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23 Abstract

24 Wastewater and environmental surveillance has been promoted as a communicable disease 

25 surveillance tool because it overcomes inherent biases in laboratory-based communicable disease 

26 surveillance.   Yet, little empirical evidence exists to support this notion, and it remains largely an 

27 intuitive, though highly plausible hypothesis. Our interdisciplinary uses WES data to show evidence 

28 for underreporting of SARS-CoV-2 in the context of measurable and statistically significant 

29 associations between economic conditions and SARS-CoV-2 incidence and testing rates. We obtained 

30 geolocated, anonymised, laboratory-confirmed SARS-CoV-2 cases, wastewater SARS-CoV-2 viral 

31 load data and socio-demographic data for Gauteng Province, South Africa. We spatially located all 

32 data to create a single dataset for sewershed catchments served by two large wastewater treatment 

33 plants. We conducted epidemiological, persons infected and principal component analysis to explore 

34 the relationships between variables. Overall, we demonstrate the co-contributory influences of socio-

35 economic indicators on access to SARS-CoV-2 testing and cumulative incidence, thus reflecting that 

36 apparent incidence rates mirror access to testing and socioeconomic considerations rather than true 

37 disease epidemiology. These analyses demonstrate how WES provides valuable information to 

38 contextualise and interpret laboratory-based epidemiological data. Whilst it is useful to have these 

39 associations established for SARS-CoV-2, the implications beyond SARS-CoV-2 are legion for two 

40 reasons, namely that biases inherent in clinical surveillance are broadly applicable across pathogens 

41 and all pathogens infecting humans will find their way into wastewater albeit in varying quantities. 

42 WES should be implemented to strengthen surveillance systems, especially where economic 

43 inequalities limit interpretability of conventional surveillance data.
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44 Main Body

45 Introduction

46 Surveillance is a core component of the International Health Regulations, and central to the Global Health 

47 Security Agenda[1]. World Health Assembly member states are obliged to detect, assess, notify and report 

48 events, and to assess their capacity to do so using the Core Capacities document[2]. During the COVID-19 

49 pandemic, which led to an estimated 775 million laboratory-confirmed cases to date[3], testing of 

50 individual patient clinical material (usually nasopharyngeal swabs by PCR) and indicators based on 

51 these data (including testing rate, incidence rate and proportion testing positive) were the major 

52 epidemiological tools used to support monitoring of the pandemic and government decision-making. 

53

54 SARS-CoV-2 is transmitted by droplet and airborne transmission. Factors predisposing to 

55 transmission include crowded conditions, proximity and duration of contact, particularly in the 

56 absence of mask-wearing[4]. The clustering of these factors in low socioeconomic households and 

57 communities has been shown to exacerbate disease transmission and lead to higher disease 

58 incidence[5,6]. However, from the earliest days of the pandemic, it was observed that countries and 

59 regions with poorer socioeconomic status reported fewer cases of SARS-CoV-2[7,8]. Most 

60 importantly, a reason for this was limited access to testing, evidenced at a global scale by the African 

61 region reporting the fewest SARS-CoV-2 cases across the globe alongside the least number of SARS-

62 CoV-2 tests per capita[8]. 

63

64 South Africa, a country with a population of over 62 million persons resident in nine provinces and 52 

65 health districts, experienced five reported waves of SARS-CoV-2[9] each caused by different genetic 

66 variants.  Following initial detection, the first (ancestral strain) and second waves (Beta variant) of the 

67 pandemic occurred between March-June 2020, and from November 2020 to February 2021[10]. The 

68 third and fourth waves occurred from May to September 2021 (Delta variant)[10] and from November 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 22, 2024. ; https://doi.org/10.1101/2024.09.20.24314039doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.20.24314039
http://creativecommons.org/licenses/by-nc/4.0/


4

69 2021 to January 2022 (Omicron BA.1 variant)[11]. A subsequent resurgence in cases was responsible 

70 for a fifth wave dominated by the Omicron lineage BA.4 and BA.5[10]. The impact of the COVID-19 

71 pandemic was devastating. Disease transmission levels across South Africa were high, with 

72 seroprevalence data after the third wave of SARS-CoV-2, suggesting that infections were likely 7.8 

73 times higher than the number of laboratory-confirmed cases[12]. Excess deaths greatly exceeded 

74 reported deaths, indicating that official statistics underestimated the death rate[13]. In spite of active 

75 case finding[14] and the availability of a comprehensive laboratory network, these data suggested 

76 extensive under diagnosis and under-reporting of cases. 

