
AUGMENT: a framework for robust assessment  

of the clinical utility of segmentation algorithms 

 

Cathal McCague1,2,3, Thomas Buddenkotte5, Lorena Escudero Sanchez1,2,6, David Hulse1,2, 

Roxana Pintican7, Leonardo Rundo1,2,8, AUGMENT study team*, James D. Brenton2,3,4,9, 

Dominique-Laurent Couturier3,4, Ozan Öktem10, Ramona Woitek1,2,11 (corresponding author), 

Carola-Bibiane Schönlieb5 , Evis Sala1,2,3,12,13, Mireia Crispin Ortuzar3,9 

 

*AUGMENT study team - Sue Freeman2, Stephanie Nougaret14,15, Stefania Rizzo16,17, Will 

Loughborough18, Adrian Andreou18, Caron Parsons19, Pubudu Piyatissa20, Tony Aloysius20, 

Carina Mouritsen Luxhoj20, Iqbal Aniq20, Sujil James20, Balraj Dhesi21, Katja DePaepe1,2, 

James Tanner2, Osama Abulaban21, Janice Lee2, Veronika Majcher2, Maeve O’Sullivan22, 

Veronica Celli23, Anna Colarieti24, Alex Samoshkin25, Evis Carcani1, Syafiq Ramlee1, 

Mohammad S. Al Sa’d6,26, Simon J. Doran6,27, Woonchan Cho28, James Darcy6,27 

 
[1] Department of Radiology, University of Cambridge, Cambridge, UK 

[2] Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom 

[3] Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK 

[4] Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK 

[5] Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK  

[6] National Cancer Imaging Translational Accelerator (NCITA) consortium 

[7] Department of Radiology, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania 

[8] Department of Information and Electrical Engineering and Applied Mathematics (DIEM), University of Salerno, 

Italy 

[9] Department of Oncology, University of Cambridge, Cambridge, United Kingdom 

[10 ]Department of Mathematics, KTH–Royal Institute of Technology, Stockholm, Sweden 

[11] Research centre for Medical Image Analysis and Artificial Intelligence (MIAAI), Department of Medicine, 

Faculty of Medicine and Dentistry, Danube Private University, Krems, Austria 

[12] Dipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Policlinico Universitario A. 

Gemelli IRCCS, Rome, Italy 

[13] Dipartimento di Scienze Radiologiche ed Ematologiche, Universita Cattolica del Sacro Cuore, Rome, Italy 

[14] Department of Radiology, Montpelier Cancer Institute, Montpellier France 

[15] INSERM U1194 Montpellier Cancer Research Institute, University of Montpellier, Montpellier, France 

[16] Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland 

[17] Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Lugano, Switzerland 

[18] Department of Radiology, Royal United Hospitals Bath NHS Foundation Trust, Bath, UK 

[19] Department of Radiology, University Hospital Coventry & Warwickshire NHS Trust, Coventry, UK 

[20] School of Clinical Medicine, University of Cambridge, Cambridge, UK 

[21] University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK 

[22] Department of Radiology, Tallaght University Hospital, Dublin, Ireland. 

[23] Department of Radiology, Radiotherapy Oncology and Hematology, Fondazione Policlinico Universitario 

Agostino Gemelli, IRCCS, 00168, Rome, Italy 

[24] Unit of Radiology, IRCSS Policlinico San Donato, via Rodolofo Morandi, 20097, San Donato Milanese, Italy 

[25] Office for Translational Research, School of Clinical Medicine, Cambridge, UK 

[26] Cancer Imaging Centre, Department of Surgery & Cancer, Imperial College, London, UK 

[27] Division of Radiotherapy and Imaging, Institute of Cancer Research, London, UK 

[28] Neuroimaging Informatics Analysis Center, Washington University School of Medicine, 660 S Euclid Ave, St. 

Louis, MO 63110, USA 

  

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 23, 2024. ; https://doi.org/10.1101/2024.09.20.24313970doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2024.09.20.24313970
http://creativecommons.org/licenses/by/4.0/


Abstract: 

Background: Evaluating AI-based segmentation models primarily relies on quantitative 

metrics, but it remains unclear if this approach leads to practical, clinically applicable tools. 

