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Abstract 12 

Background 13 

An early and accurate diagnosis is crucial to provide optimal patient care in neurodegenerative 14 
diseases. Although an EEG shows advantages in availability and cost compared to the current 15 
diagnostic tools, it is not routinely used in clinical practice. Previous reviews have either focused on 16 
single disease populations and/or solely on resting state EEG. To evaluate the utility of EEG for early 17 
diagnosis and differential diagnosis, we conducted a systematic review across Alzheimer’s disease 18 
(AD), Frontotemporal Dementia (FTD) and Lewy Body Dementia (DLB).   19 

Methods 20 

We searched databases Pubmed, Cochrane, Web of Science, and Scopus for articles published from 21 
2000 to 2023 investigating resting-state and task-based EEG-markers in biomarker-proven AD, FTD 22 
and DLB.  23 

Results 24 

Our search yielded a total of 12010 studies, of which 71 papers were eligible: 34 on AD, 18 on DLB 25 
and 9 on FTD. Slowing of the frequency spectrum was a common observation across diseases, 26 
achieving excellent sensitivity in AD and DLB. Research on FTD was limited and with varying results 27 
in the discrimination from healthy controls, although connectivity analysis and microstates are 28 
promising avenues. In differential diagnosis, both spectral and connectivity metrics show encouraging 29 
results. Task-based EEG emerges as a promising tool in early AD.  30 
 31 
Conclusion 32 

EEG shows promise as a cost-effective, non-invasive tool for early detection and differential 33 
diagnosis. Future research should aim to collect standardized data from multicentric cohorts, across 34 
multiple diseases and stages, and explore the neural underpinnings of these diseases, to improve 35 
interpretability of the findings. 36 
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Introduction 38 

The estimated global prevalence of dementia in 2019, 57.4 million cases, is predicted to show a 166% 39 
increase by 2050 due to population growth and ageing [1]. Alzheimer’s Disease (AD) is the most 40 
common type, representing 60-70% of dementia cases, followed by Frontotemporal Dementia (FTD) 41 
and Lewy Body Dementia (DLB). One of the critical challenges in dementia, is an early and accurate 42 
diagnosis of neurodegenerative disease. Early detection is crucial for management of the disease and 43 
the effectiveness of disease-modifying therapies [2]. However, several issues complicate diagnostic 44 
accuracy. First, conventional structural diagnostic tools such as magnetic resonance imaging (MRI) 45 
and computer tomography (CT) are not sensitive to metabolic and functional alterations in the brain, 46 
occurring years before clinical onset ([3]). Second, traditional diagnostic tools are lacking in disease 47 
specificity, in particular when faced with syndromes high in clinical overlap. Last, cerebrospinal fluid 48 
(CSF) biomarkers and positron emission tomography (PET) scans, are valuable in providing insights 49 
in underlying pathology but are costly, invasive and not widely-accessible. As an alternative, 50 
electroencephalography (EEG) has emerged as a non-invasive, widely-accessible and cost-effective 51 
tool in the search for reliable biomarkers. EEG measures neuronal activity at high temporal resolution, 52 
allowing detection of early functional changes associated with ageing and neurodegeneration, 53 
delivering unique insights in the effects of neuropathology on neurophysiological mechanisms 54 
underpinning cognitive functioning.  55 

In AD, the utility of resting state EEG (rsEEG) rhythms in wakefulness (eyes open or eyes closed) 56 
have been studied as candidate biomarkers, as they are non-invasive, cost-effective and do not require 57 
the performance of tasks, tackling problems with fatigue and motivation. Compared to healthy 58 
controls (HC), AD patients show slowing, i.e. the leftward shift in the power spectrum from higher (α, 59 
β, and γ) towards lower frequencies(δ and θ), as well as alterations in connectivity, complexity and 60 
synchronization of neural activity [4]. An alternative approach is task-based EEG, providing insights 61 
into the amplitude and latency of neural responses or event-related potentials (ERP) elicited by 62 
different cognitive tasks. A recent systematic review highlights reduced amplitude and delayed latency 63 
in AD compared to healthy controls in various well-known ERP components such as the P300 and 64 
N400 [5]. However, heterogeneity in the AD samples and study paradigms, along with scarcity of 65 
reported effect sizes, complicates meta-analyses across both resting-state EEG [4] as task-based EEG 66 
studies [5].Furthermore, diagnostic criteria have advanced from traditional neuropsychological and 67 
clinical measures to the inclusion of biomarkers, improving diagnostic accuracy in research studies 68 
and enhancing the reliability of research outcomes. 69 

Another issue is the differential discrimination between neurodegenerative diseases. The differential 70 
diagnosis in early stages is suboptimal, for instance in discriminating DLB from AD. In the most 71 
recent consortium on diagnostic criteria, posterior slow-wave activity showing periodic fluctuations 72 
within the pre-α/θ range in resting-state EEG was recognized as a supportive biomarker for DLB [6]. 73 
From a recent systematic review, over 90% of DLB patients have diffuse EEG abnormalities [7]. 74 
Although EEG slowing was found to be more severe in AD compared to DLB, EEG abnormalities 75 
related to DLB overlap with those found in other neurodegenerative diseases such as AD. Just as in 76 
AD studies, previous systematic reviews in DLB have addressed issues such as preliminary sample 77 
sizes with large heterogeneity in patient cohorts, and lack of standardization in EEG protocols and 78 
reporting, complicating the identification of the optimal feature for differential diagnosis [7, 8] 79 
 80 
In FTD research, studies have pursued similar aims of improving diagnosis with EEG, showing 81 
slowing of the power spectrum [9, 10]. However, the scarcity of studies in FTD results in too little 82 
evidence to reach consensus.  83 
 84 
Although numerous studies have been conducted on the use of EEG in AD, FTD and DLB, no 85 
comprehensive review has yet compared EEG results across neurodegenerative diseases. Addressing 86 
this gap is crucial to define the specificity of electrophysiological markers in the differential diagnosis. 87 
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Additionally, to evaluate the utility of EEG in early stages of the diseases, we are interested in the 88 
preclinical and prodromal stages of the diseases. In line with the current diagnostic standards, we 89 
include exclusively biomarker-proven stages of AD [11]. To summarize the available literature, we 90 
conducted a systematic search on publications studying EEG-markers across AD, FTD, DLB and/or 91 
their preclinical and prodromal phases, compared to healthy controls.  92 
 93 