77

78 These observations foregrounded the intrinsic shortcomings of traditional approaches to laboratory-

79 based communicable disease surveillance programmes. Patient factors (such as health care 

80 acceptability and accessibility, financial means to procure testing and the presence and severity of 

81 symptoms); health system factors (such as clinician propensity to test, test availability, financial 

82 support for testing), and laboratory factors (clerical errors, inherent test performance characteristics) 

83 mediate laboratory testing and in turn impact the sensitivity, quality and representivity of surveillance 

84 data. Traditional case-based surveillance methods thus underestimate disease burden. 

85

86 Since the COVID-19 pandemic, wastewater and environmental surveillance (WES) has increasingly 

87 been implemented as a complementary surveillance modality that has potential to overcome these 

88 limitations[15]. WES has proven utility in supporting polio surveillance by providing highly sensitive 

89 data on the presence of poliovirus in communities, material for genomic sequencing and by 

90 supporting identification of chains of transmission[16]. These data have greatly enabled polio risk 

91 assessments and decision-making regarding public health interventions including the need for 

92 vaccination campaigns. During the COVID-19 pandemic, multiple advantages of WES for SARS-

93 CoV-2 became apparent. WES provided first evidence of importation of the virus into new 

94 geographical regions[17], heralded the onset of new waves of infection, illustrated disease 

95 transmission patterns and allowed inference of relative population burden during endemic phases[18]. 

96 WES also provided material for genotyping that demonstrated the presence of a broader range of 
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97 variants than seen clinically[19]. In light of this global experience, the WHO issued updated guidance 

98 for countries conducting WES (WHO guidelines), citing the ability of WES to overcome the 

99 limitations of laboratory-based surveillance. However, despite these advantages and 

100 recommendations, there is a paucity of evidence integrating socioeconomic factors and disease 

101 epidemiology based on clinical testing data with wastewater surveillance in order to substantiate the 

102 claims that WES overcomes clinical testing limitations. Thus, definitive evidence for the ability of 

103 WES to overcome the limitations of laboratory-based surveillance is urgently required. We used 

104 clinical, wastewater surveillance, demographic and socioeconomic data in two different socio-

105 economic contexts to explain and quantify the relationship between these variables and burden of 

106 SARS-CoV-2 disease, thus substantiating the use of WES as a necessary surveillance tool that enables 

107 interpretation of clinical surveillance data.

108 Methods

109 Conceptual framework

110 We developed a conceptual framework (Fig. 1) to demonstrate the relationships between wastewater 

111 concentrations of SARS-CoV-2 and SARS-CoV-2 disease indicators in sewered communities. The 

112 population burden of SARS-CoV-2 infections determines the levels of SARS-CoV-2 in wastewater. 

113 However, clinical indicators (including incidence rate, testing rate and proportion testing positive) 

114 reflect the distribution of testing, health care availability and accessibility. As these factors may be 

115 influenced by socio-economic conditions, reported case rates may not accurately reflect the true 

116 burden of infections. By determining the inter-relationships between wastewater surveillance data, 

117 social determinants of health and reported SARS-CoV-2 cases, the role of WES may be better 

118 understood.