Purpose: To create a systematic framework for evaluating the performance of segmentation 

models using clinically relevant criteria.  

Materials and Methods: We developed the AUGMENT framework (Assessing Utility of 

seGMENtation Tools), based on a structured classification of main categories of error in 

segmentation tasks. To evaluate the framework, we assembled a team of 20 clinicians 

covering a broad range of radiological expertise and analysed the challenging task of 

segmenting metastatic ovarian cancer using AI. We used three evaluation methods: (i) Dice 

Similarity Coefficient (DSC), (ii) visual Turing test, assessing 429 segmented disease-sites on 

80 CT scans from the Cancer Imaging Atlas), and (iii) AUGMENT framework, where 3 

radiologists and the AI-model created segmentations of 784 separate disease sites on 27 CT 

scans from a multi-institution dataset. 

Results: The AI model had modest technical performance (DSC=72±19 for the pelvic and 

ovarian disease, and 64±24 for omental disease), and it failed the visual Turing test. However, 

the AUGMENT framework revealed that (i) the AI model produced segmentations of the same 

quality as radiologists (p=.46), and (ii) it enabled radiologists to produce human+AI 

collaborative segmentations of significantly higher quality (p=<.001) and in significantly less 

time (p=<.001). 

Conclusion: Quantitative performance metrics of segmentation algorithms can mask their 

clinical utility. The AUGMENT framework enables the systematic identification of clinically 

usable AI-models and highlights the importance of assessing the interaction between AI tools 

and radiologists. 

 

Summary statement: Our framework, called AUGMENT, provides an objective assessment 

of the clinical utility of segmentation algorithms based on well-established error categories. 

Key results: 

● Combining quantitative metrics with qualitative information on performance from 

domain experts whose work is impacted by an algorithm’s use is a more accurate, 

transparent and trustworthy way of appraising an algorithm than using quantitative 

metrics alone. 

● The AUGMENT framework captures clinical utility in terms of segmentation quality and 

human+AI complementarity even in algorithms with modest technical segmentation 

performance.  

● AUGMENT might have utility during the development and validation process, including 

in segmentation challenges, for those seeking clinical translation, and to audit model 

performance after integration into clinical practice. 
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1. Introduction  

In the past decade, there has been an explosion of interest in medical devices based on 

artificial intelligence (AI) and machine learning (ML) technologies. The majority of devices 

seeking the European Conformité-Européene (CE) mark and Food and Drug Administration 

(FDA) approval are for radiological use, in part due to the demand for radiological imaging 

outstripping the number of trained readers, and the proficiency AI/ML-based tools have shown 

in medical image analysis tasks(1,2). However, despite the increasing number of tools being 

approved by regulators, their use in actual clinical care remains low, as physician scepticism 

around their performance and a lack of trust in their black-box nature persists(3). This 

scepticism is linked to uncertainty about the performance of the tools, and the disconnect 

between the AI/ML-developers and clinicians who will ultimately be responsible for their 

use(4). 

The most popular area of medical image analysis research relates to segmentation, which 

denotes the ability to detect a volume of interest and determine its boundaries(5). The 

performance of segmentation algorithms is quantified by measuring the agreement between 

the algorithm’s output and the usually human derived “ground truth.” This agreement is 

expressed using quantitative metrics, with the Dice similarity coefficient (DSC) most commonly 

used(6). However, there are several issues with this quantitative-metric-only (QMO) based 

approach to performance assessment. 

First, there is an acceptance that such quantitative metrics can be “gamed” to overstate model 

performance(7). 

Second, how performance as measured by the QMO approach translates to real-world 

practical value has been questioned(5,8). In some instances these metrics may underestimate 

the clinical utility of an algorithm, and in others they may overestimate it(4). Commonly used 

metrics such as DSC do not by themselves give qualitative information as to the types of 

segmentation errors an algorithm is making, instead only measuring the degree of agreement 

between the algorithm’s segmentation and that of the “ground truth”(9). Research groups 

developing medical image analysis tools often lack clinical experts, which can lead to basic 

errors that are obvious to clinicians being made and substantial development time being 

invested in tools that are ultimately not viable for clinical application(10). 

