province i then, at the start, IRimini = 1,

SRimini = NRimini − 1, Ii = 0, Si = Ni ∀i ̸= Rimini at the start. Analogously we

defined Ei, Ri as the number of individuals in the exposed and removed compartment.

All these quantities change along the simulation but we assumed the resident population

to be constant: Si(t) + Ei(t) + Ii(t) +Ri(t) = Ni.

The metapopulation model is a stochastic process, defined as such:

Si
Ti−→ Ei

α−→ Ii
γ−→ Ri. (1)

Ti, α, γ are the transition rates, measured in days−1. As customary[37], to simulate it,

we discretized the process using a small discretization window ∆t = 1 day. Therefore

the individual probability of transition from E to I during a discretization time step is

Pα = 1−e−α∆t and the probability of recovery (I to R) is Pγ = 1−e−γ∆t. The individual

probability of becoming infected instead depends on the force-of-infection at a specific

time, which is a combination of the possibility of being infected by a member of the same

community, or another community, mediated by the contact rates. This can be written

using an effective Colocation map Ceff
ij so that the transmission rate in the stochastic

process reads as follows (see Ref. [29]):

Ti = β
∑
j

Ceff
ij (t)Ij(t). (2)
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To determine Ceff , we noted that Colocation Maps, by construction, are effective at mea-

suring variations in contact rates but lack a transmission-specific definition of what con-

tact are. To overcome this, we rescaled the average Colocation maps values during the

baseline period using SOCRATES social contact data. Specifically, we assumed that the

number of household contacts during the baseline period, which is proportional to C̄H
ii Ni,

equals the number of household social contacts from SOCRATES in each community.

Similarly, we assumed that community contacts, which are proportional to
∑

j C̄
Z
ijNj ,

equals the number of community social contacts from SOCRATES. Finally, we encoded

the facts that community contacts are associated with a lower transmission rate than

household contacts through a damping parameter ω = 0.3 [38, 39]. This completely

determines the form of Ceff
ij that appears in Eq. 2:

Ceff
ij =

1

C̄H
ii Ni

CH
ij + ωΓ

CZ
ij∑

k C̄
Z
ikNk

, (3)

where Γ is the ratio between the number of community contacts over household contacts

reported by SOCRATES. More details of the derivation of Eq. (3) are in Supplemental

Material. With the individual transition rates, we simulated the total number of transi-

tions per discretization step by sampling from binomial distributions: in community i,

the number of transitions from E to I is binomially distributed with n = Ei and p = Pα,

the number of transitions from I to R has n = Ii and p = Pγ and finally the number

of incident infections n = Si and p = Ti. We fixed the rates α, γ from the literature,

assuming a COVID-19-like disease [40]. This left β as the only free parameter of the

model, which we used to tune the basic reproductive ratio of the emerging outbreak, via

customary relationship

R0 =
βCeff

ii Ni

γ
,

where i is the community in which the outbreak starts [40, 41]. In the simulations, at

each time step, we computed the total attack rate for each province i: i.e. ARi(t) =

(Ei(t) + Ii(t) +Ri(t)) /Ni and performed statistical analysis on this quantity as a proxy

for the state of the epidemic at each instant t. For each scenario tested, we performed

20, 000 independent simulation runs. Then, we computed the median (50th percentile)

attack rate value to estimate the median epidemic outbreak size and the 99.9th percentile

to estimate the size of large-scale epidemic outbreaks. To estimate the geographic shape

of epidemics we estimated the median attack rate in each province and the probability that

a province was reached by the epidemic.

We simulated different epidemic scenarios, by varying the basic reproduction ratio in

the range [0.5, 2.5], the origin of the outbreak, the week when it started (outbreak week
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henceforth) and in which week the epidemic outcome was observed. To estimate the im-

pact of the flood, we measured changes in outbreak size and shape with respect to a coun-

terfactual scenario in which we replaced observed Colocation maps in weeks 0 through 3

with the baseline. Then, we estimated relative changes in the aforementioned quantities

by bootstrapping 5, 000 runs from the scenarios under study and the counterfactual.