119

120 [INSERT FIG. 1]
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121 Fig. 1. Diagram indicating the direction of influence of socio-economic status, population 

122 structure and mixing on the true burden of SARS-CoV-2 cases, reported burden of SARS-CoV-

123 2 cases and levels of SARS-CoV-2 in wastewater. The green arrow indicates the research 

124 question posed by this work

125 Study setting 

126 The study took place in two sewersheds (sewershed D and sewershed O) in different metropolitan 

127 areas of Gauteng Province, South Africa. These sewersheds were purposively selected on the basis of 

128 geographical representativeness of city populations, namely sewershed D (City of Tshwane), to the 

129 north of the Gauteng Province, and sewershed O (City of Ekurhuleni) in the east of Gauteng Province 

130 (Fig. 2). Sewershed D is residential with formal housing in the west and central areas, and the 

131 metropolitan central business district to the east. A small area of informal housing exists to the far 

132 west. Sewershed O is mostly residential with low density, low-rise housing with areas of industrial 

133 and manufacturing activity to the north east. Informal settlements and backyard shacks are present in 

134 most neighbourhoods in the central areas, whilst a wealthier community of gated estates with a low 

135 population density is present in the northernmost section. 

136

137 [INSERT FIG. 2]

138 Fig. 2. Map showing the spatial location of the two sewersheds and locations of health care 

139 facilities within the Gauteng Province

140 Data sources and study period

141 Clinical SARS-CoV-2 laboratory testing and data management. 

142 In South Africa public and private laboratories were legally mandated to report all SARS-CoV-2 test 

143 results and patient data including residential address via the National Institute for Communicable 

144 Diseases (NICD). These data had been geocoded by NICD as part of outbreak response activities and 

145 all cases geocoded to Gauteng were extracted. Following ethics review and written approval for this 
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146 study , anonymised and deidentified geocoded data for positive and negative SARS-CoV-2 PCR test 

147 results were supplied for the study period (1 June 2021 (epidemiological week 22 of 2021) to 18 

148 March 2022 (epidemiological week 11 of 2022)) and the data was obtained on 23 May 2023.

149  

150 Wastewater SARS-CoV-2 laboratory testing and data management. 

151 Routine SARS-CoV-2 wastewater surveillance data (obtained from laboratory processing of one litre 

152 grab-samples collected weekly as previously described[9]) from wastewater treatment plant (WWTP) 

153 ‘D’ and ‘O’ were identified for the study period. We obtained wastewater flow rates (in ML per day) 

154 from WWTP managers. 

155

156 Quality of life survey- data 

157 The Quality of Life (QoL) survey is a biennial household survey produced by the Gauteng City-

158 Region Observatory (GCRO) which covers a range of topics including demographics, access to 

159 services and perceptions of residents. The survey is weighted to ensure representativity to ward level, 

160 a geopolitical division of municipalities, developed by the Municipal Demarcation Board and the 

161 smallest unit for which demographic and socioeconomic data are provided in South Africa. We 

162 obtained data from the 2020/21 (QoL6) survey (n=13,616 respondents) pertaining to 207 and 781 

163 respondents from sewersheds D and O respectively[20]. 

164

165 Maps of sewershed reticulation methods 

166 Data for the sewage networks and pipelines were obtained from the City of Tshwane and the City of 

167 Ekurhuleni, respectively. The City of Tshwane provided a comprehensive dataset including sewershed 

168 areas, manholes, and distribution pipelines. The City of Ekurhuleni consulting engineers provided 

169 shapefiles of the sewershed. ArcGIS 10.6.2 software was used for all mapping and spatial analysis.

170

171 GTI hexagon data for population demographics 
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172 Population demographic variables were extracted from a 2020/2021 dataset compiled by 

173 GeoTerraImage (GTI) comprising population estimates grouped by age cohorts in 400m sided 

174 hexagon (0.103755 km2). 

175 Data synthesis and analysis

176 General approach 

177 We overlaid sewershed shape files, hexagonal population data, geolocated SARS-CoV-2 cases and 

178 geolocated QoL respondents in order to create a dataset comprising these elements for sewersheds D 

179 and O. To minimise the effect of the Modifiable Area Unit Problem (MAUP) that is encountered 

180 when polygon values require changing because of a change in the shape (zoning effect) or overall area 

181 (size effect) of the polygon, we scrutinised our datasets to determine the most viable polygon layer for 

182 all spatial datasets to allow for aggregation and comparability without disaggregation of polygon data. 