Third, clinician involvement in the QMO evaluation approach is largely passive, often limited 

only to the generation of the “ground truth” segmentations(4). Clinician inspection of an 

algorithm’s output is also not commonplace or mandatory, but there is widespread consensus 

that this should happen routinely and that clinicians should be involved in the development 

and appraisal of these tools(11). There are, however, currently no clear frameworks on how 

they should be involved or what form that appraisal should take(12). In addition to this, the 

current framework of model assessment does not evaluate how well an algorithm 

collaborates with a clinician, and if its maximal utility may be in an assisting, rather than stand-

alone, role. 

In this paper we propose a framework for appraising the performance of segmentation models, 

which assesses practical value in a clinical setting and provides an objective, qualitative 

evaluation of utility. We chose a challenging segmentation task, namely the segmentation of 
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high grade serous ovarian cancer (HGSOC), for which the state of the art is far from optimal, 

to demonstrate the added value of qualitative performance assessment with respect to 

standard metrics. The framework provides added information to AI developers on the types of 

errors their segmentation model may be producing and fosters closer collaboration with clinical 

domain-experts during the model development process, thus adding increased transparency 

and clinical insight to algorithm design.  

 

2. Materials and Methods 

2.1 The AUGMENT framework 

We defined and applied a novel qualitative assessment framework called AUGMENT 

(Assessing Utility of segMENtation Tools) (see Fig. 1). The framework has three steps:  

1. Segmentation of a subset of scans using a human segmenter, an AI segmenter, and 

a human+AI collaboration;  

2. Scoring by an independent domain expert of all unlabelled segmentations using the 

AUGMENT scoring system (see Fig. 2); and  

3. Assessing utility of algorithm by ranking scores and comparing timings.  

The AUGMENT scoring system (Fig. 2) has been developed using the main categories of error 

in segmentation tasks, namely (6,13): 

● Quantity, or number of segmented regions 

● Area of segmented objects 

● Contour of the segmentation 

● Content of the segmented region 

The scoring system is set up as an 8-level ordinal scale, with 0 being the lowest quality score, 

and 7 indicating the highest possible quality (no errors identified). The individual scores are 

explained in more detail in supplementary materials E. 

2.2 Framework validation  

We trained an nnU-net based framework to segment the two most common sites of disease 

in high-grade serous ovarian cancer patients (HGSOC), namely the omental (OD) and the 

pelvic (PD) disease sites(14). The model was trained using n=276 scans from 157 patients 

from an internal dataset, validated using n=104 scans from 53 patients of an external institution 

and tested on a third independent dataset of n=71 scans from 71 patients from two institutions 

based in another country, as previously described(14). 

 2.1 Assessing segmentation quality 

We used three different frameworks to evaluate the performance of the automatic 

segmentation algorithm, namely DSC, Visual Turing Test, and a novel framework called 

AUGMENT. 
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DSC. We calculated the DSC between the automated segmentation and the ground truth, 

delineated manually by a team of radiologists, with all segmentations reviewed by RW,  a 

board-certified radiologist with 10 years of experience. 

Visual Turing Test. To assess if the modest DSC scores translated to segmentations 

noticeably different from manual segmentations we conducted a visual Turing test (VTT) with 

20 interrogators, using baseline CT scans of biopsy confirmed ovarian cancer patients from 

The Cancer Imaging Archive(15). The test contained 80 randomly ordered abdomino-pelvic 

CT scans, within which were 40 manual (20 PD, 20 OD) and 40 automated (20 PD, 20 OD) 

segmentations with a total of 429 segmented connected-components. The manual subset was 

segmented by CM (a specialist trainee in Radiology with 3 years’ experience segmenting 

ovarian cancer) and checked by RW. In addition to classifying each segmentation as either 

automated or manual, VTT-interrogators were also asked to make an assessment of the 

quality of each segmentation, in the form of free-text comment and a 5-point Likert scale score 

(1 = poorest quality, 5 = greatest quality) without specific guidelines around the meaning of 

each quality score. 

