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Abstract
Magnetic Resonance Imaging (MRI) is a crucial diagnostic tool in medicine, widely used to detect and assess various
health conditions. Different MRI sequences, such as T1-weighted, T2-weighted, and FLAIR, serve distinct roles by
highlighting different tissue characteristics and contrasts. However, distinguishing them based solely on the description
file is currently impossible due to confusing or incorrect annotations. Additionally, there is a notable lack of effective
tools to differentiate these sequences. In response, we developed a deep learning-based toolkit tailored for small,
unrefined MRI datasets. This toolkit enables precise sequence classification and delivers performance comparable to
systems trained on large, meticulously curated datasets. Utilizing lightweight model architectures and incorporating
a voting ensemble method, the toolkit enhances accuracy and stability. It achieves a 99% accuracy rate using only
10% of the data typically required in other research. The code is available at https://github.com/JinqianPan/
MRISeqClassifier.

Introduction
Magnetic Resonance Imaging (MRI) is a fundamental and powerful diagnostic tool in the medical field, widely employed
for detecting and evaluating a wide range of health conditions. Various MRI sequences, such as T1-Weighted Imaging
(T1WI), T2-Weighted Imaging (T2WI), and Diffusion-Weighted Imaging (DWI), are tailored to aid in diagnosing
specific conditions by highlighting different tissue properties. For instance, T1WI is highly sensitive for detecting
lesions such as cysts and is commonly used to diagnose diseases affecting the brain, bones, and abdomen.1 T2WI
excels at revealing high water signals, making it ideal for identifying oedema and changes in water content around
lesions; it is frequently used for diagnosing tumors, white matter lesions, and meningiomas.2 DWI, which measures
the diffusion of water molecules within tissues, is crucial in diagnosing conditions like stroke and brain tumors, as it
can detect minute infarcts or edemas in the brain.3

However, the introduction of new imaging sequences and the consequent rapid increase in MRI data volumes present
substantial challenges, notably in data storage and image annotation.4 The inconsistency in sequence naming by different
manufacturers and the lack of uniform annotation standards at various imaging centers significantly complicate data
management.5,6 This complexity is further amplified by the varied nomenclature used by manufacturers and imaging
centers, which typically remains internal and is not shared beyond the development teams.7,8 Furthermore, while
medical images are commonly stored in Digital Imaging and Communications in Medicine (DICOM) and Neuroimaging
Informatics Technology Initiative (NIfTI) formats, the variability in labeled parameters across different institutions
complicates cross-institutional data integration and processing.9 Studies have also shown that up to 16% of inspected
DICOM headers contain error messages, further compromising data reliability and usability.6,10–12 In addition, the
process of labeling medical images is not only labor-intensive but also requires highly trained personnel, creating a
significant bottleneck in aggregating large image collections and severely hindering research progress. This underscores
the urgent need for more streamlined annotation practices and standards in medical imaging.

Despite several studies on MRI sequence classification, research in this area remains relatively limited. For instance,
Baumgartner et al.6 focused exclusively on the classification of prostate MRI sequences, while Zhu et al.13 and Kim et
al.12 concentrated on abdominal MRI sequences. Additionally, studies by Sugimori et al.14, Noguchi et al.15, Pablo et
al.16, and Ranjbar et al.8 were restricted to axial plane MRI imaging of the brain. While these studies offer valuable
insights into MRI classification, they typically depend on large, meticulously curated training sets composed of high-
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Figure 1. Examples of middle slices from six MRI sequences types: T1-Weighted Imaging (T1WI), T2-Weighted
Imaging (T2WI), Fluid Attenuated Inversion Recovery (FLAIR), Diffusion-Weighted Imaging (DWI), Diffusion
Tensor Imaging (DTI), and others.

quality, waste-free images. The creation of such high-quality training datasets necessitates significant human resources
for precise labeling, which is not only costly but also labor-intensive. This requirement for extensive manual effort,
while beneficial for enhancing classification accuracy, may not be feasible for research teams with limited resources or
for practical applications aiming to rapidly expand their scope. Such constraints highlight the need for more efficient
and scalable approaches to MRI sequence classification.

To overcome these limitations, we implemented a small-sample training approach, constructing our dataset with just
1,200 images—merely one-tenth the size typically utilized in similar research. Instead of relying solely on axial
plane MRI images, as is conventionally done, we incorporated three distinct views: axial, sagittal, and coronal. This
adaptation better accommodates the varied MRI preservation practices observed across different hospitals. Our multi-
view strategy not only streamlines the dataset construction but also enhances the model’s generalization capabilities
and helps prevent overfitting. From a technical perspective, we developed an automated toolkit in Python that leverages
Convolutional Neural Networks (CNNs) and voting ensemble methods. This toolkit efficiently processes and utilizes
large volumes of unlabeled medical image data with minimal intervention from specialized physicians. We have made
the complete toolkit code publicly available on GitHub to facilitate easy reproduction of our results by other researchers
and its application to further studies. Using this toolkit, we have successfully processed and classified over 70,000
MRI data from the National Alzheimer’s Coordinating Center (NACC)17, generating a structured, high-quality dataset.
These datasets not only serve as a valuable resource for medical research but also underscore the significant potential
of small-sample learning methods in practical applications.