183 Ultimately we manipulated all data to the ward level allowing for comparative analysis over space and 

184 time.  We conducted these analyses using SPSS software version 29.0.2.0 (20). 

185

186 Data extraction and aggregation to determine population size, socio-

187 economic and epidemiological parameters by sewershed.

188 To determine population size and age structure within wards and sewersheds, we extracted population 

189 data from the GeoTerraImage (GTI) dataset for hexagons whose centroids fell within the sewershed 

190 and ward boundaries, and aggregated population data into four broad classes, namely children (0-4 

191 years), adolescents (5-19), adults (20-59) and elderly (≥60 years). We geolocated QoL respondents 

192 within ward and sewershed boundaries and extracted and aggregated relevant socioeconomic and 

193 health fields for these individuals. Geolocated positive and negative SARS-CoV-2 PCR test data were 

194 aggregated by ward and sewershed level, and used together with population denominator data for each 

195 spatial unit to determine overall and weekly incidence, positivity rate and testing rate per 100,000. We 
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196 created epidemiologic curves using Microsoft Excel 365 using incidence, positivity and testing rates 

197 together with SARS-CoV-2 concentration in wastewater for each catchment[21]. 

198

199 Principal Component Analysis (PCA) 

200 We conducted principal component analysis (PCA) on the socioeconomic, demographic and clinical 

201 variables for each sewershed, using ward-level aggregated data as the unit of analysis to ascertain 

202 which variables relate most to epidemiological indicators in each sewershed.  Using R (RStudio 

203 v4.0.2) and for each sewershed, we generated 1) a correlation coefficient (r) matrix for inter-variable 

204 correlation analysis; 2) a Scree plot for ascertaining the dimensions contributing the most to the 

205 explained variance as a percentage; 3) a variable loading graph for ascertaining the variables which 

206 contribute to the identity of the prominent dimensions; 4) and a biplot for plotting the variables as 

207 vectors in 2D space against the two most prominent dimensions. 

208

209 Determination of theoretical infectious case load using mass balance 

210 equations and comparison with laboratory-confirmed cases by 

211 epidemiological week

212 We estimated the theoretical number of persons infected in each sewershed by epidemiological week 

213 using mass balance equations from Acheampeong et al[22], and Hoffman et al[23] as follows:

214

215 Persons infected= A x B /C x D  23 

216

217 where A= RNA per L of wastewater (natural scale); B= estimated flow (L/day) obtained from the 

218 wastewater treatment authorities; C= grams of faeces/ person-day, estimated at 128g[24]; D= SARS-

219 CoV-2 RNA per gram faeces, estimated at 2·58 x10^8 gene copies shed per day per infected 

220 person[23]. We assumed a linear regression to determine the number of persons infected per 100 

221 laboratory-confirmed cases by epidemiological week within each sewershed.
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222 Ethical statement

223 This study was reviewed and approved by the University of the Witwatersrand Human Research 

224 Ethics Committee (HREC), M220904. In addition, the National Institute for Communicable Diseases 

225 obtained Ethics Approval for essential communicable disease surveillance and outbreak and response 

226 activities including SARS-CoV-2 (M210752).

227 Role of funders

228 The funders had no role in the study design, collection, analysis and interpretation of data, manuscript 

229 writing or journal selection.

230 Results

231 Demographic, socioeconomic and health characteristics

232 Sewershed O (land area =120 km2, population=905,996 persons) has around four times the number of 

233 people and just under double the population density of sewershed D (Table 1). Both sewersheds are 

234 dominated by younger, working age cohorts, with lower proportions of persons over 60 years of age. 

