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Abstract 

Background: DNA methylation clocks have emerged as promising biomarkers for cognitive 
impairment and dementia. Longitudinal studies exploring the link between DNA methylation 
clocks and cognitive decline have been constrained by limited sample sizes and a lack of 
diversity.  

Objective: Our study aimed to investigate the longitudinal associations between DNA 
methylation clocks and incident cognitive impairment using a larger sample size encompassing a 
US nationally representative sample from the Health and Retirement Study. 

Methods: We measured DNA methylation age acceleration in 2016 by comparing the residuals 
of DNA methylation clocks, including GrimAge, against chronological age. Cognitive decline 
was determined by the change in Langa-Weir cognition status from 2016 to 2018. Using 
multivariable logistic regression, we evaluated the link between DNA methylation age 
acceleration and cognitive decline, adjusting for cell-type proportions, demographic, and health 
factors. We also conducted an inverse probability weighting analysis to address potential 
selection bias from varying loss-to-follow-up rates. 

Results: The analytic sample (N=2,713) at baseline had an average of 68 years old, and during 
the two years of follow-up, 12% experienced cognitive decline. Participants who experienced 
cognitive decline during follow-up had higher baseline GrimAge (mean = 1.2 years) acceleration 
compared to those who maintained normal cognitive function (mean = -0.8 years, p < 0.001). A 
one-year increase in GrimAge acceleration was associated with 1.05 times higher adjusted and 
survey-weighted odds of cognitive decline during follow-up (95% CI: 1.01-1.10). This 
association was consistent after accounting for loss-to-follow-up (OR = 1.07, 95% CI: 1.04-
1.11). 

Conclusion: Our study offers insights into DNA methylation age acceleration associated with 
cognitive decline, suggesting avenues for improved prevention, diagnosis, and treatment.  
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Introduction 

The aging population structure in the United States (US) is leading to an increasing public health 
challenge, especially with age-related diseases like dementia. In 2020, it was estimated that 
around 6.07 million individuals in the US had clinical Alzheimer's disease, and another 12.23 
million exhibited mild cognitive impairments [1]. By 2060, these figures are projected to rise to 
13.85 million and 21.55 million, respectively [1]. Both Alzheimer’s disease and cognitive 
impairments severely restrict an individual's quality of life and necessitate substantial caregiving. 
Despite extensive research, there are only a few effective treatments available, and those that do 
exist seem to work best when administered early in the progression of the disease [2]. Therefore, 
pinpointing those at high risk for developing dementia or cognitive impairments is crucial for 
suggesting preventive measures and initiating timely interventions. 

A promising biomarker for cognitive impairment and dementia is epigenetic aging. Rather than 
altering the DNA sequence itself, epigenetic factors like histone modifications and DNA 
methylation modify the regulation and expression of DNA. Among these, DNA methylation 
patterns have been particularly adept at forecasting chronological age and mortality risks [3]. By 
integrating DNA methylation levels from multiple genomic sites, DNA methylation clocks 
attempt to provide a more accurate depiction of biological aging [4]. Residualizing DNA 
methylation clocks against chronological age creates a measure of whether an individual’s DNA 
methylation age is older (accelerated aging) or younger (not accelerated) than would be expected 
[5,6]. While the initial versions of DNA methylation clocks aimed to predict chronological age 
[7,8], the second generation, often termed 'phenotypic clocks,' are designed specifically to 
forecast age-related health decline [7–9]. Consequently, these updated clocks might serve as 
more reliable biomarkers for cognitive deterioration and dementia. 

Prior research has explored the associations between DNA methylation clocks and outcomes 
related to dementia and cognition, yet the findings have been inconclusive [10]. A recent 
systematic review identified 10 studies examining associations between DNA methylation clocks 
and dementia, including Alzheimer’s disease, cognitive impairment, and frontotemporal 
dementia [10]. Among these, only four had a longitudinal design, with just one reporting a 
significant finding [11–14]. Moreover, the sample sizes of these longitudinal studies were 
smaller, ranging from 52 to 578 participants [10]. In contrast, larger cross-sectional studies  
(ranging from 29 to 4535 participants) investigating DNA methylation age and cognitive metrics 
have yielded stronger associations, particularly with second-generation clocks like GrimAge 
[10]. However, for DNA methylation age acceleration to function as a viable biomarker, 
differences must be preceding clinical cognitive decline.  