Clinical utility assessment using AUGMENT framework. The AUGMENT assessment of 

the algorithm’s performance was made on a random selection of 27 CT scans acquired during 

the ICON8 study(16).  All were baseline scans acquired at time of diagnosis from patients with 

biopsy-confirmed high grade serous ovarian carcinoma (HGSOC) who consented to their 

imaging being used for research purposes after ethical review (REC reference: 20/HRA/2261). 

For each scan 3 independent segmentations (both PD and OD) were produced by different 

means: 

1. By the model as described above (trained and configured identically to the Turing 

test configuration). 

2. By 3 radiology trainees (9 scans each). 

3. By collaborative-segmentation, where a trainee radiologist amended the model’s 

segmentation (not the same scan as the trainee had previously segmented). 

Overall, across the 3 segmentation versions for each scan, there were a total of 784 

segmented connected components. The radiologist segmenters in question were CM, DH 

(specialist trainee in radiology with 6 years experience) and RP (specialist trainee in radiology 

with 5 years experience). 

Following this, an expert genitourinary (GU) radiologist, RW, reviewed the 3 unlabelled 

segmentations of each scan simultaneously by overlaying the segmentations on top of one 

another, and gave each segmentation a quality score from 0-7 (0 being of lowest quality, 7 of 

highest quality) using the AUGMENT scoring tool (see Fig. 2 for scoring chart; additional figure 

illustrating the types of errors in ovarian cancer can be found in the supplementary materials). 

2.2 Statistical analysis 

For the VTT, a generalised linear mixed model was used to take the potential within-assessor 

and within-image dependences into account. For the clinical utility assessment we modelled 

the quality score and time by means of linear mixed models with crossed random effects: 

random intercepts for patients and segmenters allowing to take the within-patient and within-

segmenter dependence into account. All statistical analysis was performed in R version 4.1.2 
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(2021-11-01) (R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-

project.org/), running on macOS Big Sur 10.16. 

 

3. Results 

3.1 DSC metric  

The performance of the model on an external test-set was 72±19 for the PD and 64±24 for the 

OD lesions. These results have been presented elsewhere(14). 

3.2 VTT 

20 interrogators across the spectrum of expertise were recruited for the VTT. The composition 

of the interrogator groups is detailed in Table 1. 

The overall probability of correctly identifying the origin of the segmentation was significantly 

greater than the 0.5 score that would signify interrogators were unable to distinguish the AI 

from human segmentations, therefore the AI failed the Turing test (see Fig. 3 B). However, 

experience in ovarian cancer imaging, or radiological imaging in general, did not confer an 

advantage to interrogators (see Table 2): there was no statistical difference between the 

interrogator groups (Likelihood ratio test p=.49) or between PD and OD sites (Wald t-test p= 

.43, see Fig. 3 C). When answer time was assessed (correcting for the experience gained as 

the interrogators went through the test) there was no difference in time taken to answer the 

questions between experience groups. 

Interrogators from all experience groups noted the difficulty of differentiating between manual 

and automatic segmentations. The errors they reported fell into 5 broad categories, with 

examples given in Table 3. 

On average, lowest scores were given to images correctly identified as being segmented by 

AI, and highest scores were given to images correctly identified as being segmented by 

humans (see Fig. 3 D). Interrogators gave higher quality scores to AI segmentations they 

thought were human (Truth: AI, Guess: human), and lower scores to human segmentations 

which they thought were AI (Truth: human, Guess: AI) which suggests there was some bias 

towards segmentations they perceived as produced by the AI. 

3.3 Clinical utility assessment using AUGMENT framework 

The average AUGMENT score for human segmentations was 3.22. The difference between 

AI segmentation AUGMENT score and the human segmentation AUGMENT score was not 

significant (p=.46). The difference between human+AI segmentation AUGMENT score and 

the human segmentation AUGMENT score was significant (t-test, p=<.001), with an average 

AUGMENT score for this group of 4.59.  