Methods
Data Source
Our study utilized the data from NACC, which maintains one of the largest and most comprehensive Alzheimer’s
datasets.17 Established over the past two decades, this dataset has been developed in collaboration with more than 42
Alzheimer’s Disease Research Centers (ADRCs) across the United States. The MRI data from NACC, originating
from a mixed protocol, can best be described as a convenience sample of images that were voluntarily submitted by
several ADRCs. Based on the structural data provided by NACC, we obtained a total of 73,449 valid image data files,
which included both MRI data and associated structural information.
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The MRI images in the NACC dataset were classified into six categories based on the MRI sequences: T1WI, T2WI,
FLAIR, DWI, DTI, and other images. The “other” category encompasses all sequences not fitting the previous five
classifications according to NACC. Examples of middle slices from these six MRI sequence types are shown in Figure
1. However, the labeling accuracy from NACC is suboptimal. Some files do not conform to any specified categories,
or the image data may only include localizers from MRI scans, or even contain discarded MRI images. Our study
aimed to accurately label MRI sequences and reclassifying any unwanted sequences and scrap images as “other.”

Data Preprocessing
The initial challenge we encountered involves processing a vast dataset containing 4 TB of NIfTI image files and JSON
header files, spread across thousands of compressed packages. To enhance processing efficiency, we first converted
all .nii files to .nii.gz format and reorganized the file structure accordingly. Concurrently, we extracted metadata from
the JSON files and saved it into CSV files. This preprocessing step enabled us to compress the dataset to a more
manageable size of 656 GB.

The MRI data were originally collected in 3D volumes, with varying contrast levels between proximal and middle
slices. We specifically targeted the first proximal slices and middle slices due to their contracting characteristics.15

We processed this data along the third axis, extracting these specific slices and converting them into JPG format to
create two distinct 2D datasets. In contrast to approaches like AINNAR15, which focus on specific 2D views such as
axial, coronal, or sagittal, we opted for a more inclusive strategy. By avoiding the targeting of specific 2D views, we
minimized the risk of overfitting our CNN models to particular slice orientations.

Given that both datasets originated from the same 3D dataset, we were able to apply the same set of labels to each.
We used the“SeriesDescription” field from the JSON metadata to guide the initial categorization of the images. To
ensure accurate labeling, we randomly selected 200 images from each category of the middle slices, which were then
manually annotated by a radiologist. After the labeling process and necessary adjustments, we compiled a final dataset
of 1,200 images, with each category represented by 200 images.

Model
In this study, we employed eight fundamental CNN architectures across nine different variants: AlexNet18, GoogLeNet19,
ResNet1820, DenseNet12121, EfficientNet B0 and EfficientNet V2 Small22, ConvNeXt Tiny23, MobileNet V3 Small24,
and VGG1125.

AlexNet18: This seminal CNN model, comprising five convolutional layers and three fully-connected layers, marked
a significant milestone in deep learning. It set a new standard for image recognition tasks and catalyzed advancements
in the field.
GoogLeNet19: Introduced with the innovative “Inception module”, GoogLeNet enhances parameter efficiency and
network depth. Its architecture has been pivotal in advancing the capabilities of image recognition and classification
systems.
ResNet1820: Part of the residual network family, this lightweight model has 18 layers and uses residual connections to
address gradient vanishing in deep neural networks. This allows for learning complex features through deeper network
structures, making it a popular choice for image classification and other computer vision tasks.
DenseNet12121: This model, part of the DenseNet series, includes 121 layers. It is characterized by direct connections
from each layer to all preceding layers, promoting feature reuse and reducing the model’s parameter count.
EfficientNet B0 and EfficientNet V2 Small22: EfficientNet B0, the series’ initial model, systematically scales network
depth, width, and resolution for optimal performance. EfficientNet V2 Small, designed for faster training and greater
efficiency, improves upon the original architecture by introducing features that enhance training friendliness and main-
tain or boost performance while reducing parameters.
ConvNeXt Tiny23: A modern take on traditional CNN structures, it incorporates layer normalization and redesigned
convolutional layers similar to those in Transformers. This design enhances computational efficiency and performance,
particularly for image classification and other visual tasks on resource-limited devices.
MobileNet V3 Small24: An efficient, lightweight deep learning model optimized for edge devices and mobile appli-
cations, it uses hardware-aware Neural Architecture Search (NAS) to optimize its structure and combines h-swish and
SE (Squeeze-and-Excitation) modules to boost performance.
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Figure 2. MRI Sequences Classification Pipeline: (1) The training data is distributed among nine different models for
10-fold cross-validation. (2) The best-performing models from each validation fold are selected and applied to the test
data to obtain predictions. (3) A voting ensemble method combines the predictions from all nine models to produce
the final result.