To bridge these knowledge gaps, we examined the relationships between DNA methylation 
clocks and the onset of cognitive decline. This analysis involved 2,713 participants from the 
Health and Retirement Study (HRS), a nationally representative longitudinal cohort study 
focused on older adults in the US. 

Materials & Methods 

Study population and design 
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This study is based on data collected from the 2016 and 2018 waves of the HRS. The HRS, 
funded by the National Institute of Aging and the Social Security Administration, is a 
longitudinal panel study of older adults (>50 years of age) in the US, with sample replenishment 
every six years with younger cohorts [15]. HRS collects demographic, economic, and health 
metrics every two years, with participants alternating between face-to-face interviews and 
telephone surveys, such that each participant completes a face-to-face interview every 4-years. In 
2016, all community-dwelling HRS participants who completed an interview and did not 
respond via proxy were asked to consent to a venous blood draw. A total of 9,934 participants 
consented. From these, a subsample (N = 4,104) was selected for DNA methylation assays. We 
considered DNA methylation measures in 2016 as the study baseline and we followed-up 
cognitive status into the 2018 wave (most recent available). All participants in the HRS provide 
informed consent. This secondary analysis was approved by the University of Michigan 
Institutional Review Board (HUM00128220). 

DNA methylation age measures 

The primary exposure variable for this analysis was DNA methylation age acceleration. DNA 
methylation was measured using the Infinium Methylation EPIC BeadChip at the University of 
Minnesota. To minimize batch confounding, samples were randomized across plates by 
demographic variables. To assess technical variability, 40 pairs of blinded technical replicate 
samples were included; technical replicates showed high correlation (>0.97) across all DNA 
methylation sites. DNA methylation data was preprocessed by HRS staff using the minfi package 
in R [16]. Briefly, DNA methylation probes with a detection P-value below 0.01 were excluded 
from the final data set. Samples which failed preprocessing (detection P-value 5% threshold) or 
had a mismatch between DNA-methylation sex and reported sex were excluded, leaving 4,018 
samples with quality-controlled DNA methylation data. Prior to estimation of DNA methylation 
clocks, the HRS imputed missing DNA methylation probe values using the mean value of the 
given probe across all samples. 

Thirteen epigenetic clocks were constructed by the HRS. We focused on five widely recognized 
epigenetic clocks based on a priori hypotheses. Our primary interest was in three phenotypic 
clocks: GrimAge [6], DunedinPoAm (MPOA) [17], and PhenoAge [18]. As a secondary 
analysis, we also included two chronological clocks: Horvath [19] and Hannum [20]. Four of the 
clocks provided DNA methylation age estimates in years. MPOA was provided as a rate, and we 
transformed it to years by dividing by the participant age to be consistent with the remaining 
clocks [17]. 

To account for chronologic age and compute DNA methylation age acceleration, we regressed 
each clock against the chronological age at the time of measurement, and we extracted the 
residuals [5,6]. We visualized patterns in participant measures in the clocks, chronologic age, 
and DNA methylation age acceleration (residuals) using scatter plots and computed Pearson 
correlation coefficients (Supplemental Figure 1). We examined the pairwise correlation 
between five epigenetic clocks using a Pearson correlation plot (Supplemental Figure 2). In 
descriptive analyses, we dichotomized accelerated DNA methylation ages (residuals greater than 
0) and non-accelerated DNA methylation ages (residuals 0 or less).  