235 The proportion of households earning <USD90, together with the proportion relying on public 

236 transport, suggest that households in sewershed O are poorer. As many as 13% of households in 

237 sewershed O share sanitation, compared with around 2% in sewershed D.  Regarding health care, 

238 responses suggested that up to 10% of households in sewershed O vs 4% in sewershed D struggled to 

239 access health care during 2020-2021 period. Up to 35% of households in Sewershed O were unable to 

240 maintain SARS-CoV-2 non-pharmaceutical measures. 

241

242
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243 Table 1: Comparative table of key SARS-COV-2,  wastewater surveillance, socioeconomic and 

244 demographic variables for sewersheds D and O during the study period 1 June 2021 

245 (epidemiological week  22 of 2021) to 18 March 2022 (epidemiological week 11 of 2022). 

246 Variable definitions are included.
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Sewershed D Sewershed O

Sewershed area (km2) 62·0 120·7

Total population 245,935 905,996

Population density (persons/km2) 3·97 7·51

Number of wards for analysis 11 26

Demographic data (number of people, %)

0-4 years 21,196 (8·6) 82,230 (9·1)

5-19 years 55,965 (22·8) 204,225 (22·5)

20-59 years 150,798 (61·3) 563,428 (62·2)

≥60 years 17,976 (7·3) 56,111 (6·2)

Wastewater surveillance 

Mean daily flow rate of wastewater through the 
treatment plant (ML, standard deviation)

38·4 (9·7) 106·2 (9·9)

Median (interquartile range) of SARS-CoV-2 (genome 
copies/mL)

47·2 (100·5) 46·9 (109·7)

SARS-CoV-2 laboratory surveillance data and indicators

Testing rate (tests/100 000 population) 23·7 10·6

Total recorded SARS-COV-2 cases during study period 11,026 15,293

Mean positivity rate (%, sd) 17 (12·8) 14 (9·9)

Cumulative incidence rate (cases /100 000 population) 4,483·3 1,688·0

Socio-economic and health  indicators from Quality of Life Survey 6 (2020/2021)

Income below R1600 (sd)
Percentage of households that have a combined income less 
than R1600 per month

21%(4·6) 33%(4·6)

Reliance on public transport (sd)
Percentage of respondents that rely on public transport 

40%(0·5) 47%(0·5)

Access to shared sanitation (sd)
Percentage of respondents who generally use communal 
toilets or toilets not connected to the sewage system (e.g. 
portable toilets)

2%(0·2) 13%(0·3)

Quality of Life score (sd)
 Score out of 100. Calculated with 33 variables, grouped in 
7 dimensions

63(9·0) 59(11·0)
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Struggled access to health care (sd)
Percentage of respondents that struggled to access 
healthcare from March 2020 to October 2021

4%(0·2) 10%(0·3)

Refused COVID-19 testing (sd)
Proportion of respondents who tried but were denied access 
a COVID-19 test between March 2020 and October 2021

5%(0·2) 3%(0·2)

COVID-19 Index (sd)
Percentage respondents unable to implement SARS-CoV-2 
preventative measures including social distancing

29(19·0) 35(20·0)

247 (sd)= standard deviation, km=kilometre

248 SARS-CoV-2 clinical testing, incidence rates and percentage test 

249 positive (PTP)

250 During the study period (1 June 2021 to 18 March 2022), 78% and 60% of positive and negative test 

251 results respectively were successfully geolocated. The SARS-CoV-2 clinical testing rate per 100,000 

252 in sewershed D (23.7) was over twice the rate in sewershed O (10.6). Despite higher absolute numbers 

253 of SARS-CoV-2 cases, sewershed O had a cumulative incidence of laboratory-confirmed SARS-CoV-

254 2 cases around three times lower than sewershed D (15,293 total cases and 1,688/100,000, vs 11,026 

255 total cases and 4,483/100,000) (Table 1 and Fig. 3).

256 Fig. 3 illustrates changes in testing, incidence and proportion testing positive (PTP) by 

257 epidemiological week during the two waves of infection that occurred during the study period, namely 

258 Delta (between epidemiological weeks 15 and 40 in 2021) and Omicron (epidemiological weeks 46 - 

259 51 in 2021).Whilst all indicators follow the similar trends, rates are lower in sewershed O.