Methods 94 

The review was prospectively registered in PROSPERO (ID: CRD42023392253). We performed a 95 
systematic search using online databases Pubmed, Cochrane, Web of Science and Scopus for English 96 
articles published from 2000 to January 2023. The full search strategy is provided in supplementary 97 
material (S1).  98 
 99 
Screening 100 

Our search yielded a total of 12010 studies. The online collaboration platform Rayyan 101 
(https://www.rayyan.ai/) was used to implement, deduplicate and screen articles. Possible duplicates 102 
as detected by Rayyan were manually checked. Following deduplication, 6952 abstracts were screened 103 
for eligibility based on inclusion and exclusion criteria by two independent researchers (SDK, RB) 104 
blinded to each other’s rating. Based on abstract only, 6243 articles were excluded. The remaining 709 105 
potential eligible articles were then screened on full text based on the same inclusion and exclusion 106 
criteria. The main reason of exclusion was not including biomarkers in AD (n=476). Conflicts were 107 
resolved by discussion between the researchers. The PRISMA flowchart (Figure 1) shows the full 108 
screening and exclusion process.  109 

Inclusion criteria: 110 

- Participant population: AD, FTD, DLB, including preclinical and prodromal stages, 111 
presymptomatic carriers of genetic causative mutations and healthy controls. In line with the 112 
International Working Group 2 (IWG-2) criteria for AD, we only include biomarker-proven 113 
cases of AD showing in vivo evidence of amyloid and tau pathology [12], presymptomatic 114 
carriers of familiar AD (FAD) by Amyloid Precursor Protein (APP) and Presenilin 115 
(PSEN1/PSEN2) causative mutations were included. Criteria for FTD diagnosis were a 116 
diagnosis following the Rascovsky criteria for bvFTD [13], Gorno-Tempini criteria for 117 
PPA[14], carrier of a genetic mutation of FTD, and/or imaging evidence of frontotemporal 118 
atrophy. DLB was defined by the criteria of McKeith [6, 15].  119 

- Primary research studies 120 

- English language 121 

- Studies using resting-state EEG and/or task-based EEG as neuroimaging modality 122 

Exclusion criteria: 123 

- Studies that combine multiple neuroimaging modalities or EEG with other biomarkers but do 124 
not separately report the performance of EEG markers. 125 

- Animal studies 126 
- Population with comorbidities (Down Syndrome, Schizophrenia, …) 127 

- Prognostic studies 128 
- Case studies or study population <5 participants 129 

- Sleep EEG 130 

Lastly, risk of bias was assessed using a hybrid version of the Joanna Briggs Institute (JBI) Critical 131 
Appraisal checklist (supplementary material S2). 132 

 133 
 134 
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Figure 1. PRISMA flowchart diagram for systematic reviews [16].  168 

Data extraction: 169 

The following data was extracted manually from eligible studies. Tables with data can be 170 

found in supplementary material (S3).  171 

1. Article information: First author, year  172 

2. Study population: Sample size, patient population(s), control group(s), biomarkers 173 

3. EEG acquisition: number of electrodes, sampling frequency, recording state 174 

(resting/task-based), duration 175 

4. Analysis 176 

5. Reported results 177 

Data synthesis: 178 

As our field of interest includes a heterogenous group of pathologies and disease stages as 179 
well as various recording and analysis conditions, data is presented descriptively. AUROC 180 
characteristics, sensitivity, specificity and diagnostic accuracy were reported if provided. 181 

Records identified from: 
Pubmed = 3085 
Web of science = 3936 
Scopus = 4382 
Cochrane = 607 
N =12010 

Records/duplicates removed 
before screening (n = 5058) 

Records screened 
(n = 6952) 

Records excluded based on 
abstract screening  
(n = 6243) 

Reports sought for retrieval 
(n = 709) 

Reports not retrieved 
(n = 81) 

Reports assessed for eligibility 
(n = 628) 

Reports excluded: N = 557 
Lack of biomarkers  (n=476) 
No HC/number of 
cases/unspecified pathology   
(n=54) 
Language (n=4) 
No primary research (n=12) 
Modality/design (n=9) 
Risk of bias concerns (n=2) 

Studies included in review 
(n = 71) 

Identification of studies via databases and registers 
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Results 182 

Study characteristics 183 

Our search yielded a total of 6957 unique studies, of which 71 studies were included in the final 184 
review (figure 1). In total, we included 34 AD studies, 9 FTD studies, 18 DLB studies, and 9 studies 185 
combining disease populations. The studies included a total of 1115 patients with dementia due to 186 
biomarker-proven Alzheimer (demAD) and 915 prodromal AD (prodAD) cases. Seven studies 187 
included preclinical AD pathology by positive amyloid and/or tau biomarkers (n=397). Six studies 188 
included FAD (n=43) and/or prodromal FAD (prodFAD, n=22) and asymptomatic carriers of a PSEN 189 
1 or APP mutation (AcrFAD, n=100). Four studies included patients with bvFTD (n=108), three 190 
studies included not specified FTD (n=38). One study included familiar CHMP2B-FTD symptomatic 191 
(n=5) and presymptomatic carriers (n=5). One study compared non-fluent variant PPA (n=18), 192 
semantic variant PPA (n=10) and logopenic variant PPA (n=12). 18 studies included DLB patients 193 
(n=589), while only one study focused on prodDLB (n=21). In case studies included DLB or FTD 194 
combined with non-biomarker proven AD, only the results of the FTD or DLB patients are described. 195 
Five studies compared prodAD (n=111) and prodDLB (n=111), while one study included demAD 196 
(n=66) and DLB (n=66). Two studies using the same dataset compared PPA (n=5), bvFTD (n=13) and 197 
prodAD (n=18), a third study compared bvFTD (n=48) to AD (n=69). The majority of the studies 198 
employed a rsEEG recording (figure 2c). All of studies combining different disease populations 199 
employed resting state EEG. 200 