Cognitive measures 
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Cognition was measured at baseline in 2016 and at follow-up in 2018 using the Langa-Weir 
three-level cognition status (normal cognition, cognitively unimpaired non-dementia, and 
dementia) [21]. Each wave, the HRS team provides imputed values for missing cognitive tasks, 
which are then included in an overall 27-point score [22]. The Langa-Weir cognition status is 
calculated differently for self-respondents and proxy respondents. No proxy respondents were 
included in the baseline wave, though 23 respondents transitioned to proxy status due to 
cognition concerns in 2018. Of these 23 respondents, nine were categorized as having dementia, 
and seven each were classified as cognitive impairment, non-dementia and normal cognition. in 
For self-respondents, a 27-point cumulative cognition score based on four cognitive tasks 
administered to participants is used for classification: immediate and delayed 10-noun free recall 
task (0-20 points), serial sevens subtraction task (0-5 points), and backward counting task (0-2 
points). The 27-point summary score is then categorized into normal cognition (12-27 points), 
cognitive impairment non-dementia (7-11 points) and dementia (0-6 points). While no 
participants from the 2016 baseline venous blood draw sample were proxy respondents, 23 
respondents transitioned to proxy status in the 2018 wave. For those proxy respondents, Langa-
Weir cognition status is determined using an 11-point scale, constructed using a proxy’s 
assessment of the subject's memory (ranging from excellent to poor), limitations in instrumental 
activities of daily living, and an interviewer’s assessment of the subject’s cognitive impairment. 
Higher scores indicated worse cognition. As with the score for self-respondents, missing data is 
addressed through imputation. The aggregate 11-point score is then classified into normal 
cognition (0-2 points), cognitive impairment non-dementia  (3-5 points), and dementia (6-11 
points) [21]. The cognitive status measure that has been clinically validated with a 74% 
sensitivity [21]. 

We visualized transitions between cognitive states between baseline and follow-up using an 
alluvial plot. For analyses of cognitive decline, we excluded participants with dementia at 
baseline, since they could not undergo any further cognitive decline, as well as those with a 
stable, non-normal cognitive conditions. To examine cognitive decline between baseline and 
follow-up, we categorized participants who underwent any decline in Langa-Weir cognitive 
status between 2016 and 2018 -- specifically, transitions from normal to impairment, normal to 
dementia, or impairment to dementia. This category was contrasted with participants who 
consistently maintained a cognitively normal status (remained cognitively normal from 2016 to 
2018) or improved cognition.   

 

Covariate measures 

We sought to identify potential confounders and precision variables. Considering that each cell 
type possesses its own distinct DNA methylation profile, which can be associated with health 
outcomes, it's crucial to adjust for cell type distributions [23]. To this end, we used the 
proportions of granulocytes, lymphocytes, and monocytes in venous blood samples from HRS 
participants measured using complete blood counts.  

We accounted for various demographic variables, including chronological age in 2016 (years), 
self-reported race (Black/African-American, White, or Other), self-reported Hispanic ethnicity 
(Hispanic or not Hispanic), sex (male, female), years of education, and marital status in 2016 
(single or married/partnered).  
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We also integrated several health-related factors: cigarette smoking status in 2016 (never or ever 
smoker), any alcohol consumption in 2016 (any or none), physical activity in 2016 (indicator 
variable for any self-reported light, moderate or vigorous physical activity more than once per 
week, with its structure echoing the World Health Organization's guidelines for seniors [24]), 
body mass index (BMI) calculated from self-reported height (feet and inches) and weight 
(pounds), and an indicator variable reflecting whether a participant had been diagnosed by a 
physician with multiple comorbid conditions (including high blood pressure, diabetes, cancer, 
lung disease, heart disease, stroke, psychiatric problems, and stroke). Given that many in this 
aging cohort reported at least one health condition, this indicator was defined as more than one 
versus one or no comorbid conditions. 

The apolipoprotein E (APOE) gene is a recognized genetic risk factor for late onset Alzheimer’s 
disease. Specifically, individuals carrying the APOE ϵ4 allele face a heightened risk for dementia 
compared to those with the APOE ϵ3 and APOE ϵ2 alleles [25]. Between 2006 and 2012, 
participants in the HRS underwent face-to-face interviews, during which they provided saliva 
samples for genotyping. These samples were analyzed using the Illumina Human Omni2.5 
microarray platform and later imputed with the 1000 Genomes Project reference panel [26]. 
Given the rarity of individuals possessing two copies of APOE ϵ4, participants were categorized 
as having any versus no copies of APOE ϵ4 using the phased genetic data. However, a proportion 
of participants lacked genetic data, thus we included APOE ϵ4 status as a variable in our 
sensitivity analysis. 

Sampling weights 

We applied the HRS survey weights specifically designed for use with DNA methylation data 
[27]. We used these sample weights for both descriptive statistics and multivariable models to 
ensure our findings are nationally representative. 