260

261 [INSERT FIG. 3]

262 Fig. 3. SARS-CoV-2 testing rate (per 100 000 population), incidence rate (per 100 000 

263 population), and 4 week moving average proportion test positive (%) by epidemiological week 

264 22, 2021 to week 10, 2022, for (a) sewershed D and (b) sewershed O.
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265 Relationship between clinical case data and socioeconomic status

266 Correlation matrices for sewersheds D and O reveal that clinical indicators (PTP, cumulative 

267 incidence and testing rates) do not exhibit consistent relationships with demographic, or socio-

268 economic indicators within and between sewersheds (Fig. 4). In sewershed O, PTP correlates with 

269 indicators associated with poverty (access to and use of shared sanitation, % of the population with 

270 income below USD 90, and  COVID-19 index (% unable to implement COVID-19 preventive 

271 measures)), whilst this relationship is not evident in the more affluent sewershed D. In sewershed D, it 

272 appears that PTP and cumulative incidence are correlated with quality of life, use of public transport 

273 and proportion of persons with income below USD 90, suggesting that economic conditions influence 

274 access to testing, in turn leading to apparently low cumulative incidence. Taken together, in areas with 

275 poorer socio-economic conditions, testing rates and cumulative incidence may not reflect disease 

276 burden, whilst PTP better reflects disease risk. 

277

278 [INSERT FIG. 4]

279 Fig.4. Truncated correlation matrices between socio-economic and demographic parameters 

280 against testing, cumulative incidence and mean proportion test positive for sewersheds D and O, 

281 annotated as a ‘heat map’ to represents the Spearman’s correlation coefficient (r) between 

282 socio-economic, demographic variables vs clinical variables (1 June 2021 to 18 March 2022).

283

284 Scree plots for sewershed D and O demonstrate that 76.7% and 77.5% of data are explained by 

285 dimensions 1 and 2 (Fig. S1).  The variable loading plot for sewershed D indicates that access to 

286 shared sanitation, reliance on non-sewered toilets and population groups under 60 years of age 

287 contributed the most to composition of dimensions 1 and 2 (Fig. S2a) whereas in sewershed O, 

288 population group under 60 years of age, testing rate and cumulative incidence rate contributed the 

289 most to the composition of dimension 1 and 2 (Fig. S2b). In both sewersheds, testing rate and 

290 cumulative incidence contributed to dimensions 1 and 2, but the proportion test positive and refused 

291 COVID testing variables contributed minimally. 
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292

293 The biplots (Fig. 5) demonstrate that SARS-COV-2 testing and incidence rates contribute equivalent 

294 influence and spatial distribution on socioeconomic factors for both sewersheds, whilst the proportion 

295 test positive indicator was much less affected by socioeconomic factors. In the biplot for sewershed D, 

296 access to healthcare and refused access to COVID testing are more associated with cumulative 

297 incidence and testing rates, while only refused access to COVID test is associated with the two 

298 clinical variables in sewershed O. In sewershed D, the clustering of the Quality of Life score and the 

299 greater than 60 years age group as well as the clustering of COVID-19 Index with income below 

300 USD90 indicated these variables are influenced by and can inform one another. In sewershed O, 

301 struggled to access health care and Quality of Life score illustrated similar clustering with the 

302 COVID-19 Index and access to public transport.

303

304 [INSERT Fig. 5]

305 Fig. 5. PCA biplots displaying socioeconomic and demographic status parameters, cumulative 

306 incidence rate, testing rate and mean positivity rate within (a) sewershed D and (b) sewershed 

307 O. In the biplots, the magnitude and colouring of the vectors are related to the variable loading 

308 scores, while the vector direction and quadrant location is informed by the interrelationship 

309 between variables and their contribution to dimensions 1 and 2.