The segmentation rankings per scan (based on the AUGMENT score) were: human+AI 

segmentations = 1st place (or joint 1st) in 19/27 scans (70%); AI segmentations = 1st place 

(or joint 1st) in 11/27 scans (41%); human segmentations = 1st place (or joint 1st) in 6/27 

scans (22%) (see Fig. 4 B). 
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There was a time-saving effect for the combined human+AI method compared to the baseline 

human segmentation method (t-test p=<.001) leading to an average decrease in segmentation 

time, compared to the baseline, of 57.23% (CI [42.3%, 68.29%]). This means, for example, 

that a segmentation which takes a radiologist 10 minutes would translate to a segmentation 

time of ~ 4 minutes with the help of the AI. 

When considering segmentation time by location, there was no statistically significant 

difference between the human segmentation times of PD and OD at the 5% level (t-test p=.22). 

We compared the additive effect of the AI on segmentation times of the OD and PD, using the 

OD time as the baseline. This effect is significant (t-test p=.02) leading to an average decrease 

in segmentation time, compared to the baseline, of 47.84% (CI [9.99%, 69.77%]). This means 

the segmentation time reduction allowed by AI in PD is significantly larger than the gain in 

segmentation time reduction allowed by AI in OD. Nevertheless, combining human+AI also 

resulted in significantly shorter segmentation times for OD by itself (t-test p=.01, 40.31% 

reduction).  

 

4. Discussion  

We have presented a novel framework to assess clinical utility of segmentation algorithms and 

compared it to other common evaluation methods in the context of ovarian cancer 

segmentation. The VTT showed no statistically significant differences in terms of classification 

accuracy and speed between experience groups ranging from students with no radiological 

experience to consultants with over a decade sub-specialty experience in genitourinary 

imaging. Written feedback on the segmentations, as detailed in Table 3, noted no major 

systematic errors, but some interrogators highlighted occasional unnatural features which, in 

certain instances, made them suspect creation by the algorithm. These results suggested that 

there may be clinical utility which is not being captured by the DSC metric assessment of 

performance. 

The AUGMENT evaluation showed that even with modest DSC performance the algorithm did 

have utility in i) augmenting the segmentation ability of the human radiologists and ii) 

drastically reducing the segmentation time. The AI segmentations had a higher mean 

AUGMENT score than those created by the radiologists alone, however this difference was 

not statistically significant. 

The AUGMENT framework can be applied beyond the specific scenario of ovarian cancer as 

the categories of errors which underpin it are universal to all segmentation tasks(6). Its 

implementation, in a subset of scans during the testing and validation process, is intended to 

complement the insights of one or more appropriately chosen quantitative metric(s), not 

replace their use. 

There is cross-discipline agreement that combining quantitative metrics with qualitative 

information on performance from domain experts whose work is impacted by an algorithm’s 

use is a more accurate, transparent and trustworthy way of appraising an algorithm than using 

quantitative metrics alone(7,17,18). A limitation of quantitative metrics is the uncertainty 

around the ground truth, which in many radiological imaging modalities can be large(8,19). In 

step 2 of the AUGMENT framework (see Fig. 1) the premise of showing the 3 segmentations 
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one-on-top-of-the-other for direct comparison is underpinned by Structure Mapping 

Theory(20,21). Such comparisons are known to foster insight in the observer, as they sharpen 

focus on which commonalities and differences are salient, and invite new inferences not 

initially obvious(20). Comparing the segmentations simultaneously augments the ability of the 

independent expert to infer the “ground truth” more closely, allowing them to make a better 

assessment of the relative quality of each segmentation. 

By comparing all permutations of segmentation approach AUGMENT allows for a situation 

where an algorithm’s maximal utility may be as an assistant to a human. Evaluating how an 

AI model collaborates with a human, in addition to how it functions alone, is one of the key 

guiding principles recommended by all major healthcare regulatory agencies(22). In the middle 

of the scale AUGMENT prioritises a model’s sensitivity, valuing the ability to detect disease 

that may otherwise be overlooked by the segmenting radiologist over the avoidance of false 

positives as these mistakes are easily recognised and rectified by a radiologist. Scores 3, 4, 

and 5 include the clause "not largely distinct from the main disease sites" for small areas of 

missed disease; this clause is not included for areas of incorrectly segmented normal tissue. 

This weighting aims to confirm if the AI tool effectively supports radiologists by favouring the 

detection of disease over falsely identifying normal tissue as pathological. 

