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Abstract 

During winter months, there is increased pressure on health care systems in temperature 

climates due to seasonal increases in respiratory illnesses. Providing real-time short-term 

forecasts of the demand for health care services helps managers plan their services. 

During the Winter of 2022-23 we piloted a new forecasting pipeline, using existing 

surveillance indicators which are sensitive to increases in respiratory syncytial virus (RSV). 

Indicators including telehealth cough calls and ED bronchiolitis attendances, both in children 

under 5 years. We utilised machine learning techniques to train and select models that would 

best forecast the timing and intensity of peaks up to 28 days ahead. Forecast uncertainty was 

modelled usings a novel gamlss approach which enabled prediction intervals to vary 

according to the level of the forecast activity. 

The winter of 2022-23 was atypical because the demand for healthcare services in children 

was exceptionally high, due to RSV circulating in the community and increased concerns 

around invasive Group A streptococcal (GAS) infections. However, our short-term forecasts 

proved to be adaptive forecasting a new higher peak once the increasing demand due to GAS 

started. Thus, we have demonstrated the utility of our approach, adding forecasts to existing 

surveillance systems. 
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Introduction 

Healthcare services are prone to experiencing periods of high burden and demand for services 

(‘pressures’) during winter months each year. These pressures can lead to severe problems in 

delivering critical health services, During winter months, healthcare pressures are 

exacerbated by factors that can increase demand, including cold weather, respiratory 

pathogens, gastrointestinal pathogens and subsequent workforce absences.1 In particular, the 

role of influenza and respiratory syncytial virus (RSV) in driving winter pressures has been 

extensively documented.  

RSV is a major cause of bronchiolitis and bronchitis amongst young children2 and although 

mainly produces mild symptoms, RSV infection can lead to severe illness in the 

immunocompromised3 and is a major cause of death in infants globally.4    

During periods of heightened influenza and RSV activity, increases in demand can occur 

across a range of healthcare services from community physicians (general practitioners; GPs) 

through to specialist secondary care facilities. In England, RSV accounts for approximately 

30,000 paediatric admissions in children aged <5 annually.5 

Identifying the key drivers underlying winter pressures is critical to understanding, managing 

and responding to the periods of high demand. Surveillance is a cornerstone of public health, 

monitoring changes in community-based activity of certain pathogens, diseases and 

conditions. Surveillance can provide a ‘view’ of key metrics that can be used to understand 

the drivers of pressures. Routinely collected surveillance data provide intelligence on those 

factors known to cause pressures e.g. monitoring increases in influenza cases. Surveillance 

data can also provide the opportunity to anticipate these pressures through predictions or 

forecasting. 
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Recently, advancements in Machine Learning (ML) have made it possible to develop more 

powerful and accurate forecasting models, utilising larger and more complex datasets. 

However, the key to developing accurate and timely models is the availability of suitable 

surveillance data that informs on healthcare service usage. Here, we use real-time syndromic 

surveillance data that are routinely collected as part of the UK Health Security Agency 

(UKHSA) public health surveillance programme to create short term forecasts for peak health 

care demand during periods of rising seasonal respiratory activity. We calculated forecast 

reliability to describe uncertainty around forecasts and piloted forecasts during the 2022-23 

winter season and compared forecasts to actual activity. 

Methods 

We created two automated machine-learning pipelines in R, firstly to select and train forecast 

models, secondly to create daily forecasts (Figure 1). We describe here the methods used 

following the flow of the pipelines. 

Figure 1: Pipelines used for A) creating models and B) producing daily forecasts 
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Data selection 

The UKHSA coordinates a programme of real-time syndromic surveillance that supports and 

augments other UKHSA health surveillance programmes.6 For this pilot study, we used two 

syndromic indicators that are routinely part of the ongoing UKHSA daily syndromic 

surveillance service; NHS 111 telehealth calls for ‘cough’ and emergency department (ED) 

attendances for ‘acute bronchiolitis’. Both syndromic indicators were restricted to children 

aged five years or under because they are known to be sensitive to seasonal outbreaks of 

RSV.7-9 Using established indicators that are well understood aids interpretation and enables 

comparison with previous years.  