310 Quantitative SARS-CoV-2 surveillance in wastewater 

311 Wastewater concentrations of SARS-CoV-2 and geolocated laboratory-confirmed SARS-CoV-2 cases 

312 in sewersheds D and O were significantly correlated in each sewershed, though less so in sewershed O 

313 (Spearman's correlation coefficient 0·723 (p<0.001)), 0.476 (p=0·020) for sewersheds D and O 

314 respectively). In each sewershed, higher concentrations and case-loads were observable during the 

315 Delta and Omicron waves that occurred during the study period (Fig. 6) and both reached an ebb 

316 during weeks 40-42 of 2021. Wastewater concentrations (measured in log genome copies per 

317 millilitre) for both sewersheds ranged between 0·5 and 3·5 log copies/mL and were at similar 
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318 concentrations in the same epidemiological week. Weekly laboratory-confirmed case-counts followed 

319 similar trends despite different population sizes in the two catchments.  

320

321 [INSERT FIG. 6]

322 Fig.6. SARS-CoV-2 concentrations in wastewater in log-transformed genome copies per 

323 millilitre (right axis) and the number of laboratory-confirmed cases (top figures, green bars) or 

324 incidence per 100,000 persons (bottom figures, blue bars) of SARS-CoV-2 geolocated to a 

325 residential address in the sewershed by epidemiological week from week 22, 2021 to week 10, 

326 2022 for sewersheds D (left, figures a and c respectively) and O (right, figures b and d 

327 respectively).

328 Comparison of estimated and actual SARS-CoV-2 case burden. 

329 Regression analysis by sewershed of laboratory-confirmed SARS-CoV-2 cases versus theoretical 

330 number of infections indicated that for each 100 reported cases, sewershed O likely had over 63,000 

331 infections compared with sewershed O, with 2,700 cases (Fig. 7). 

332

333 [INSERT Fig. 7]

334 Fig.7. SARS-CoV-2 concentrations in wastewater in log-transformed genome copies per 

335 millilitre (right axis) and the number of laboratory-confirmed cases (top figures, green bars) or 

336 incidence per 100,000 persons (bottom figures, blue bars) of SARS-CoV-2 geolocated to a 

337 residential address in the sewershed by epidemiological week from week 22, 2021 to week 10, 

338 2022 for sewersheds D (left, figures a and c respectively) and O (right, figures b and d 

339 respectively).

340 Discussion 

341 In our transdisciplinary spatial analysis of clinical and environmental data during two large COVID-

342 19 pandemic waves in sewersheds with differing socioeconomic conditions, we observed that despite 
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343 different population sizes, the concentrations of SARS-CoV-2 in wastewater and the absolute 

344 numbers of SARS-CoV-2 cases by epidemiological week were similar. In the light of assumed 

345 equivalent excretion rates of SARS-CoV-2 in infected individuals and identical demographic profiles 

346 in each sewershed, equivalent wastewater concentrations suggest vast under-reporting of cases in the 

347 poorer sewershed. Our socioeconomic analysis demonstrated negative correlations between income 

348 and SARS-CoV-2 cumulative incidence and testing rates in the poorer sewershed. Overall, we 

349 demonstrated the co-contributory influences of socio-economic indicators on access to SARS-CoV-2 

350 testing and cumulative incidence, thus reflecting that apparent incidence rates mirror access to testing 

351 and socioeconomic considerations rather than true disease epidemiology. These analyses demonstrate 

352 how WES provides valuable information to contextualise and interpret laboratory-based 

353 epidemiological data. 

354

355 Laboratory-based surveillance systems under-represent the true burden of disease due to a 

356 combination of asymptomatic infection, individual and cultural practices regarding health seeking, 

357 quality of health care and socio-economic factors that impair access to testing. Furthermore, these 

358 same socio-economic factors including education and poverty, are associated with higher SARS-CoV-

359 2 rates[6]. Underreporting of SARS-CoV-2 cases in South Africa was evident through excess 

360 mortality reports  which indicated over 70,000 excess deaths vs 28,000 reported COVID-19 deaths 

361 during 2020[13]. Households in lower income groups, those who rely on public health care, and Black 

362 African and Coloured population groups were more likely to have struggled to access healthcare and 

363 testing facilities[25]. Our data, demonstrating that cumulative incidence and testing rate in sewershed 

364 O was negatively correlated with low income (< USD 90 household income per month) suggest that 

365 clinical testing was missing this population segment. 