 201 

 202 

 203 

 204 
 205 

 206 

 207 

 208 

Figure 2. a) Study characteristics in studies including a single patient population. b) Study characteristics 

comparative studies. c) Percentage of studies using rsEEG or tbEEG per population. AD= Alzheimer’s 

Disease, prodAD= prodromal AD, preAD=preclinical ADFAD= Familial AD, prodFAD= prodromal FAD, 

ACR FAD= asymptomatic carriers of a FAD causative mutation, FTD= frontotemporal dementia, bvFTD= 

behavioral variant FTD, CHMP2B-FTD= symptomatic CHMP2B carriers, CHMP2B-FTD Acr= asymptomatic 

CHMP2B carriers, nfvPPA= non-fluent variant primary progressive aphasia (PPA), svPPA= semantic variant 

PPA, lvPPA= logopenic variant PPA, DLB= Dementia with Lewy  Bodies, prodDLB= prodromal DLB, 

rsEEG= resting-state EEG, tbEEG= task-based EEG 
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Potential for AD diagnosis 209 

Resting state EEG 210 

Diffuse slowing of the frequency spectrum towards lower frequencies is a consistent observation in 211 
both prodAD [17–20] and demAD [21, 22]. The shift in the power spectrum in demAD manifests as 212 
reduced spectral metrics in the α band, while spectral power in θ band increases [22]. Smailovic found 213 
that low α global field synchronization (GFS), a measure of global functional connectivity in the 214 
frequency domain, is linked to abnormal Aβ42 levels in demAD and prodAD, and high levels of p-tau 215 
and t-tau in prodAD [23]. Secondly, in demAD, high levels of p-tau and t-tau correlate with low global 216 
strength of scalp potential (GFP) in β and δ bands. In prodAD, high GFP in δ and θ was linked to 217 
abnormal CSF levels of Aβ42, while lower GFP α and β is linked to increased p-tau and t-tau. These 218 
results are in line with the research of Cecchetti, showing that prodAD show higher θ density than 219 
MCI without AD pathology with over 75% sensitivity and 70% specificity [21]. Similarly, Rodriguez 220 
demonstrated that frontotemporal alterations in β band discriminate between presymptomatic PSEN1 221 
carriers and noncarriers and between FAD and HC (see figure 3)[24]. Additionally, significant 222 
progressive alterations in bispectral metrics are found along the AD continuum [25]. Specifically, with 223 
increasing severity, interactions between the δ and θ bands and other bands increase, while interactions 224 
with high frequency bands α, β1, and β2 bands diminish. Similarly, synchronization measures 225 
demonstrate reduced functional connectivity in demAD in α and β bands, while coherence metrics in θ 226 
band increase [26]. These results are similar to findings by Revilla-Vallejo, where Shannon Entropy 227 
(SE) shows higher values in the δ band and lower values in the α and β1 bands in prodAD and demAD 228 
compared to HC, suggesting less connectivity and integration in these two bands [27].  229 
 230 
Another way to look at resting-state activity is through microstate analysis. Spontaneous resting state 231 
activity can be described using microstates, transient global patterns of scalp potential, reflecting 232 
coordination of neural activity among networks [28]. Microstate analysis in AD reveals alterations in 233 
the duration, occurrence and coverage of microstates varying with severity. Specifically, demAD 234 
patients showed a longer duration in microstate B [29]. In the study of Smailovic, topographic 235 
differences in microstates A and D were found between HC and patient populations SCD, prodAD and 236 
demAD [30]. Furthermore, preclinical and prodromal AD could be differentiated from the dementia 237 
stage by topographical differences in microstate A. The authors further found that topographical 238 
alterations in microstate C were linked to increased Aβ42 levels, while p-tau levels were linked to 239 
microstate B alterations.  240 
 241 
Recently, a number of studies used EEG-based machine learning classifiers for the detection of AD. 242 
An advantage of these studies is that the outcome measures offer more insight into the potential 243 
clinical implementation, which necessitates robust results at the individual level, compared to the prior 244 
studies which reported results from group-level comparisons. Studies discriminating AD from HC 245 
show promising classification accuracies in demAD ranging from 78% to 91% and in prodAD ranging 246 
from 73-85% (see figure 3). Another measure of the model's accuracy is the F1 score, which is 247 
calculated using precision (positive predictive value) and recall (true positive rate). Studies achieved 248 
encouraging F1 scores ranging from 0.86 to 0.88 [31, 32]. Regarding the age factor, Durongbhan [33] 249 
found encouraging results in discriminating demAD from HC below the age of 70 (sensitivity >90%, 250 
specificity >83%), in individuals over 70 years, results were a little lower (>67% sensitivity, >85% 251 
specificity). Zhao studied both linear and nonlinear synchronization and found age- and disease-related 252 
differences in network synchronization [34]. Healthy individuals below 70 years old exhibit 253 
widespread linear synchronization with dynamic variability between eyes closed (EC) and eyes open 254 
(EO) states, while in young individuals with demAD, this dynamic variability is diminished, indicating 255 
network dysfunction. Secondly, they found a high widespread nonlinear synchronization during EO 256 
with higher dynamic variability compared to demAD. In individuals above 70, both HC and demAD 257 
showed similar levels of linear and nonlinear synchronization with minimal variability between states. 258 
Combining linear and nonlinear connectivity yields highest classification accuracies below the age of 259 
70 (80.3% EO, 74.5% EC) and above the age of 70 (EO 86.5%, EC 90.5%).  260 
 261 
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In preAD, PSD patterns can be used to model compensatory mechanisms and progression to AD [35]. 262 
More specifically, individuals with amyloid burden in absence of neurodegeneration evidenced by 263 
brain metabolism in AD core regions, show increased functional connectivity in the parieto-occipital α 264 
band. In individuals with neurodegeneration, the impact on EEG metrics varies depending the degree 265 
of amyloid accumulation. More specifically, surpassing a critical threshold of amyloid accumulation, 266 
reverses the compensatory upregulation of higher β and γ frequencies and decreased δ power seen in 267 
intermediate amyloid burden, resulting in decreased β and γ power, MSF, spectral entropy, complexity 268 
and wSMI in θ band while δ power increases. In individuals with subjective complaints (SCD) with 269 
amyloid burden, Shim observed similar patterns of increased δ power in parietal, occipital and 270 
posterior cingulate regions combined with decreased α activity in fusiform and inferior temporal 271 
areas[36]. In predicting AD pathology in individuals with SCD, the best ML model shows 88.6% 272 
accuracy (see figure 3)[37]. 273 
 274 
Task-based EEG 275 
 276 
A first important domain affected in AD is encoding and memory. Tautvydaite [38] shows that 277 
demAD patients show neural deficits in novelty detection and encoding during both learning and 278 
delayed memory recognition of pictures. Specifically, demAD patients show a decreased P200 279 
response to new and repeated items, reflecting attention and perceptual processing, as well as an 280 
increased P300 during delayed repetition, which might reflect difficulties differentiating new from 281 
familiar stimuli. Similarly, in a passive picture recognition task of Stothart [39], demAD patients 282 
showed a decreased neural response to familiar pictures. Early differences in visual short term memory 283 
have also been found by Pietto[40] showing a reduced N1, P2 and P3 in prodFAD. Several studies 284 
including asymptomatic carriers of an AD causative genetic mutation, explored the potential of task-285 
based EEG for early detection, highlighting early neural functional alterations without corresponding 286 
behavioral impairments. Golob [41] observed that presymptomatic carriers of the PSEN1 or APP 287 
mutation (mean age = 33.9), show discriminable neural alterations during an auditory target detection 288 
task. These alterations included decreased slow wave amplitudes, increased P200 amplitude, and 289 
delayed N100, N200, P200 and P300 latencies. Comparison of latencies across the ERP components 290 
showed that the latencies in the asymptomatic carriers were around 10% longer than the noncarrier 291 
group. Nontarget P200 latency emerged as a potent discriminator, successfully identifying 87% of the 292 
presymptomatic carriers. Quiroz [42] observed that during a recognition memory task, 293 
presymptomatic PSEN1 carriers showed lower frontal ERP positivity alongside an increased occipital 294 
positivity, with 72.7% sensitivity and 81.8% specificity discrimination. Despite these neural 295 
differences, both groups performed equally well on the task. Control subjects during recognition 296 
memory, exhibited activation patterns reliably associated with frontally mediated processes 297 
distinguishing between studied and unstudied visual items. PSEN1 carriers on the other hand, showed 298 
increased brain activity in occipital regions associated with visual perceptual processing. Ochoa [43] 299 
demonstrated a higher connectivity during the encoding condition of the same recognition memory 300 
paradigm in PSEN1 presymptomatic carriers compared to non-carriers. Connectivity in the occipito-301 
parietal region during the same memory encoding condition within the 500-600ms time window is 302 
able to differentiate between presymptomatic and non-carriers with 67 % sensitivity and 80 % 303 
specificity [44]. P300 latency during an auditory oddball paradigm correlates with CSF levels of p-304 
tau181, p-tau199 and ptau231 across demAD, prodAD and HC, while N200 latency negatively 305 
correlates with Aβ42 [45]. Recent studies in preAD using a working memory paradigm point towards 306 
reduced α event-related desynchronization (ERD) and altered α spectral entropy, suggesting 307 
compensatory hyperactivity during low load and insufficient cognitive resources with increasing work 308 
load [46, 47]. In the γ band, low working load induces a higher low γ in preAD, while decreases in γ 309 
are observed during high load [48]. 310 