Data cleaning and formatting 

Firstly, data were smoothed to remove day of the week effects caused by weekends and 

public holidays.10 Secondly data were normalised, so that variables were in the range zero to 

one. Finally, derived variables were created that were used to create the forecast models 

(although noting that not all the derived variables were used in all the models tested; Table 

1).11 

Table 1: derived variables used to create forecast models 

Derived variable Descriptor 

Trend slope difference between today and yesterday 

Rate of change difference between today’s slope and yesterday 

Seasonality using either month of year or Fourier transformations 

Secular trends linear and quadratic 

Quadratic term square of daily activity 

Three-point-moving-average daily activity, trend slope and rate of change of slope 
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Training models 

Rather than restrict forecasts to a single methodology, for both indicators we tested a wide 

range of alternate models, using the data to select the best method for each indicator 11. 

Firstly, we choose seven alternate supervised machine learning methods; linear regression, 

generalised linear models with elastic net regularization (with and without internal 

optimisation of parameter lambda), k-Nearest-Neighbour regression, random forest 

regression, support vector machine for regression, and eXtreme Gradient Boosting 

regression. For each of these seven different methods we included the following options: 

1. No seasonality or including month of year or with Fourier transformation 

2. No secular trend, a linear trend or a quadratic trend 

3. With or without a quadratic term for current activity 

4. With or without using a three-day moving average for activity, slope and change 

of slope to avoid undue influence of single-day spikes in activity. 

The combination of seven methods and the options above gave 252 alternate model 

specifications to be tested. Furthermore, for each model specification 28 models were created 

and trained to forecast from 1 to 28 days ahead respectively. Models were trained using 

historical data prior to October 2022, the supervised learning using actual data from either 1 

to 28-days ahead of daily forecasts as the ‘labels’ for the target forecast. Historical data were 

split randomly into training and test data sets, 80% of the historical data being used for 

training.  

We used anonymised health service data that is routinely used by UKHSA for public health 

surveillance of respiratory illnesses, including RSV. This study was part of ongoing work to 

improve the capabilities of UKHSA surveillance systems. As such, no specific approvals 

were required to use the anonymised data included this study. 
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Selection of ensemble model 

For each of the 252 alternate model specifications an ensemble forecast was created which 

forecast when and how high activity was going to peak over the next 28 days. The ‘forecast 

peak’ for each model specification was defined as the highest value forecast by the individual 

1 to 28-day ahead forecast models. Using the test data set, the forecast peaks were compared 

with the actual highest value or ‘peak’ that occurred in the 28 days following the forecast. An 

‘intensity error’ was calculated as the difference between the height of the forecast peak and 

the actual peak. Similarly, a ‘timing error’ was calculated which was the difference in days 

between the day when activity peaked and the date when activity was forecast to peak. The 

intensity and timing errors were combined to give a single ‘forecast peak error’. The forecast 

peak error includes weighting to emphasise the importance of accurately forecasting peaks 

when activity is high.11 The model specification which resulted in the smallest mean forecast 

peak error was selected for daily forecasts. 

Model validation 

Once the best model specification has been selected based on the training data, forecasts were 

retrained using all the available historical data. The historical intensity and timing errors were 

calculated for forecast peaks and used to estimate forecast uncertainty. To allow for variation 

in the standard deviation of errors as activity approaches a peak, a gamlss model was used to 

estimate standard deviation variation against the level of current activity. Thus, we can create 

uncertainty intervals which vary as activity approaches a seasonal peak. 

Creating daily reports 

To produce daily forecasts, recent data is extracted and formatted using the same data 

processes as for training models. The validated model for each indicator is used to produce 1 

to 28-day ahead forecasts based on the latest data available. These forecasts are used to create 
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daily reports which predict when activity will peak in the next 28 days and at what level, 

including the uncertainty intervals. 

Results 

Model selection 

The model specifications with the lowest forecast peak errors for both indicators used a 

random forest learning method, with seasonality modelled by Fourier transformations. 

However, the other specification options differed between the two indicators. The lowest 

forecast peak errors for the NHS 111 cough calls data included a quadratic term for activity, a 

quadratic secular trend and averaging over three consecutive days’ data points. Whilst for ED 

acute bronchiolitis attendances the lowest errors involved a linear trend and no quadratic term 

for activity or averaging over consecutive days. Supplementary table 1 shows the forecast 

peak errors for each model specification. In general, errors were lower for NHS 111 calls 

than for ED bronchiolitis attendances, with 52 NHS 111 model specifications performing 

better than the best ED specification. Overall, including seasonality improved peak forecasts, 

with Fourier transformations performing better than seasonality using months. The learning 

method with the lowest mean errors was random forest, followed by k-nearest neighbour 

regression (Table 2). 
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Table 2: Mean forecast peak errors by method and syndromic surveillance system. 