366

367 Few studies have triangulated clinical testing, wastewater surveillance data and socio-economic 

368 factors. Using WES data in contrast to clinical testing data, Lancaster et al[26] identified specific 

369 communities (Black, poor) that were more vulnerable to SARS-CoV-2. Saingam et al[27] 

370 demonstrated that a machine learning model to predict COVID-19 and post-infectious sequelae is 
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371 strengthened when including WES data together with socio-demographic parameters. Rogawski 

372 McQuade et al[28] in Bangladesh, using purposively selected sampling sites across the economic 

373 spectrum, demonstrated equivalent SARS-CoV-2 levels in wastewater, but 23 and 70 times the 

374 number of clinical tests conducted in the wealthier vs middle and poor income areas.  Our 

375 interdisciplinary study is the first to use WES data to show evidence for underreporting of SARS-

376 CoV-2 in the context of measurable and statistically significant associations between economic 

377 conditions and SARS-CoV-2 incidence and testing rates, something which has been intuitively 

378 speculated but not empirically demonstrated[29]. 

379

380 Several limitations exist in our data collection and interpretation. A small proportion of SARS-CoV-2 

381 cases were not successfully geolocated, however non-geolocated cases are more likely to have 

382 originated outside the province, or from persons resident in informal settings thus not contributing to 

383 wastewater levels of SARS-CoV-2. The absence of wastewater sampling points within wards 

384 precluded inclusion of SARS-CoV-2 levels in PCA analyses. Whilst our wastewater data was 

385 generated from urban sewersheds, similar findings in non-sewered areas suggest that our findings are 

386 generalisable across sewered and non-sewered settings[28].

387

388 The addition of WES data to national and global surveillance systems will strengthen sensitivity of 

389 event detection for outbreak and pandemic disease, monitoring of endemic disease trends, and will 

390 jointly provide material for genomic epidemiology[19]. An evaluation of detection of H5N1 avian 

391 influenza by six northern hemisphere surveillance systems in 2010 demonstrated an increase in 

392 sensitivity of detection using a combination of data inputs. Authors concluded that the range of 

393 surveillance methodologies and variation in system designs created synergy between systems, led to 

394 improved data quality and validity, and allowed data to converge on event detection[30]. In a low-

395 middle income country, the need for multiple surveillance systems is even more necessary, as data 

396 quality and completeness from single modality surveillance systems may vary, leading to challenges 

397 in decision making during a crisis. 

398
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399 Our findings provide evidence to support intuitive thinking that WES overcomes testing biases 

400 particularly in situations with socio-economic disparities and weaker clinical disease surveillance 

401 programmes for SARS-CoV-2. Our findings are likely broadly applicable to all communicable disease 

402 surveillance programmes, as biases affecting clinical surveillance programmes are not disease-

403 specific, and all pathogens infecting humans are likely to find their way into wastewater albeit in 

404 varying quantities. As such, our findings strengthen the case for investment in implementation of 

405 WES. Ongoing implementation of WES will allow public health authorities to determine optimal 

406 configurations of WES surveillance systems for each pathogen and public health use-case. Further 

407 research to determine optimal sample collection, processing and testing methods is needed. 

408 Interpretive frameworks or mathematical models will support integration and interpretation of WES 

409 data with clinical surveillance data.  

410

411 Data sharing

412 Clinical and laboratory data were generated at the National Institute for Communicable Diseases. The 

413 Quality of Life survey dataset is freely available under the CC BY 4.0 licence from the DataFirst 

414 service. For more information please email info@gcro.ac.za. Derived data supporting the findings of 

415 this study are available from the corresponding author GM on request.
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