 311 
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In the language domain, sources of ERPs during a semantic-matching task reveal distinct 312 
topographical patterns in presymptomatic carriers versus non-carriers, although their behavioral 313 
responses and N400 amplitudes remain similar [49]. Specifically, presymptomatic carriers show a 314 
notable decrease in N400 generator strength within the right inferior-temporal and medial cingulate 315 
areas, and an increase within the left hippocampus and parahippocampus compared to non-carriers. 316 
The observed shift in N400 distribution mirrored that seen in symptomatic carriers, albeit with a less 317 
pronounced reduction in generator strength. 318 

 319 

Figure 3. AUROC values in AD studies. If multiple values were provided, only the highest value was reported. Studies were 320 
organized according to subpopulation. AD=Alzheimer’s Disease, prodemAD= prodromal AD, preAD= preclinical AD, Acr = 321 
Asymptomatic carriers, prodFAD= prodromal Familial AD, FAD= Familial AD, rs-EEG= resting-state EEG, tbEEG= task-322 
based EEG, AUC= Area under the curve, Sen=sensitivity, Spe= specificity, Acc= accuracy 323 

Potential for FTD diagnosis 324 

rsEEG 325 

Spectral analysis in FTD shows a consistent slowing of the frequency spectrum. While studies agree 326 
on a slowing in α frequencies, there is some discrepancy regarding the changes in the β band, with 327 
some indicating a decrease and others suggesting an increase [9, 50]. In the study of Herzog [51], 328 
hypoconnectivity in the δ band between frontal, temporal, parietal and posterior areas emerged as the 329 
most relevant EEG feature, showing excellent AUC values in the discrimination of bvFTD from HC 330 
(figure 4). One study found right frontotemporal hypoconnectivity in bvFTD, which correlated with 331 
deficits in a naturalistic social text task [52]. 332 

Microstates were investigated in two studies. One study found that microstate duration C was 333 
decreased in FTD and that the sequence of activation from C to D was reversed [53]. Another study 334 
found that microstates vary with disease progression, showing an initial increase in microstate D, and 335 
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a decrease as disease duration prolongs in CHMP2B-FTD [54]. These conflicting results could be 336 
explained by the different stages and variants of FTD. More specifically, microstate C is linked to the 337 
insular-cingulate network, linked to changes in personality typical of bvFTD. In contrast, CHMP2B-338 
FTD presents with early impairments in executive functioning, with behavioural symptoms occurring 339 
at a later stage of the disease [54]. Microstate D has previously been linked to the fronto-parietal 340 
network, the initial increase followed by a decline in microstate D activation may be interpreted as a 341 
temporary compensatory mechanism. Studies using ML classification achieve encouraging AUC 342 
values between 0.78-0.96 for bvFTD and 0.78 for PPA versus HC (see figure 4). Moral-Rubio [55] 343 
also discriminated between nfvPPA, svPPA and lPPA variants, with 58% accuracy. 344 
 345 
Task based EEG 346 