Learning method ED1 

attendances 

NHS 111 

calls2 

random forest 0.0267 0.0195 

k-nearest-neighbour 0.0359 0.0239 

support vector machine 0.0399 0.0287 

glm with elastic net regularization including optimised lambda 0.0483 0.0355 

linear regression 0.0490 0.0378 

generalised linear model (glm) with elastic net regularization 0.0487 0.0418 

extreme gradient boosting ^0.1483 0.1307 

^Only 6 out of 36 model specifications converged. 1Emergency department; 2National Health 

Service 111 

 

Model validation 

The gamlss models show that the variation in intensity errors increase as actual counts 

increase (Table 3). By contrast, the variation in timing errors decrease as actual counts 

increase.  

Table 3: Gamlss model coefficients for variation in error standard deviation vs actual counts 

Error type System Intercept Coefficient 

Intensity NHS 111 24.5 1.0006 

EDSSS 18.9 1.0055 

Timing NHS 111 5.9 0.9994 

EDSSS 12.0 0.9998 
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The gamlss model coefficients were used to create confidence intervals around the timing and 

intensity errors, which varied depending on the number of actual counts at the time of the 

forecast (Figures 2 and 3). Intensity errors are not symmetric because forecast peaks cannot 

be negative, thus when actual counts are low a forecast peak can over-estimate by more than 

it can under-estimate. 

Pilot season 2022-23 

During October 2022, ED acute bronchiolitis attendances in children aged under 5 years 

reporting to EDSSS increased until a peak of 220.0 attendances on 31 October. Subsequently, 

there was a decrease until 5 November before attendances increased again reaching a 

seasonal high of 311.4 attendances on 29 November. Similarly, NHS 111 calls for cough in 

children under 5 years rose to a peak of 991.6 calls on 22 October, decreased until 2 

November and then started rising. However, whilst the increase in NHS 111 calls slowed 

prior to 30 November it was then followed a sharp increase in calls, reaching a seasonal high 

of 1,842.9 calls on 6 December 2022. 

The seasonal peak in ED attendances at the end of November coincided with the usual timing 

of peak RSV activity seen in previous years (as monitored by laboratory reporting).12 The 

additional increase in NHS 111 calls after 30 November 2022 was unprecedented, being 

39.3% higher than the previous highest winter peak, 1,323.4 on 7 December 2019. 

Consequently, the level of activity was outside the range of anything seen in the training data. 
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Figure 2: Intensity errors during training period for A) emergency department acute 

bronchiolitis attendances and B) NHS 111 cough calls. Lines show 50% and 95% confidence 

intervals. 
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Figure 3: Timing errors during training period for A) emergency department acute 

bronchiolitis attendances and B) NHS 111 cough calls. Lines show 50% and 95% confidence 

intervals. 
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The pilot forecast made on 26 November 2022, forecast that ED attendances for acute 

bronchiolitis would peak at 340.1 attendances on 29 November (Figure 4). The same day 

forecast for NHS 111 calls predicted that they had already peaked. The timing for the ED 

forecast was correct but the level of the peak was an over-estimate of 29.3 (9.4%) 

attendances. 

Figure 4: 28 day forecast for peak emergency department acute bronchiolitis attendances in 

children aged <5 years. Red squares are 28 day forecast, blue lines show 50% (dark blue) and 

95% (light blue) data intervals around the peak forecast.   

 

 

The NHS 111 forecasts failed to predict the unprecedented rise in NHS 111 cough calls in 

children in December 2022 until the rise had started. However, a forecast using a linear 

regression learning method proved to be adaptive, forecasting a later and higher seasonal 

peak once activity began to rise sharply at the start of December 2022 (Figure 5). 
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Figure 5: 28 day forecast for peak NHS 111 cough calls in children aged <5 years. Red 

squares are 28 day forecast, blue lines show 50% (dark blue) and 95% (light blue) data 

intervals around the peak forecast. 

 

 

Discussion 

Key findings 

Machine learning pipelines can be used to train, select models and create daily forecast 

reports that predict the peak in demand for RSV activity over the following 28 days. During 

2022 our pilot forecasts were able correctly predict the peak in ED acute bronchiolitis 

attendances in children under 5 years. During November 2022, our forecasts for NHS 111 

cough calls in children aged under 5 years, predicted a similar peak was going to occur as in 

previous pre-pandemic years. However, as cough calls began to increase sharply at the start 

of December, our forecasts also began to change, predicting a later peak in December that 

was higher than previous years.  
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What was known before 

Prior to the COVID-19 pandemic, seasonal activity for RSV was predictable in its 

seasonality, peaking in England at the end of November to beginning of December.13-15 