Sample inclusion and exclusion 

Only participants with quality-controlled DNA methylation data from the 2016 venous blood 
sample were eligible for inclusion in this analysis, and analyses were therefore necessarily 
restricted to individuals who 1) were community-dwelling and 2) did not respond via proxy in 
2016. Participants could, however, be proxy-respondents in 2018. We performed a complete case 
analysis, where we excluded participants lacking cell type data, demographic information, or 
health factors variables. Those classified with dementia in 2016 were excluded since they 
couldn't experience further cognitive decline. Anyone without cognition data from the 2018 HRS 
wave was also excluded, as we couldn't evaluate their cognitive decline. Additionally, 
participants with non-normal cognition that remained stable or improved between 2016 and 2018 
were also excluded. We visualized participant exclusion and inclusion using a flow chart. 

Statistical analysis 

All analyses were conducted in R statistical software (version 4.2.2). We described the 
distributions of continuous variables using mean and standard deviation and of categorical 
variables using count and frequency. We compared the distributions of variables in the included 
and excluded samples. For bivariate analysis among the included sample, we took survey weight 
into account and compared the distributions of variables by binary cognitive decline status using 
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Wilcoxon rank-sum test for complex survey samples to assess mean differences in continuous 
variables and Pearson’s Chi-squared test with Rao & Scott's second-order correction for 
categorical variables. In sensitivity analyses, we examined subtypes of cognitive decline (normal 
to cognitive impairment non-dementia, normal to dementia, and cognitive impairment non-
dementia to dementia). Raincloud plots were used to visualize the distribution and provide 
summary statistics of the DNA methylation age acceleration by cognitive decline. 

To assess the relationship between DNA methylation age acceleration and cognitive decline, we 
used multivariable logistic regression, accounting for potential confounders and precision 
variables. Based on a priori hypotheses, our primary multivariable models focused on 
continuous GrimAge acceleration and the remaining clocks were used in sensitivity analyses. 
Our primary analysis encompassed three distinct regression analyses: 1) base model: controlled 
for cell-type proportions; 2) demographic model: adjusted for demographic variables previously 
mentioned, in addition to cell-type proportions; and 3) health factors model: adjusted for the 
health-related factors specified earlier, in addition to all variables included within the 
demographic model. We also assessed if chronological age modified the association between 
DNA methylation age acceleration and cognitive decline by adding product term between 
chronological age and DNA methylation age acceleration in the demographic and health factors 
models. To better represent those participants who had complete data in 2016, we applied survey 
weight to these models. We reported odds ratios (OR), 95% confidence intervals (CI), and p-
values for the variables of interest. 

Sensitivity analyses 

In sensitivity analyses, we considered a binary GrimAge acceleration predictor. In addition, to 
determine whether the association between DNA methylation age acceleration and cognition 
decline was specific to the GrimAge estimator, we examined four alternate DNA methylation 
age estimators (continuous and binary) including Levine, MPOA, Horvath, and Hannum. To 
address potential confounding by the APOE genotype, we additionally controlled for any APOE 
ϵ4 alleles in a sensitivity analysis. All these models were survey sampling weighted.  

To address the possible selection bias caused by differing loss-to-follow-up rates between 2016 
and 2018, we conducted an inverse probability weighting analysis. First, we compared the 
distribution of variables among participants who had baseline DNA methylation and cognition 
measures but did not have cognition measures at follow-up (loss-to follow-up sample) to the 
analytic sample (that had cognition measures at follow-up). Next, we calculated the inverse 
probability for both treatment (referring to DNA methylation age acceleration) and censoring 
(specifically for participants without cognitive data in 2018). For our sensitivity analysis, we 
multiplied the inverse probabilities of treatment and censoring weights by the given sampling 
weights. These adjusted weights were then applied to our multivariable models. 

To assess if GrimAge acceleration provides increased predictive accuracy beyond standard 
demographic variables in predicting future cognitive decline, we performed an area under the 
receiver operator curve analysis (AUROC) using the pROC package (version 1.18.0) [28]. We 
considered our base model to be a multivariable logistic regression model of cognitive decline 
status with demographic and cell type variables as predictors. We added GrimAge acceleration to 
this model and tested for an association using a likelihood ratio test. We visualized these results 
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using a receiver operator curve, calculated C-statistics for each model, and used a DeLong test to 
compare performance. 