Only one out of 10 studies included a task-based Go/No go paradigm, showing differences in θ and δ 347 
modulation related to impaired inhibition [56].  348 

 349 

Figure 4. AUROC values in FTD studies. If multiple values were provided, only the highest value was reported. Studies 350 
were organized according to subpopulation. bvFTD= behavioral variant Frontotemporal Dementia, FTD= Frontotemporal 351 
Dementia, PPA= Primary Progressive Aphasia, rsEEG=resting-state EEG, AUC= Area under the curve, Sen=sensitivity, 352 
Spe= specificity, Acc= accuracy 353 

 354 

Potential DLB 355 

rsEEG 356 

The most consistent finding in DLB compared to HC is slowing of the EEG pattern. More specifically, 357 
results show a leftward shift in mean dominant frequency (DF) from α range to pre-α or high-θ (6-7.5 358 
Hz), in anterior [57], occipital [58, 59], posterior [60], or widespread areas [61]. Similarly, increased 359 
power in low frequency bands [61, 62] and decreased power in high frequency bands [61], as well as 360 
decreased θ/α ratio [58], differences α/θ and α/δ ratio [60] are observed. Using the θ/α ratio, DLB 361 
patients can be discriminated from HC with 76.7% sensitivity, 61.7% specificity and 66.7% accuracy 362 
[63]. In DLB patients with visual hallucinations, parietal δ activity achieves 75% sensitivity, 85% 363 
specificity, 81% accuracy in discrimination from HC. Posterior α reactivity from EC to EO is reduced 364 
in DLB, suggesting altered neural vigilance in the occipital lobe, enabling discrimination of DLB with 365 
95.2% sensitivity [64].  366 
 367 
In terms of connectivity, DLB patients show consistent network disorganization. DLB was 368 
characterized by network randomization and reduced connectivity in the α and β band [59, 65, 66] 369 
combined with increased network complexity in the high-θ band [59]. Similarly, combining 370 
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connectivity strength of the β band with graph features of α band achieved an 76% accuracy in 371 
differentiating DLB from HC in the study of Mehraram [67]. In terms of dynamic connectivity, DLB 372 
patients show reduced α band information flow between posterior to anterior areas [68]. Functional 373 
source connectivity suggests cortical disconnection in DLB as both intra- and interhemispheric lagged 374 
linear connectivity (LCC) in the α range are reduced. Interhemispheric LCC in α range achieves good 375 
discrimination [69]. In the study of Kai [62], decreases in interhemispheric coherence (Icoh) and 376 
intrahemispheric coherence (Hcoh) were besides α also pronounced for δ, β and θ frequencies. In 377 
terms of large-scale resting state networks (RSN), connectivity decreases are found in the visual and 378 
sensorimotor network [65].  379 
 380 
Two studies on microstates found contrasting results. In the study of Schumacher [70] microstate 381 
duration of all microstates was increased with reductions in numbers of microstates per second in 382 
DLB. Lamos [71] found the opposite direction of changes in prodDLB, with increased occurrence of 383 
all microstates, and shorter mean duration and increased occurrence of microstate B, which is 384 
associated with the visual network.  385 
 386 
Task-based EEG 387 
 388 
Three studies included a task-based EEG paradigm. One study used an auditory oddball paradigm and 389 
found a reduced and delayed P300 amplitude, as well as a P300 latency gradient inversion in DLB 390 
[72]. A longer latency of the P300 was also found in a visual oddball task [73]. Interestingly, oddball 391 
tasks reveal differences in EEG oscillations reflecting typical DLB symptoms. More specifically, DLB 392 
patients show a decreased event-related δ synchronization combined with impaired α and β 393 
suppression during both visual and auditory oddball tasks, and decreased θ band activity in a visual 394 
task [73, 74]. From a clinical perspective, decreased event-related θ oscillations and decreased α 395 
suppression during a visual oddball task may serve as neurophysiological correlates of attention and 396 
visual dysfunction in DLB. Power in δ band was able to discriminate DLB from HC with good 397 
sensitivity and specificity [74].  398 

 399 
 400 
Figure 5. AUROC values in DLB studies. If multiple values were provided, only the highest value was reported. Studies 401 
were alphabetically organized. DLB= Dementia with Lewy Bodies, DLB VH+= DLB with visual hallucinations, DLB 402 
MMSE+= DLB with pathological Mini Mental State Examination scores, rsEEG= resting-state EEG, tbEEG= task-based 403 
EEG, AUC= Area under the curve, Sen=sensitivity, Spe= specificity, Acc= accuracy.  404 
 405 
 406 
 407 
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Potential for discrimination 408 

AD versus DLB 409 

Studies comparing prodAD and prodDLB consistently find a more pronounced slowing in prodDLB 410 
compared to prodAD [75–77]. To account for interindividual variability, individual α frequency peaks 411 
(IAF, maximum power peak between 6-14Hz) and transition frequency between α and θ band (TF, 412 
minimum power density between 3-8Hz) can be used. Reduced mean TF and mean IAF values are 413 
consistent observations across DLB studies [63, 69, 70]. In the study of Babiloni [78] mean TF and 414 
mean IAF were found to be lowered in both prodAD (mIAF=8.8Hz, mTF = 5.4) and prodDLB compared 415 
to HC (mIAF = 9.4Hz, mTF=96.3Hz) with more pronounced reductions in prodDLB (mIAF =7.8Hz, mTF 416 
=4.7Hz). In the discrimination of prodAD from prodDLB, sensitivity values for spectral metrics range 417 
between 41 to 78.3%, while specificity values range between 66.7 to 97% (see figure 6) [76, 78]. The 418 
leftward shift in the power spectrum in DLB was also confirmed in the study of Massa [75], where α/θ 419 
ratio was found to be decreased in prodDLB compared to prodAD, and in the study of Schumacher 420 
[76], where increases in θ/α ratio were correlated with more severe cases of prodDLB. In the study of 421 
Schumacher [76], β power showed the highest AUC (0.71) in discriminating prodAD from prodDLB, 422 
with 61% sensitivity and 81% specificity.  Discrimination between DLB and AD with high β power as 423 
the most important factor, shows good sensitivity and specificity (see figure 6) [68]. Babiloni [79] 424 
found that inter- and intrahemispheric LCC values in the α band were reduced in both prodAD and 425 
prodDLB compared to HC. While intra-hemispheric LCC α2 was best to differentiate prodDLB from 426 
HC, interhemispheric LCC global α2 was best to differentiate prodAD from HC. However, 427 
discrimination between prodAD and prodDLB remained low (AUC <0.7).  428 