However, during 2020 and 2021, the seasonality of RSV was disrupted with no winter peak 

in 2020 and a deferred peak occurring in summer 2021.7 Traditional surveillance methods 

based on historical data and recurring seasonality16 continued to predict syndromic indicators 

would rise in winter 2020 due to RSV. Whilst short-term forecasts based on recent trends are 

more adaptive, these too would not perform well during atypical seasons, unless seasonality 

was excluded from model variables.11 

Interpretation of findings 

The unexpected dramatic rise in NHS 111 cough calls in December 2022 coincided with 

media reporting about unusual increases in invasive Group A streptococcal (GAS) infections 

in children.17 18 Extensive news coverage reported children with GAS becoming severely ill 

very quickly with symptoms including sore throat, fever and cough. Over the days following 

the release of the GAS news coverage, the NHS 111 telehealth service saw an unprecedented 

increase in calls relating to children. However, ED attendances were less affected by changes 

in patient presenting behaviour, and consequently ED syndromic indicators did not have an 

additional large peak. The differences between syndromic systems illustrate some of the 

strengths and weaknesses of syndromic surveillance. Syndromic indicators cannot identify 

specific causal pathogens, thus NHS 111 cough calls although sensitive to RSV are not 

specific enough to exclude other causal factors. Thus, NHS 111 cough calls were not a 

reliable indicator for assessing the total burden of health care demand attributable to RSV. 

However, if policy and decision-makers need to understand the current pressures on health 

services from all causes then syndromic indicators are more sensitive than pathogen-specific 

surveillance such as laboratory reporting. Importantly, a syndromic surveillance service that 
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comprises a range of data sources across the spectrum of health services is better able to 

distinguish between pressures due to changes in underlying disease incidence and those due 

to changing patient behaviour. 

Limitations 

Inevitably, forecasts trained on historical data will perform better when current data is within 

the range and seasonality seen previously. Previously, we have shown that a model that is not 

trained to expect a recurring seasonal pattern performs better during atypical seasons 11. 

However, the unexpected peak in December 2022 NHS 111 calls was not out of season and 

so the accuracy of forecasts was not due to inclusion of seasonality variables. In this case, we 

found that some of the regression methods which performed best using our forecast peak 

error measure, e.g. random forest, generated forecasts that assumed activity had already 

peaked. By contrast, using simple linear regression generated forecasts that correctly 

predicted activity was going to continue to increase in line with current trends. Therefore, the 

simpler method outperformed the method automatically selected by our machine learning 

algorithm. 

The unprecedented increase in NHS 111 cough calls in children during December 2022 

revealed a limitation in the use of this indicator for forecasting peak pressures due to RSV. 

The exceptional additional winter pressures were not due to RSV but due to reaction to iGAS 

media reports. Thus, without additional intelligence, a report intended to show pressures due 

to RSV could have misinterpreted as showing that RSV activity was exceptionally high. 

Public health implications 

Short-term forecasts can provide additional information compared to existing surveillance 

baselines based on previous years because they are more adaptive to recent changes in trends. 

Our automated pipeline for creating short-term forecasts of seasonal peaks is useful in 
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identifying the timing and intensity during typical seasons. Furthermore, the process of using 

machine learning methods to produce a reproducible automated pipeline means new 

indicators can easily and quickly be added to syndromic reports. However, automated 

reporting of trends and forecasts for syndromic data should always be accompanied with 

expert interpretations which can warn of emerging events. For instance, where a real-time 

change in patient behaviour means one or more indicators is no longer comparable with 

previous years. Improved automation and real-time interpretation is important as we may 

need to create forecasts quickly when notified that there is an increase in disease incidence. 

Also, the same pipeline can be used to assess other causal pathogens, including influenza and 

SARS-Cov2. Similarly, it may be possible to model non-infectious diseases such as allergic 

rhinitis (hay fever) where the historical data includes recurring seasonal peaks. 

Recommendations and future work 

Importantly, when current data is outside the range of training data, or seasonality does not 

match the training data forecasts should be interpreted in caution. We’d recommend that any 

forecasts used for routine surveillance include tests for data that is outside the range of testing 

data. Also, we suggest that when increases start to occur out-of-season forecast models are 

selected that do not include seasonality variables. 

In future, it may be possible to provide better forecasts during atypical seasons by weighting 

the training data to give more emphasis to the rare events. Also, synthetic data could be 

incorporated in training data to allow for plausible events that have not yet occurred in the 

training data, e.g. out-of-season outbreaks, or more virulent pathogens. 
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