 

Results 

Description of the analytic sample 

Of the initial 4,104 participants tested with DNA methylation assays, 4,018 met the HRS quality 
control standards. After accounting for those with incomplete covariate data, the sample was 
reduced to 3,713 participants. From this group, 439 were excluded because of stable non-normal 
cognition, and another 417 lacked cognition data for 2018. Ultimately, 2,713 participants were 
included in the final analysis (Figure 1). During follow up, 333 participants experienced some 
form of cognitive decline (Supplemental Figure 3). 

Compared to excluded participants, those in the analytic sample were more likely to self-identify 
as non-Hispanic White, be currently married or partnered, and have more education. They also 
exhibited fewer chronic conditions, were more likely to exercise at least once per week, and were 
more often ever-drinkers (Supplemental Table 1). Within our final analytic sample, 54% of the 
participants identified as female. In addition, 86% identified as White, 8.4% as Black, and 7.5% 
as Hispanic (Table 1).  
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Figure 1. CONSORT (Consolidated Standards of Reporting Trials) diagram for inclusions and exclusions 
for an analysis of DNA methylation clocks and cognitive decline among a subset of participants in the 
Health and Retirement Study 

 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 22, 2024. ; https://doi.org/10.1101/2024.09.19.24314012doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.19.24314012
http://creativecommons.org/licenses/by-nc/4.0/


 10 

Bivariate descriptive statistics  

Participants who experienced cognitive decline during follow-up were, on average, older and had 
fewer years of education, compared to those with normal cognition (Table 1). They were also 
more likely to be Black, Hispanic, or single. At baseline, they were less likely to exercise at least 
once a week or report any current alcohol consumption. Participants who experienced cognitive 
decline were more likely to having multiple chronic conditions and at least one copy of APOE ϵ4 
(Table 1). 

Participants who experienced cognitive decline during follow-up had higher baseline GrimAge 
(mean = 1.2 years) acceleration compared to those who maintained normal cognitive function 
(mean = -0.8 years, p < 0.001) (Table 1 & Supplemental Figure 4). Participants who 
experienced cognitive decline during follow-up also had higher baseline MPOA (mean = 1.0 
years) acceleration compared to those who maintained normal cognitive function (mean = -1.0 
years, p < 0.001). This difference was not observed with other epigenetic clocks. Within the 
cognitive decline group, those progressing from normal cognition to cognitive impairment non-
dementia had lower GrimAge acceleration (mean = 0.94) than those progressing either from 
normal cognition to dementia (mean = 1.27) or from cognitive impairment non-dementia to 
dementia (mean = 1.97, Figure 2. 

 

Table 1. Survey weighted bivariate descriptive statistics of participant baseline (2016) characteristics in 
the Health and Retirement Study by cognitive decline status over follow-up (2018). 

Baseline characteristics 
Overall  

(N = 2,713)1 
Any decline  
(N = 333)1 

Normal to normal  
(N = 2,380)1 p-value2 

DNA methylation age acceleration (years)     
    GrimAge -0.7 (4.7) 1.2 (4.5) -0.8 (4.6) <0.001 
    PhenoAge 0 (7) 0 (7) 0 (7) 0.5 
    MPOA -1 (6) 1 (7) -1 (6) <0.001 
    Horvath  0.1 (6.0) -0.4 (6.6) 0.2 (6.0) 0.3 
    Hannum 0.0 (4.9) 0.3 (4.9) 0.0 (4.9) 0.7 
Chronologic age (years) 68 (8) 73 (10) 67 (8) <0.001 
Sex (female) 54% (0.01) 48% (0.03) 54% (0.01) 0.11 
Race    <0.001 
    White 86% (0.01) 77% (0.03) 87% (0.01)  
    Black/African American 8.4% (0.01) 17% (0.02) 7.6% (0.01)  
    Other 5.2% (0.00) 6.6% (0.02) 5.0% (0.01)  
Ethnicity (Hispanic) 7.5% (0.01) 12% (0.02) 7.1% (0.01) 0.008 
Educational attainment (years) 13.77 (2.67) 12.33 (3.19) 13.92 (2.57) <0.001 
Marital status (single)  35% (0.01) 47% (0.03) 34% (0.01) <0.001 
Cognitive status     <0.001 
    Normal cognition 98% (0.00) 82% (0.02) 100% (0.00)  
    Cognitively impaired, non-dementia 1.7% (0.00) 18% (0.02) 0% (0.00)  
Exercise status (more than once per week)  79% (0.01) 63% (0.03) 80% (0.01) <0.001 
Drinking status (ever)  64% (0.01) 47% (0.03) 66% (0.01) <0.001 
BMI (kg/m2)  29.0 (6.2) 28.7 (6.9) 29.0 (6.1) 0.4 
Chronic conditions (more than one) 64% (0.01) 77% (0.03) 63% (0.01) <0.001 
Smoking status (ever smoker) 55% (0.01) 59% (0.03) 54% (0.01) 0.15 
APOE status, any copy of ϵ4 22% (0.01) 30% (0.03) 22% (0.01) 0.009 
Granulocytes (%) 62 (9) 64 (10) 62 (9) <0.001 
Lymphocytes (%) 30 (8) 28 (9) 30 (8) 0.001 
Monocytes (%) 8.54 (2.28) 8.28 (2.23) 8.57 (2.28) 0.042 
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Baseline characteristics 
Overall  