AD versus FTD   429 

While both FTD and AD show progressive connectivity alterations compared to HC, profound 430 
frequency- and location dependent differences can be found in network organization, which are linked 431 
to the core areas of the diseases. Compared to bvFTD, demAD patients show lower connectivity in the 432 
α and δ band in posterior regions and a widespread higher connectivity in the θ band [80]. bvFTD 433 
patients showed an inverse pattern, with preserved posterior alpha connectivity, but lower θ activity in 434 
posterior and frontal areas. The Minimum Spanning Tree (MST) analyses indicate that frontal 435 
networks appear to be selectively involved in bvFTD, whereas in AD, global efficiency is reduced 436 
[80]. In the study of Franctiotti [81], the typical main hub in HC is lost in FTD at dementia onset and 437 
replaced by frontal local hubs, while network organization is largely preserved in demAD. In the same 438 
study, global clustering was able to distinguish between FTD (PPA and bvFTD) and demAD with 439 
moderate sensitivity but high specificity (see figure 6). In the study of Bonanni [82], network 440 
alterations predominantly targeted the frontal region in pFTD, while in prodAD, mutual information in 441 
the left local anterior region discriminated prodFTD from prodAD with good sensitivity but low 442 
specificity (see figure 6). Using the same metric, discrimination of pFTD from HC reached 89% 443 
sensitivity and 90% specificity. For the discrimination of prodAD from HC, MI in the posterior 444 
connections achieved high sensitivity (89-100%) and specificity (85-100%). Interestingly, these 445 
effects were evident in the prodromal stages of the disease but diminished with progression, which is 446 
suggestive of hyperconnectivity as a temporary compensatory mechanism to account for the effects of 447 
neurodegeneration in the core areas of the specific disease.  448 
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 449 
 450 

Figure 6. AUROC values in discriminative studies. If multiple values were provided, only the highest value was reported. 451 
prodAD= prodromal Alzheimer’s Disease, prodDLB= prodromal Dementia with Lewy Bodies, prodFTD= prodromal 452 
Frontotemporal Dementia, DLB= Dementia with Lewy Bodies, demAD= dementia due to Alzheimer’s Disease, PPA= 453 
Primary Progressive Aphasia, bvFTD= behavioral variant Frontotemporal Dementia, rsEEG= resting-state EEG, tb-454 
EEG=task-based EEG, AUC= Area under the curve, Sen=sensitivity, Spe= specificity, Acc= accuracy. 455 

 456 
 457 

Discussion 458 

To the best of our knowledge, this is the first systematic review to evaluate the diagnostic utility of 459 
EEG across AD, FTD, DLB as well as their preclinical and prodromal stages. The findings reveal 460 
promising AUC values across diseases and disease stages, which suggest that EEG holds significant 461 
diagnostic utility in AD, FTD and DLB. This, in combination with the advantages of EEG such as 462 
cost-effectiveness and non-invasiveness, could make EEG a valuable tool for the detection of 463 
neurodegenerative diseases.  464 

Potential for diagnosis of AD, FTD and DLB at the dementia stage 465 

In AD, the leftward shift towards lower frequencies is a well-established finding, characterized by 466 
reductions in spectral and connectivity metrics in higher frequencies α and β, while increases in these 467 
metrics are found in δ and θ bands [21–23, 25–27]. Discrimination of AD based on frequency data is 468 
promising with excellent sensitivity values ranging from 88 to 93%, albeit lower specificity between 469 
52-89% (see figure 3). In DLB, similar patterns of slowing arise as the most consistent findings [57–470 
63, 69, 70]. Discrimination of DLB from HC using spectral metrics ranges between 75-95% 471 
sensitivity, 61-85% specificity and 66.7-81% accuracy (see figure 5). Similarly, reduced connectivity 472 
is found, especially within the α range [59, 62, 65–69]. Depending on the analysis, discrimination 473 
based on connectivity measures is lower with sensitivity values of 59-84%, specificity of 65-100%, 474 
and accuracy of 74-76% (see figure 5). Overall, the high sensitivity values suggest that frequency data 475 
holds promise as a screening tool in both AD and DLB. 476 
 477 
Preliminary studies on FTD (bvFTD and PPA) have reported varying AUC values (ranging between 478 
0.69-0.96, figure 4), however, due to the heterogeneity of the FTD spectrum, the variation in analysis 479 
techniques and the limited amount of studies, direct comparisons of AUC values are challenging. In 480 
bvFTD, connectivity analysis achieves the most encouraging AUC values [51, 83]. A different 481 
promising avenue could be microstate analysis, with alterations in microstate C and D, varying 482 
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according to the subtype and stage of the disease [53, 54]. However, without ROC analysis to validate 483 
its effectiveness, the value of microstate analysis remains uncertain.  484 
 485 
Potential for early diagnosis 486 