Our study and the proposed framework have several limitations. First, application of 

AUGMENT requires the involvement of at least 2 radiologists to perform the roles of i) 

segmenter(s) and ii) independent expert. This necessitates access to experts, and 

commitment of their time, however the inclusion of this expertise in the model development 

team would likely add value to the model under development. Second, the application of 

AUGMENT may be affected by inter-reader variability. This variability is likely to be mainly 

focused on the boundary of disease, rather than its presence, with those regions of well 

defined disease with clear background discrimination presenting less disagreement than those 

with diffuse or spiculated borders poorly discriminated from the background(23). Boundary 

disagreements may be heavily penalised by metrics like DSC but represent subjective 

assessment by individual clinicians which are not clinically impactful. Small inter-reader 

variances limited to the boundary of disease would not severely impact the AUGMENT score 

(likely only resulting in downgrading from a score of 7 to a score of 6). Our use-case example 

used 3 separate segmenters to test the AI’s utility for a variety of segmentation approaches, 

however the statistical model employed allowed us to take within-patient and within-segmenter 

dependence into account, and results were strongly significant even with these variances. 

Third, AUGMENT segmenters were trainee radiologists, however all were experienced 

ovarian cancer segmenters, with DH  and RP at the end of their training having completed 

fellowship examination. The independent expert, RW, was an experienced radiologist, but the 

difference in radiology experience within the segmenter group, and between segmenters and 

independent expert, is of the same order. 

The relative ease of entry to the medical image analysis field means those producing both 

research and commercial tools may be of varying expertise(24). There are many opportunities 

to introduce errors to algorithm design, which might have downstream consequences. For 

those final tools which seek full integration in the clinical workflow there will be increased 

scrutiny of performance. AUGMENT could act as a framework for such local pre-

implementation checks, or the continual auditing process. 
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To implement AUGMENT in the challenge setting, we suggest independent model 

performance is compared against i) a human alone, and ii) a combined segmentation team of 

human+model, so that all potential permutations of application are considered. This might 

result in separate categories of competition, for instance i) best independent segmentation 

approach, ii) best collaborative segmentation approach, and iii) best overall segmentation 

approach. Alternatively, the AUGMENT framework could also be applied to compare 

segmentation models side-by-side without considering the models performance as 

segmentation aids. 

In conclusion, evaluating segmentation model performance purely on the basis of quantitative 

metrics may be an inaccurate way of capturing quality and utility(5,7). Using a framework like 

AUGMENT, in tandem with an appropriate quantitative metric, could improve understanding 

of performance. It could add transparency to the evaluation process by ensuring that clinical 

domain-experts, whose work is affected by an algorithm’s use, are part of their design. In 

addition to having potential application during the development and validation process, 

including in segmentation challenges, AUGMENT might have utility for clinical translation and 

to audit model performance after integration into clinical practice.  
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Tables: 

 
Table 1. Interrogator groups for VTT. 

 

Interrogator experience group No. of interrogators 

Medical students 5 

Radiology trainees 5 

Radiology consultants (non-GU specialism) 4 

Radiology consultants (GU specialism) 6 
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Table 2. Classification accuracy for interrogator experience groups. 

 

Interrogator experience group Mean classification accuracies 

Medical students 0.62 

Radiology trainees 0.66 

Radiology consultants (non-GU specialism) 0.60 

Radiology consultants (GU specialism) 0.67 
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Table 3. Interrogator written feedback on the types of segmentation errors noted. 

 

Types of errors Example comment 

Segmentations 

appeared  

“unnatural”  

Interrogator H (medical student): Some segmentations missed low 

density parts of the tumour leaving a hook / acute angle shape behind. 

I assumed these would be AI as a human reader would possibly 

consider such an acute angle “unnatural.” 

Border errors Interrogator P (medical student): Generally, the most common error I 

noticed was that segmentation borders were drawn short of the actual 

borders of the lesions, leaving some areas of disease unmarked. This 

was more pronounced with hazy/spiculated borders, where the edges 

were unclear. 

Under 

segmented 

disease 

Interrogator C (genitourinary radiology consultant): Peritoneal 

thickening/nodularity in lower pelvis appeared to be under segmented (I 

assume these are the automated rather than the manual analyses). 