Results

Contact patterns

We analyzed contacts at week 0 (week right before the event), week 1 (immediate after-

math), week 3 (after the event) – see Fig. 2.

At week 0 there was no visible change in contacts with respect to baseline, across

contact types (see Fig. 2A): variations in household contacts ranged from −3% to +4%,

in community contacts from −6% to +22% and in external contact from −14% to +18%.

The only exception was the province of Udine in northeastern Italy bordering Slovenia,

far from the flood affected area, which showed a moderate increase and likely attributable

to a mass gathering (Adunata Nazionale degli Alpini [42]).

At week 1, household contacts had a marked increase from baseline in the affected

provinces, peaking at +28% in Ravenna. Instead, community contacts and external

contacts decreased in affected provinces. This decrease was most marked for external

contacts, with −37% in Rimini, with −62% in Ravenna. In addition, external contacts

decreased also in provinces which were not directly affected by the flood but bordered

affected provinces, like Bologna (−31%).

At week 3, household contacts were still moderately higher than baseline in affected

provinces (+16% in Rimini), community contacts were however markedly higher than

the baseline and external contacts also increased above the baseline, especially in Rimini

(+72%). A moderate increase in external contacts was recorded in week 3 across Italy,

likely to be attributable to other factors, but the increase recorded in the affected provinces

was substantially higher (see Fig. 2C, except for Ravenna). More broadly, Fig. 2B,C
compares variations in contact metrics in the affected provinces and compare them to

variations in unaffected provinces. Except for Ravenna, all variations are consistently

outside the 95th percentile computed on all provinces. Notably, the anomalous behavior

did not consistently extend to unaffected provinces close to affected areas.

Fig. 2B also shows the correlation in the disruption of household and community

contacts: in week 1, the increase in household contacts was associated with a decrease
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in community contacts, while in week 3 they both increased with respect to the baseline.

Analogously, Fig. 2C shows that community and external contacts decreased (week 1)

and then increased (week 3) together.

Fig.2|A. Administrative level 2 maps (province) of Italy, colored according to the relative variation value

of the community contacts, household contacts and external contacts with respect to the baseline. For each

type of contact, we observed the values in 3 specific weeks (Week 0 is the week May 8th-14th, Week 1

May 15th-21st, Week 3 May 29th- June 6th) B. Scatterplot of the relative variation of the household vs the

within-community contacts. The triangles week 1, the circles week 3. In red, we highlighted the affected

provinces (Rimini, Ravenna, Forlı̀-Cesena); in blue, the unaffected ones in the same region of the affected

ones (Bologna, Parma, Piacenza, Reggio-Emilia, Modena, Ferrara). The ellipse in light green is the 95th

percentile ellipse built on the distribution of all provinces at week 1, the one in dark green is the same

ellipse built on the distribution at week 3. C. Scatterplot of the relative variation of the external and within-

community contacts. Symbol and color codes are the same as B.

Simulated epidemic outbreaks

We present here results for epidemics starting in the province of Rimini, in weeks −2, 0,+2

and observed four weeks after the start of the epidemic. Other choices are presented in

the Supplemental Material. First, we examined the impact of the flood on the size of the

epidemic. Figure 3 shows the variation in median epidemic size and in the size of large

epidemics, inside and outside the starting province of Rimini, for varying basic reproduc-

tive ratio (R0) and outbreak week. Overall, epidemic sizes either increased or remained

the same with respect to the counterfactual scenario. The size of epidemics inside Rim-
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Fig.3|Relative variation with respect to the counterfactual scenario of the median (A,C,E) and the 99.9th

percentile (B,D,F) value of the Attack Rate outside and inside the province of Rimini for different cases

of outbreak week at varying values of the local reproduction ratio. In orange, the Attack Rate inside the

province of Rimini. In blue, the Attack Rate outside the province of Rimini. The red dotted line reports the

epidemic threshold (R0 = 1). The shaded areas report the 95%.