In prodAD, slowing of the frequency spectrum is the most consistent observation with slowing 487 
patterns similar to those observed in AD, with the most prominent and consistent reductions in alpha, 488 
TF and IAF [17, 18, 20, 21, 23]. Discrimination of prodAD from MCI without AD biomarkers and HC 489 
achieves moderate sensitivity and specificity values (see figure 3). One explanation might be that 490 
alterations in spectral metrics start before the start of preclinical AD and develop differently across 491 
individuals. Recent studies have reported interindividual variability in EEG metrics, depending on the 492 
degree of amyloid burden and neurodegeneration [35] as well as the interaction with other factors 493 
modulating brain activity such as age [19] and education levels [18, 84].  494 
 495 
Research on early stages of FTD is limited, with only one study including presymptomatic carriers of 496 
a FTD causative mutation, suggesting progressive alterations in microstates [54]. More precise, the 497 
upregulation of microstate D activity in the early stages of the disease might be a temporal 498 
compensatory mechanism. However, as the disease progresses and the brain's capacity to maintain this 499 
compensation diminishes, microstate D activity decreases. Similarly, microstate alterations have been 500 
suggested as a potential early marker for prodDLB, with alterations inverse to those in the dementia 501 
stage of the disease, which again may be explained by early maladaptive mechanisms [71]. 502 
 503 
 504 
Potential for differential diagnosis 505 

Another key issue is the differential diagnosis of neurodegenerative diseases which is complicated due 506 
to overlap in clinical symptoms and heterogeneity of the diseases. A leftward shift in the power 507 
spectrum is a consistent finding in all three populations, AD [17–22], FTD [9, 50] and DLB [57–62], 508 
raising questions regarding the specificity of this phenomenon. Studies comparing prodAD and 509 
prodDLB consistently find a more pronounced slowing in prodDLB, with good specificity values 510 
(66.7-97%) for the alpha band but low sensitivity (41-78.3%). In the study of Schumacher (2020), 511 
sensitivity values range between 23 and 61%, while specificity were higher between 81 and 89% for 512 
different frequency bands. The high specificity across studies suggests that a significant shift in the 513 
power spectrum is more likely to be indicative for prodDLB rather than prodAD. However, the low 514 
sensitivity values, indicate that in cases with less disturbed EEG patterns, differentiating between the 515 
two becomes increasingly difficult. As the disease progresses, discrimination between DLB and AD 516 
shows better sensitivity (86%) and specificity (85%) [85]. Interestingly, alterations link to the key 517 
areas of the diseases. In DLB, the slowing of EEG frequencies is more pronounced in posterior regions 518 
[58–60]. In FTD, reductions in alpha band are pronounced in frontal areas, which corresponds to 519 
anatomical and metabolic changes in these areas in FTD patients [50]. Connectivity studies provide 520 
similar evidence. In FTD, network alterations predominantly target frontal regions [80–82], aligning 521 
with the progressive frontal disconnection characteristic of the disease. In contrast, more widespread 522 
or posterior alterations seem to be more suggestive of AD [80, 82]. In DLB, functional connectivity is 523 
reduced in the visual and sensorimotor network [65]and information flow is reduced between posterior 524 
to anterior regions [68].  525 
 526 
 527 
Potential of task-based versus resting state EEG 528 

While resting-state EEG measures spontaneous activity, task-based EEG captures the complex 529 
dynamics underlying cognitive processes that are affected in neurodegenerative diseases, thereby 530 
increasing interpretability. Task-based paradigms offer unique insights into the neural substrates of 531 
AD-related symptoms, showing alterations in auditory and visual target detection and memory 532 
recognition [38, 39, 41, 45]. Notably, task-based EEG has been studied extensively in  the earliest 533 
stages of AD (figure 1c). Task-based EEG highlights early, subtle changes in neural processing of 534 
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memory and language preceding deficits in performance in presymptomatic FAD carriers [41–43, 49]. 535 
More specifically, early alterations are present in well-known ERP components N100, N200, P200 and 536 
P300 that are also found in prodFAD [40] and demAD [38]. Sensitivity values of task-based 537 
paradigms identifying carriers from noncarriers range from 67-72.7% and 80-81.8% specificity (see 538 
figure 3), which is comparable to symptomatic stages. The ability to detect early neural changes before 539 
the onset of symptoms is perhaps one of the most promising findings, as it could revolutionize how we 540 
approach AD.  541 

Three studies in DLB employed task-basedEEG, offering insights into the neural substrates of 542 
cognitive deficits in DLB. During oddball tasks, reduced and delayed P300 amplitudes are found, 543 
relating to deficits in attention and executive functioning [72, 73]. Furthermore, DLB patients show a 544 
decreased event-related δ and θ synchronization combined with impaired α and β suppression, which 545 
may serve as a neurophysiological correlate of visual and attentional dysfunction in DLB showing 546 
promising sensitivity and specificity values [73, 74]. We found no task-based studies discriminating 547 
between neurodegenerative diseases, despite evidence of alterations in task-based analyses, such as 548 
delayed P300 effects which have been reported in both AD [41, 45] and DLB [72, 73]. 549 

 550 
Limitations 551 

The available academic literature on the diagnostic utility of EEG markers between AD, FTD and 552 
DLB shows notable gaps. First, there is an underrepresentation of studies including FTD patients, 553 
which limits the ability to make statements about the most promising avenue in diagnosing FTD and 554 
discriminating FTD from other neurodegenerative diseases. Furthermore, there is a scarcity of studies 555 
comparing across neurodegenerative diseases, which limits the ability to make statements on the 556 
specificity of some markers. 557 
 558 
The established heterogeneity within the AD, FTD and DLB population is thought to play a major role 559 
in the sometimes conflicting outcomes of prior research. As is shown in our review, not all disease 560 
stages within these neurodegenerative diseases are equally represented. Studies including multiple 561 
disease stages have shown differences in the EEG markers with progression of the disease. As not all 562 
studies describe disease duration, conflicting results might be partially explained by different disease 563 
stages. On the other hand, it is clear that other factors which are hard to model in their entirety impact 564 
disease presentation and severity besides disease duration. In our bias assessment, we paid special 565 
attention to the matching of confounding factors such as age and education that were studied in 566 
multiple studies. Education has been shown to influence alpha activity, serving a neuroprotective and 567 
compensatory role in AD [84]. A parallel pattern can be found between brain activity and cognitive 568 
reserve (CR), the brain’s resilience to neuropathology and neurodegeneration in prodAD [18]. In 569 
studies using a working memory paradigm, CR translated into better neural efficiency, evidenced by 570 
increased α ERD and decreased α SpecEn during high working load [47]. Taken together, these 571 
findings suggest both a compensatory mechanism in mitigating consequences of brain slowing in AD. 572 
Finally, the impact of neuropathological co-pathology remains largely uncharted territory. 573 
  574 
In terms of methodology, the variety in markers of interest, methods and analysis along with a scarcity 575 
in reporting of AUROC values, severely limits the possibility for meta-analysis and statements about 576 
the most promising marker. Recent work shows promise in harmonizing EEG data across centers 577 
using novel post-processing methods [86]. 578 
 579 
The interpretation of EEG markers and their link to clinical symptoms remains largely unclear. 580 
Research exploring the correlation between neural mechanisms and clinical symptoms is particularly 581 
valuable in increasing the interpretability of neural alterations. For example, spectral and connectivity 582 
measures may clarify the association between DLB pathology and clinical symptoms. Multiple authors 583 
have proposed that a cholinergic deficit underlies α band network alterations [59, 65, 66]. Since α 584 
oscillations are involved in thalamo- and corticocortical communication crucial for cognitive 585 
processing, it is speculated that α band network alterations may connect cholinergic deficits to key 586 
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clinical symptoms in attention, perception and memory [59, 65, 66]. Finally, task-based EEG shows a 587 
clear advantage to mechanistically study specific cognitive processes at the earliest disease stages, 588 
when neural changes are still relatively limited.  589 
 590 