(N = 2,713)1 
Any decline  
(N = 333)1 

Normal to normal  
(N = 2,380)1 p-value2 

1Mean (SD); frequency% (SE(frequency%)) 
2Wilcoxon rank-sum test for complex survey samples; chi-squared test with Rao & Scott's second-order correction 
 
 

 

 

 

 

 

Figure 2. GrimAge acceleration by cognitive decline status (between 2016 and 2018) in the Health and 
Retirement Study sample with DNA methylation measurements and complete covariate data (N = 2,713). 

Cognitive impairment non-dementia (CIND). 

 

Multivariable association between GrimAge acceleration and cognitive decline  

Based on a priori hypotheses, we chose GrimAge as the primary predictor in our multivariable 
models. In survey weighted multivariable logistic regressions, we observed that every additional 
year of increased GrimAge acceleration at baseline was associated with 1.08 (95% CI: 1.05, 
1.11, p = 1.0x10-8) times higher odds of cognitive decline, after adjusting for cell-type 
proportions. Controlling for demographic variables slightly attenuated the odds ratio (OR = 1.05, 
95% CI: 1.02, 1.09, p = 0.003), and results were similar when we additionally controlling for 
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health variables (OR = 1.05, 95% CI: 1.01, 1.10, p = 0.02). We did not observe a significant 
interaction between chronological age and GrimAge acceleration in either demographic model or 
health factors model (Supplemental Table 2). 

Sensitivity analyses for parameterization, other clocks, and APOE adjustment 

When we analyzed the data using a binary parameterization of the exposure, i.e., comparing 
those with accelerated GrimAge (residuals > 0) against those without (residuals ≤ 0), the results 
remained consistent (Table 2). Full results are available in the supplemental materials. We 
observed an association between binary MPOA acceleration and odds of cognitive decline (OR = 
1.44, 95% CI: 1.03, 2.02, p = 0.03) in the survey weighted fully adjusted (Supplemental Table 
3). We did not observe associations between the remaining three clocks (PhenoAge, Horvath, 
Hannum) with cognitive decline.  

In sensitivity analyses in a subset of participants (N = 1,976) where we were able to control for 
the APOE e4 allele status, results were consistent with the primary analysis that adjusted for 
other health variables (OR = 1.05, 95% CI: 1.00, 1.10, p = 0.08, Supplemental Table 4). 

 

 

Table 2. Results from multivariable regression model, predicting any cognitive decline versus stable 
normal cognition with accelerated epigenetic aging (GrimAge) as the main predictor 

 

Model N 

Survey weighted Unweighted 
GrimAge 
acceleration 
measure 

OR  95% CI p-value OR  95% CI p-value 

Continuous (1-year 
increase) 

Cell-type adjusted only1 2713 1.08 1.05, 1.11 1.0x10-8 1.07 1.04, 1.09 2.0x10-07 
Demographic variables2 2713 1.05 1.02, 1.09 0.003 1.04 1.01, 1.07 0.005 
Health variables3 2713 1.05 1.01, 1.10 0.02 1.03 1.00, 1.07 0.08 