ini, both median and large, had the same qualitative behavior as a function of R0 across

outbreak weeks: the effect of the flood increased up to around the epidemic threshold

(R0 = 1), stayed constant and then dropped at R0 = 1.5 − 1.75. In magnitude, the

effect was stronger for outbreak week +2 (an epidemic starting two weeks after week

0): median epidemic size was, for the R0 = [1 · · · 1.5] plateau, 20% larger than in the

counterfactual scenario and large epidemics were 10% larger (see Fig. 3E,F). The size of

the epidemics outside the starting province of Rimini followed a similar trend, with two

exceptions. First, the flood-attributable increase in epidemic size was marked even for

large values of R0, with the plateau extending to almost R0 = 2.5. (see Fig. 3A,B,C,D).

Second, the increase in median size when the epidemic started in week 2 (see Fig. 3E)

was substantially below the epidemic threshold, surpassing +30% for R0 = 0.5.

To measure the impact of the flood on the spatial spread of simulated epidemics in

Italy, we computed for each province either the risk that that province be reached by

the epidemic or the relative median size of the outbreak there, both relative to the coun-

terfactual. We focused on the impact of the flood on the probability that an epidemic

well below the epidemic threshold (R0 = 0.5) reaches a province (Fig. 4A,C,E) and the

impact on the local median epidemic size while well above the threshold (R0 = 2.5 -
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Fig.4|A,C,E. Administrative level 2 maps (province) of Italy, colored according to the relative variation (%)

in the probability of the epidemic reaching a province, for RRimini
0 = 0.5, at varying outbreak week, with

respect to the counterfactual case. B,D,F. Administrative level 2 maps (province) of Italy, colored according

to the relative variation (%) in the median local Attack Rate, for RRimini
0 = 2.5, at varying outbreak week,

with respect to the counterfactual case.

Fig. 4B,D,F). In the former, for outbreak weeks −2, 0 (see Fig. 4A,C) the impact was

highly province-dependent, with the flood causing some provinces to become more likely

to be reached, other less likely. Notably, effects are marked for provinces near the affected

area as well as far from it. For outbreak week +2 (see Fig. 4E), the flood instead caused

an increase in the probability to be reached in almost all the provinces of Italy. For the

above-threshold epidemic, outbreaks weeks −2, 0 (see Fig. 4B,D) exhibited a homoge-

neous increase in local outbreak size, around +10% for all the provinces. For outbreak

week +2 (see Fig. 4F) the picture is instead heterogeneous, with some provinces seeing a

relative increase in outbreak size of up to +40%, while some, albeit very few, exhibiting

a slight decrease.

Finally, we investigated to which extent these spatial heterogeneities in the way the

flood affected the simulated epidemics could be directly attributable to the direct changes

in the contact network between provinces that the flood induced. Figure 5 investigates
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the correlation between the metrics of Fig. 4 and the relative change in the contact rate

between each province and the province where the simulated epidemics started (Rimini).

For example, let us consider R0 = 0.5, outbreak week +2 and the relative change in the

probability that each province is reached by the epidemic (see Fig. 5E). We measured

the extent to which the change in probability in province j was correlated with the in the

contact rate between Rimini and j in week 3 (the week with stronger external changes,

see Fig. 2), relative to the baseline. This correlation was strong, with a 0.78 (pv = 0.00)

Pearson’s correlation coefficient. Overall the correlation was strong and significant for

the scenario below the epidemic threshold (R0 = 0.5) across outbreak weeks (see also

Fig. 5A,C,E), with correlation coefficient 0.77 for outbreak week −2 and 0.80 for out-

break week 0. In the above-threshold scenario (R0 = 2.5) the correlation was markedly

weaker but still significant (pv < 0.05) for outbreak week −2 (correlation 0.58) and out-

break week 0 (correlation 0.51). There was instead no significant correlation in outbreak

week +2 (correlation 0.15, pv = 0.12) (see also Fig. 5B,D,F).