Missed disease Interrogator O (radiology trainee): There were only a few instances 

where parts of the pelvic/omental disease were missed and those were 

difficult to separate from the surrounding normal structures. 

Incorrectly 

segmented 

normal tissue 

Interrogator D (genitourinary radiology consultant): Occasional  

segmenting of the bowel if there was no gas in the lumen.  
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Figures: 

 

 
Figure 1. AUGMENT implementation framework, illustrating how the framework can be applied. Step 1: A random 

subset of scans from the validation set (or other dataset, depending on the requirements of the user) are selected 

at random. Each scan is segmented by all possible segmenter combinations: i) human alone, ii) AI alone and iii)  

human+AI in collaboration, with time taken to segment also recorded. Step 2: An independent clinical domain-

expert views each scan with its unlabelled segmentations overlayed on one another and scores each using the 

AUGMENT scoring system (see Fig. 2). Step 3: A ranking of the segmentation approach is made based on the 

AUGMENT score for each scan. In the event of 2 or more segmentations having equal AUGMENT score the 

segmentations are given equal ranking (as their clinical utility may later be distinguished by the time-to-segment). 

Rankings are aggregated to establish the overall ranking of segmentation approaches across the sample-set. The 

overall AUGMENT score for each segmentation approach (i.e. human, AI, human+AI) is also calculated. The total 

time for the human to segment the scans alone and with the assistance of the AI is computed to establish if there 

is a time saving in using the AI as a segmentation assistant. 
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Figure 2. AUGMENT scoring system (with representative visual examples). AUGMENT scores 2, 4 and 5 each 

contain subcategories. For each of these subcategories their AUGMENT score remains the same, but the inclusion 

of subcategories are intended to give the developer information on whether the segmentations contain false positive 

(i.e. incorrectly segmented normal tissue) or false negative (i.e. missed areas of disease) findings. 
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Figure 3. Overview of VTT: A. VTT pipeline. B. Probability of correctly identifying the origin of the segmentation 

by interrogator. C. Confusion matrix of overall accuracy of interrogator assessment for both VTT (PD and 

Omentum), and the combined accuracy. D. The figure shows the segmentation quality assessment (y-axis) per 

combination of actual segmentation technique (T) and guessed segmentation technique (G) levels. Observations 

are jittered to allow visualisation of the number of observations per category and colour coded by the dichotomous 

quality assessment measure, which differentiates scores above 3 from scores below 3.  
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Figure 4. A. Boxplots of the AUGMENT score by segmenter, showing minimum, maximum, 1st quartile and 3rd 

quartile. B. Pie charts of the rankings for each segmentation mode. 
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Ethical approval 

This retrospective image analysis study was given ethical approval through the Integrated 

Image Analysis in High Grade Serous Ovarian Cancer study (IIA-HGSOC) (REC reference: 

20/HRA/2261).  

 

Ethical approval for developing and training the AI model used in this study is detailed in (14).  

The images used in the VTT, from The Cancer Imaging Archive, are used under a Creative 

Commons Attribution 4.0 International License (15). The images used in the comparison study 

are from the ICON8 study, the use of which was approved as part of IIA-HGSOC. At the time 

of the ICON8 study these patients consented to their images being used for further research, 

and re-consenting for IIA-HGSOC was waived by the research governance and ethics 

committee. 

 

 

Data availability  

The code for the segmentation model evaluated in this study is available at 

https://github.com/ThomasBudd/ovseg/tree/abee8ef38838ffa34f3553624eef3f626ba914bd. 

The model was trained using CT scans from 3 distinct non-overlapping datasets of biopsy 

confirmed ovarian cancer patients acquired in the US and UK, which are not currently public 

(14).  

VTT - the images used in the VTT are from biopsy confirmed ovarian cancer patients from 

The Cancer Imaging Archive, which are publicly available at 

https://www.cancerimagingarchive.net/. The segmentations used are not currently publicly 

available.  

Comparison study – the images used in comparison study were of randomly selected biopsy 

confirmed ovarian cancer patients from 2 centres in the UK who participated in the ICON8 

study. These images are not currently public.  
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