         
Binary (acceleration> 

0 versus ≤ 0, 
reference) 

Cell-type adjusted only1 2713 2.13 1.59, 2.84 4.0x10-07 1.82 1.44, 2.31 1.0x10-06 
Demographic variables2 2713 1.58 1.12, 2.21 0.01 1.42 1.09, 1.84 0.01 
Health variables3 2713 1.52 1.03, 2.24 0.03 1.31 0.98, 1.75 0.07 

OR: Odds Ratio, CI: Confidence Interval,  
1 Controlled for: Granulocytes, Lymphocytes   
2 Controlled for: sex, self-reported race and ethnicity (whether Hispanic), age (2016), years of education, single status (2016), Granulocytes, Lymphocytes,  
3 Controlled for all variables in (2) and: any exercise more than once per week (2016), smoking status (2016), drinking status (ever drinker) (2016), self-
reported BMI (body mass index = kg/m2) (2016), more than one chronic condition 

 

Sensitivity analyses accounting for loss-to-follow-up 

For 417 participants with baseline DNA methylation and cognitive status measures, we were 
unable to evaluate the cognitive decline due to missing cognitive status at follow-up. Participants 
missing cognitive data at follow-up had higher baseline GrimAge acceleration (mean: 1.5 years) 
compared to participants with cognitive data at follow-up (mean: -0.4 years). In addition, 
participants who were lost to follow-up were more likely to have a smoking history and less 
likely to have exercise, compared to those who remained in the study (Supplemental Table 5).  
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To address the potential bias introduced by the missing 2018 cognition data, we conducted a 
sensitivity analysis using inverse probability weighting (Supplemental Table 6). After adjusting 
for all cell-type, demographic, and health variables, the results mirrored those of the primary 
multivariable regression (OR = 1.07, 95% CI: 1.04, 1.11, p = 1.0x10-04). 

Classification of cognitive status  

To assess whether GrimAge acceleration improved classification of cognitive decline, we used 
receiver operating curve analyses. The AUC for the base model (cell types and demographics) 
was 0.755. Additionally using GrimAge acceleration resulted in the same AUC (0.755). There 
was no classification improvement with the inclusion of GrimAge acceleration (DeLong test p-
value = 0.3; see Supplemental Figure 5).  

 

Discussion 

DNA methylation clocks have emerged as a potential biomarker for cognitive impairment and 
dementia. However, most longitudinal studies exploring the link between DNA methylation 
clocks and incident cognitive decline have been limited by small sample sizes (previous N’s: 52 -
578). To address this, we investigated the association between epigenetic clocks and the 
progression of cognitive decline in a larger sample (N = 2,713) from a longitudinal study 
focusing on older US adults. We found that participants who experienced cognitive decline over 
two years of follow up had elevated baseline GrimAge age acceleration, when contrasted with 
participants maintaining stable cognitive function over follow-up. Specifically, we observed a 1-
year increase in baseline GrimAge acceleration was associated with 1.05 (95% CI: (1.01, 1.10)) 
times higher odds of cognitive decline over follow-up, in fully adjusted models. Moreover, this 
association remained evident even when accounting for loss-to-follow-up using inverse 
probability weighting modeling (OR = 1.07, 95% CI: (1.04, 1.11)). In conclusion, our study 
presents compelling evidence that DNA methylation clocks, particularly GrimAge age 
acceleration, are biomarkers associated with the progression of cognitive decline in older adults 
in the United States.  

Our study highlights the potential of DNA methylation clocks as biomarkers for impaired 
cognition. Substantial evidence indicates that alterations in blood DNA methylation patterns are 
indicative of cognitive dysfunction and senescence of the brain [9,11,29–33]. Notably, a cross-
sectional analysis within the Whitehall II imaging sub-study (N = 47) revealed that DNA 
methylation aging acceleration, as quantified by the Hannum clock, correlated with mean 
diffusivity and the global fractional anisotropy of the brain [30]. In this study, we noted 
pronounced differences in cognitive decline exclusively with second-generation phenotypic 
clocks (GrimAge and MPOA), emphasizing their enhanced ability to predict age-related health 
declines compared to their first-generation counterparts (Horvath and Hannum). Further 
endorsement comes from a longitudinal examination within the Irish Longitudinal Study on 
Aging, where 490 participants monitored over a decade exhibited a marked correlation between 
GrimAge clock metrics and age-associated cognitive decline [9]. In a similar vein, initial 
findings from the VITAL-DEP (VITamin D and OmegA-3 TriaL-Depression Endpoint 
Prevention) study's pilot cohort (N = 45) observed a significant linkage between GrimAge and 
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rapid declines in overall cognitive function over a two-year span [29]. These studies collectively 
affirm the viability of DNA methylation clocks, especially GrimAge, as potential biomarkers for 
early detection of cognitive impairment, which is critical for timely therapeutic intervention. 