Fig.5|A,C,E. Scatterplot with the relative variation (%) of the contact rate of every province with the

province of Rimini at observational week 3 and the relative variation (%) of the probability of the epidemic

reaching a province with respect to the counterfactual case at RRimini
0 = 0.5. The blue dots report the

affected provinces, the red dots the unaffected Emilia-Romagna provinces, the grey dots all the others.

B,D,F. Scatterplot with the relative variation (%) of the contact rate of every province with the province of

Rimini at observational week 3 and the relative variation (%) of the median outbreak size by province with

respect to the counterfactual case at RRimini
0 = 2.5. The color coding is the same as in A,C,E.

Here we showed a specific scenario focused on the province of Rimini and a specific

time window to observe the epidemic outcome. However, we also explored other obser-
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vation windows and outbreak origins in the Supplemental Material. Overall, the results

matched what observed here, with some differences. Specifically, observing the epidemic

outcome at 3 months instead of 4 increases the effect of the flood on the median attack

rate. Observing it at 5 months instead reduces it. Nonetheless, the correlation levels in

these two cases are compatible compared to what seen in Fig. 5. Moreover, the effect of

the flood on an epidemic starting in Forlı̀-Cesena was comparable to that on an epidemic

starting in Rimini. The effect of those starting in Ravenna was instead weaker.

Discussion and Conclusion

Using close-proximity contact rates provided by Meta’s Data For Good Lab, we stud-

ied the effect of the floods in Emilia-Romagna, Italy in May 2023 on the patterns of

close-proximity contacts within households, within communities and across spatial com-

munities in Italy. The floods were associated with a marked disruption of all three types

of contacts in the affected areas, whose change was in the range −40%-to-+60% in the

weeks after the event, with respect to a pre-event baseline. Rimini, the Italian province

most affected by the flood was also the one experiencing strongest disruptions.

Contact disruptions followed a clear pattern across affected provinces. In the imme-

diate aftermath, contacts in households increased while contacts in the community and

especially contacts with other communities decreased. This is consistent with residents

being confined to their homes, and people being unable or unwilling to travel to and from

the affected areas [43, 44].

The disruptions in contacts continued through several weeks after the event, but changed

in sign and magnitude. Crucially, contact rates within affected communities and between

affected communities and unaffected communities across Italy sharply increased, while

also household contacts kept being above baseline. The increase in external contacts may

be consistent with the influx of aid workers and volunteers coming in to the affected areas

from all over Italy.

The recorded changes in the contact patterns are concerning in the contexts of epi-

demics of respiratory pathogens such as influenza and SARS-CoV-2. The rate of local

contacts was known to be positively associated with the local reproduction ratio in the

context of the COVID-19 pandemic [45, 46]. As such, the evidence of rising household

and community contacts in the aftermath of floods may increase the chance of outbreaks

by temporarily lowering the epidemic threshold [47], or facilitate epidemic circulation of

ongoing outbreaks. Also, the network of contacts among spatial communities is known

to affect the spatial spread of epidemics and determine whether or not large-scale diffu-
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sion occurs [21, 48, 49]. As such, the increase of contacts between residents of affected

provinces and the other provinces of Italy recorded after the floods may facilitate pat-

terns of pathogen importation and exportation and seed new outbreaks which would not

otherwise occur.