Conclusions and future directions 591 

In conclusion, EEG markers show promising AUC values for detecting AD, FTD and DLB. For the 592 
detection of early neural changes, task-based EEG markers are particularly valuable in identifying the 593 
earliest stages of AD, revealing neurophysiological changes before clinical symptoms become 594 
apparent. While promising sensitivity values are reported in the diagnosis of AD, FTD and DLB, the 595 
specificity of these biomarkers ask for further research. The most established marker, slowing of the 596 
EEG spectrum, seems to be rather a marker of neurodegeneration than specific to a certain disease. 597 
However, frequency-dependent connectivity aids interpretation, illustrating disease-specific alterations 598 
corresponding with the core regions and symptoms affected by each disease. Exploration of both 599 
spectral metrics and microstates could be beneficial, especially with the intent towards discrimination 600 
from early stages of AD, which is important for clinical application. 601 
 602 
To reduce heterogeneity in sample sizes, future studies should strive for clear descriptions of disease 603 
duration and demographic factors such as age and education levels. There is a growing body of 604 
evidence illustrating the influence of interindividual variability on the onset and progression of AD. 605 
Given the complex nature of disease progression, the modulatory and compensatory mechanisms of 606 
these diseases should be further explored. Furthermore, future research must validate previous findings 607 
in multicentric studies combining disease populations. Equally important will be the standardization of 608 
research protocols, including up-to date consensus criteria, and reporting of methods allowing 609 
replication and enhancing generalizability and interpretability. 610 
 611 
In conclusion, the use of EEG shows promise in diagnostic accuracy and differential diagnosis and 612 
shows advantages in non-invasiveness, availability and cost-effectiveness. With further research, the 613 
search for the most optimal EEG marker could revolutionize the diagnosis of AD, FTD and DLB, 614 
establishing an early and accurate detection of neurodegeneration.  615 
 616 

 617 
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List of abbreviations 632 

Ab42 Amyloid plasma 

AEC amplitude envelope correlation 

AEC-c AEC with leakage correction 

AMI  Auto mutual information 

ApEn Approximate entropy 

BispEn bispectrum cubic entropy  

BispMF bispectrum median frequency 

BispRP Bispectrum relative power 

CC Clustering Coeficient 

Coh Mean global coherence 

Cross-ApEn Cross-Approximate Entropy 

CSA Compressed spectral arrays 

CSD Current Source Density 

D2 Mahalanobis distance 

DAR δ to α ratio 

DF Dominant frequency 

DFV Dominant frequency variance 

DRC Dynamic Range of Connectivity 

DT  Decision Tree's 

DTF directed transfer function  

DWT Discrete Wavelet Transform 

EA  EEG abnormalities 

ERD Event related desynchronization 

ERO Event Related Oscillations 

ERS Event Related synchronisation 

FC Functional Connectivity 

FP Frequency Prevalence 

GEV global explained variance  

GFP Global Field Power 

GMFP Global Mean Field Power 

GSA Gready search algorithm 

GTA Graph Theory Analysis 

HC Hjorth Complexity 

HHT Hilbert Huant transform 

HOFC Higher order functional connectivity 

IAC instantaneous amplitude correlation 

iCoh Imaginary coherence 

ITPC inter-trial phase clustering 

kNN k-nearest neighbour 

LDA Linear discriminant analysis 

LLC Lagged linear coherence 

LOOcv Leave one out cross validation 

LOSO Leave one subject out (cross-validation) 

LR Logistic Regression 

LZC Lempel-Ziv Complexity 

MF Median frequency 

MI Mutual information 
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 633 

  634 

MSCOH magnitude squared coherence 

MSE Multiscale Sample Entropy 

MSSE Multiscale SpecEn 

MST Minimum Spanning Tree 

MWC Morlet wavelet convolution 

NB Naive Bayes  

NCA neighbourhood component analysis 

NDTF non-normalized directed transfer function  

PCA Principal Component Analysis 

PL  Path Length 

PLI Phase Lag index 

PLV Phase Locking Value 

PSA Power Spectrum analysis 

PSD Power Spectrum Density 

PSI Phase synchronization index 

PTE Phase Transfer Entropy 

QDA Quadratic Dicriminant Analysis 

RCG Revised Circular Graph 

RF Random Forest 

RMS Root mean square 

rMSSE refined MSSE 

RNN recurrent neural network 

RP Relative Power 

RSN Resting State Network 

SampEn Sample Entropy 

SE Shannon Entropy 

SMR Stepwise multilinear regression 

SNR Signal to noise ratio 

SP Spectral power 

SpecEn Spectral Entropy 

SPR Statistical Pattern Recognition  

SR Spectral Ratio 

SVM Support Vector Machine 

TAR Theta to alpha ratio 

TAS temporal activation sequence (TAS) 

TBR Theta to beta ratio 

TF Transition Frequency 

wPLI weighted PLI 

wSMI weighted symbolic mutual information 

WT Wavelet Transform 
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