On the other hand, some prior studies have reported no link between DNA methylation clocks 
and cognitive decline [12–14,34]. For instance, a case-cohort investigation within the ASPirin in 
Reducing Events in the Elderly (ASPREE) study, encompassing 160 participants, discerned no 
differential age acceleration—as measured by Horvath, Hannum, GrimAge, and PhenoAge DNA 
methylation clocks—between dementia cases and control subjects [13]. Similarly, a cross-
sectional analysis utilizing data from 640 participants in the Alzheimer's Disease Neuroimaging 
Initiative (ADNI) database also reported no correlations between age acceleration (measured in 
Horvath, PhenoAge, and GrimAge clocks) and cognitive metrics [34]. Such discrepancies in 
findings may be attributable to methodological variances, including study design and sample 
size. Our investigation, leveraging a substantial cohort from the HRS, benefits from a larger 
sample size, which confers enhanced statistical power. 

Our study has several notable strengths that underscore its significance and influence. First, we 
employed a variety of epigenetic clocks for exposure measurement to examine differences in 
cognitive decline (Supplemental Table 3). This is important as varying associations may exist 
across these different epigenetic clocks, a notion further supported by our results. Second, 
compared to earlier longitudinal studies, our sample size is not only larger but also encompasses 
a nationally representative sample of participants from diverse racial and ethnic groups. This 
diversity enhances the robustness of our results and conclusions. By incorporating survey-
weighting, we ensured that our findings are more representative and thus can be more readily 
generalized to the broader population of older adults in the US. Moreover, we meticulously 
accounted for numerous potential confounders in our analysis. We also carried out a sensitivity 
analysis using inverse probability weighting to tackle potential selection bias. 

However, there are certain limitations to our study that must be taken into account when 
interpreting our results. Notably, the DNA methylation clocks were derived from blood samples 
rather than brain tissue, which can provide a more direct insight into neural changes and their 
potential correlation with cognitive decline. Nonetheless, acquiring brain samples from living 
individuals is not feasible, so this inherent limitation could not be overcome in our study. Many 
of the epigenetic clocks were designed to be robust across tissues [35]. Additionally, the 
cognitive status outcome in our study was derived from cognition tests instead of a physician's 
diagnosis. This could lead to potential misclassification, and our inability to distinguish between 
dementia subtypes might result in imprecise conclusions. Furthermore, our study experienced 
attrition with 417 participants lost to follow-up. This phenomenon could be due to a variety of 
factors, including withdrawal of participants or mortality stemming from causes unrelated to the 
study. It is important to consider that such attrition might be non-random and associated with 
baseline cognitive abilities or rates of epigenetic aging. Lastly, the follow-up period in our 
analytical sample is limited, spanning only two years of cognitive changes. A more extended 
follow-up would likely yield clearer and more robust findings. 

In conclusion, our study aimed to examine the relationships between DNA methylation age 
acceleration measured using epigenetic clocks and the onset of cognitive decline. After 
accounting for specific confounders and potential selection bias, we identified accelerated 
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GrimAge at baseline was associated with cognitive decline over follow-up. By highlighting this 
association, our study deepens the understanding of the role epigenetic aging clocks might play 
as reliable predictors for cognitive decline. These insights can pave the way for enhanced 
prevention, diagnosis, and treatment strategies. By addressing the study's limitations and 
leveraging its strengths, the scientific community is better positioned to unravel the intricate ties 
between epigenetic clocks and cognitive decline. 

Data availability: The Health and Retirement Study data used in this analysis are publicly 
available (https://hrsdata.isr.umich.edu/). The code used to process the data and produce the 
analyses are publicly available (https://github.com/bakulskilab). 
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