To quantify the aforementioned effects, we used a spatial stochastic metapopulation

model to simulate epidemics of a respiratory pathogen and test the impact of contact

disruptions on epidemic circulation, compared to a counterfactual scenario in which no

floods occurred. We tested basic reproduction ratios around the epidemic threshold (R0 =

1) in the range from R0 = 0.5 to R0 = 2.5. The rationale is that, if R0 ≪ 1, outbreaks are

likely to be short-lived and spatially contained and, if R0 ≫ 1, outbreaks will grow

fast and at large scale. The impact of floods may instead be most marked when the

reproduction ratio is close to critical, as the observed contact disruptions may be enough

to temporarily generate supercritical conditions leading substantially higher rates of local

and global incidence as well as to bringing the epidemic to communities which would

have otherwise been unaffected. Our simulations indeed showed that floods like those

under study may indeed both increase epidemic size and the likelihood of long-range

spread, in the context of respiratory pathogens. We found that epidemics starting in a

province affected by floods increased in size as much as 20%, both inside the province

where it started and elsewhere. We also observed a similar increase in size of rare, large

outbreaks (those occurring once every 1,000). All these increases were most evident when

epidemics started 3 weeks after the event, thus at the same time as community and external

contacts spiked, and for R0 close to the epidemic threshold, confirming the intuition that

floods may temporarily drive outbreaks to well above the threshold. Further evidence of

this is that the floods, and the new contact patterns it caused, drove epidemics that were

well in the subcritical regime (R0 = 0.5) to reaching many parts of Italy that they would

not otherwise reach, including big cities. Figure 4 tells us, for example, that an outbreak

starting in Rimini three weeks after the floods was 20% more likely of reaching the city

of Milan than what would have happened in the absence of floods. The implication of

this is clear. An epidemic that is well below threshold in Rimini (R0 = 0.5) would

have a higher chance of spreading at large scale, and for longer, should it reach a high-

population density and mobility hub like Milan[50, 51]. It is important to point out,

however, that these effects are short-lived. They affect the spreading pattern and size for

a limited amount of time; the impact of the flood on the epidemic decreases in the months

following the event, as observed for wildfires [25].

Floods, a type of extreme climatic event exhacerbated by climate change, may favor

the emergence and circulation of directly-transmitted respiratory pathogens. Our study
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shows that population-level contact data combined with mathematical model can assess

this threat, quantify this risk, and, in the future, help inform public health response and

preparedness. Specifically, given that contact data such as those provided by Meta are

accessible in near-real time, they can be used to analyze to monitor trends during and in

the aftermath of the climate emergency, and inform response accordingly. Performing

epidemic scenarios through mathematical models is instead more demanding, because

it requires detailed information on disease natural history and dynamics. This informa-

tion may not be available, or accurate, at the time of the emergency – for instance if

the pathogen is newly emerging or of an unknown variant – and this will limit the reli-

ability of scenarios coming from mathematical models. For this reason, we investigated

under which conditions scenario assessment could be performed directly from the analy-

sis of contact data, with no need for mathematical models. We found that, for outbreaks

starting with a reproduction ratio below the epidemic threshold (R0 < 1) the increase

in risk, attributable to the floods, that the pathogen is exported to an unaffected area is

directly proportional to the flood-driven increase in contact rate between that unaffected

area and the affected one, in the weeks following the floods. This means that the measured

variation in contacts directly measures the risk of pathogen exportation, with no need of

running explicit mathematical models. As the reproduction ratio increases the correlation

between direct contacts and epidemic outcome decreases, as the spreading dynamics in-

volves routes other than direct transmission from the two communities. This means that

for high R0 running the mathematical models may become necessary.

Our study has limitations. As any human mixing data, there is a problem of rep-

resentativeness and penetration used to generate the contact matrices [29, 52]. The data

provider performed an estimation of both for Italy, showing good results [29]. As a matter

of fact, the sample represented comprises of those using the internet the most, favoring

shorter time scales effects. Second, our study is retrospective and focuses on a single

flood event in Italy. Furthermore, it relies on simulated epidemics and not on surveil-

lance data from any specific epidemics. As such, it cannot be readily generalized to other

floods. Further studies should attempt to analyze different floods in different places, using

the available contact data, to investigate the general contact trends in this kind of events.

Also, analyzing the impact of floods directly on disease incidence would be useful, al-

beit it would be very hard to disentangle the effect of the floods on disease incidence

from other possible drivers, without resorting to mathematical models as we did. Lastly,

our counterfactual scenario was built on the premise that contact patterns right after the

floods were representative of the contact patterns which would have been observed in the

absence of the climatic event. This is an assumption, but it is reasonable: it was already
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shown that the week-to-week variation in the Colocation Map is minimal if no external

disruptions occur [40], plus population-level mechanisms are known to be regulated by

two timescales[53]. One is the weekly timescale which is however not relevant in our

case as Colocation Maps are aggregated weekly. The second is seasonality, which how-

ever unfolds at timescales much longer than our observation period of the contact data.

Our study unveils the effect that floods may have on facilitating the emergence and

spread of respiratory pathogens, and is a first attempt at quantifying it in the context of

a devastating flood that happened in Italy in 2023. It also shows that the analysis of au-

tonomously collected, large-scale contact data such as those provided by Meta, combined

with mathematical models, have the potential to inform preparedness and response to

these ever more common compound emergencies.
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costoso di sempre. Bonaccini: Ignorati Accessed Sept. 2024. Aug. 2023. https:

//corrieredibologna.corriere.it/notizie/politica/23_

agosto_09/alluvione-bonaccini-torna-alla-carica-ignorate-

le-richieste-servono-risorse-5baa794c-be9a-40f8-ad07-

c2258910bxlk_amp.shtml.

17

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 23, 2024. ; https://doi.org/10.1101/2024.09.20.24314056doi: medRxiv preprint 

https://emergency.copernicus.eu/
https://emergency.copernicus.eu/
https://www.theguardian.com/world/2023/may/18/italy-worst-flooding-in-100-years-emilia-romagna
https://www.theguardian.com/world/2023/may/18/italy-worst-flooding-in-100-years-emilia-romagna
https://corrieredibologna.corriere.it/notizie/politica/23_agosto_09/alluvione-bonaccini-torna-alla-carica-ignorate-le-richieste-servono-risorse-5baa794c-be9a-40f8-ad07-c2258910bxlk_amp.shtml
https://corrieredibologna.corriere.it/notizie/politica/23_agosto_09/alluvione-bonaccini-torna-alla-carica-ignorate-le-richieste-servono-risorse-5baa794c-be9a-40f8-ad07-c2258910bxlk_amp.shtml
https://corrieredibologna.corriere.it/notizie/politica/23_agosto_09/alluvione-bonaccini-torna-alla-carica-ignorate-le-richieste-servono-risorse-5baa794c-be9a-40f8-ad07-c2258910bxlk_amp.shtml
https://corrieredibologna.corriere.it/notizie/politica/23_agosto_09/alluvione-bonaccini-torna-alla-carica-ignorate-le-richieste-servono-risorse-5baa794c-be9a-40f8-ad07-c2258910bxlk_amp.shtml
https://corrieredibologna.corriere.it/notizie/politica/23_agosto_09/alluvione-bonaccini-torna-alla-carica-ignorate-le-richieste-servono-risorse-5baa794c-be9a-40f8-ad07-c2258910bxlk_amp.shtml
https://doi.org/10.1101/2024.09.20.24314056
http://creativecommons.org/licenses/by/4.0/


29. Iyer, S. et al. Large-scale measurement of aggregate human colocation patterns for

epidemiological modeling. Epidemics 42, 100663 (2023).

30. Thang, H. et al. A Systematic Review of Social Contact Surveys to Inform Trans-

mission Models of Close-contact Infectionsn. Epidemiology 30, 723–736 (Septem-

ber 2019).

31. Mossong, J. et al. Social Contacts and Mixing Patterns Relevant to the Spread of

Infectious Diseases. PLOS Medicine 5, 1–1 (2008).

32. For the Coordination of Humanitarian Affairs, U. N. O. Global Subnational Popula-

tion Data for Humanitarian Needs https://data.humdata.org/dataset/

global-subnational-population-humanitarian. Accessed: 2024-

08-30. 2024.
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