VGG1125: A simpler model in the VGG series, it consists of 11 layers, including 8 convolutional layers and 3 fully-
connected layers. Known for its uniform architecture and use of small 3 × 3 convolutional kernels, VGG11 excels in
capturing fine image details and is widely used in image classification and recognition tasks.

For our analysis, we combined the predictions from these nine different models using a voting ensemble method.26

This technique aggregates predictions from multiple models, with the plurality vote determining the final output. By
leveraging this ensemble approach, we aimed to minimize the likelihood of errors from any single model and enhance
overall prediction accuracy.

Experiments
As shown in Figure 2, we employed a 10-fold cross-validation strategy along with stratified sampling to ensure
balanced representation of all categories in each fold. This method partitioned the training data into ten distinct
subsets, maintaining proportional representation of each class. Each fold was independently used to train and validate
the models, ensuring that every data point contributed to both training and validation phases. After 100 epochs of
training per fold, we selected the nine best-performing models based on validation accuracy. These models were
subsequently utilized to make predictions on the test set. The predictions from these models were aggregated to
evaluate individual mode accuracy and were further combined using a voting ensemble method, wherein predictions
from multiple models were integrated to form a consensus output for the final prediction.

All models in our study were implemented in PyTorch27 and trained on a single NVIDIA A100 GPU (equipped
with 8 GB of RAM) and one CPU core. We initialized the models using pre-trained weights from the ImageNet
dataset28, which significantly improved both the training efficiency and final performance. For optimization, we used
the Stochastic Gradient Descent (SGD) algorithm, setting an initial learning rate of 0.001 with a momentum of 0.9.
The datasets were randomly split using stratified sampling into an 80%-20% ratio for training and testing, with 10-fold
cross-validation consistently applied throughout the model training and validation phases. Specifically, the training
dataset consisted of 960 images, with 160 images per category, while the test dataset comprised 240 images, with
40 images for each category. A batch size of four was used. To enhance model generalization, data augmentation
techniques such as random horizontal flipping and resizing images to 224 × 224 pixels were applied to match the
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Table 1. Accuracy (%) ± standard deviation of different models on the proximal first slice and middle slice, evaluated
using 10-fold cross-validation.

Models Promixal First Slice Dataset Middle Slice Dataset

AlexNet 84.42 ± 1.55 96.42 ± 0.71
GoogleNet 91.42 ± 0.66 98.88 ± 0.34
ResNet18 90.96 ± 2.15 98.83 ± 0.55

DenseNet121 92.17 ± 1.21 98.79 ± 0.63
EfficientNet B0 92.25 ± 1.32 98.79 ± 0.41
ConvNeXt Tiny 89.33 ± 1.52 98.33 ± 0.52

EfficientNet V2 Small 93.17 ± 0.97 99.17 ± 0.34
MobileNet V3 Small 90.46 ± 1.41 98.00 ± 0.94

VGG11 90.21 ± 1.50 98.12 ± 0.63
Voting Model 94.62 ± 0.84 99.38 ± 0.22
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Figure 3. Confusion matrices of predicted MRI image types across different datasets, showcasing an accuracy of
94.58% for the Proximal First Slice Dataset (Fold 0) and 99.58% for the Middle Slice Dataset (Fold 1). Each type
consists of 40 images, with matrix values representing the count of each type based on ground truth (manually
annotated by a radiologist) and predicted labels.

models’ input requirements. We also used normalization parameters consistent with those of the ImageNet dataset.
Cross Entropy Loss was utilized as the loss function, with accuracy being the primary metric for evaluating model
performance, highlighting our emphasis on correctly classifying images.

Result
Table 1 summarizes the results, including the mean accuracy and standard deviation, from a 10-fold cross-validation
on both datasets. Among all the basic models evaluated, EfficientNet V2 Small stood out with its performance. It
achieved the highest accuracy on the proximal first slice dataset at 93.17%, outperforming the lowest-rated model by
7.83% and exceeding the second-best model by 0.91%. On the middle slice dataset, it ranked as the top-performing
model with an accuracy of 99.17%, which is 2.75% higher than the worst-performing model and 0.29% higher than the
model in second place. DenseNet121 secured the third position on the proximal first slice dataset with an accuracy of
92.17%, and closely followed the leader on the middle slice dataset with a 98.79% accuracy, just 0.38% less. AlexNet
lagged behind on both datasets, recording the lowest accuracies.
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Figure 4. Examples of prediction errors from the test set for both datasets. Each image is labeled with the ground
truth and predicted label. The index indicates the image number within test set.

The application of the voting ensemble method further improved the results. It surpassed the runner-up by 0.45% with
an accuracy of 94.62% on the proximal first slice dataset and edged out the second place by 0.17% with an accuracy of
99.38% on the middle slice dataset. Moreover, the stability of the model optimized with the voting ensemble method
was outstanding, exhibiting the lowest standard deviation among almost all the models.

We also presented the confusion matrices of the two most representative folds from each dataset (Figure 3). In the
middle slice dataset, most misclassifications primarily involved incorrectly classifying the “other” category as T1WI.
In the first proximal slice dataset, in addition to the types of misclassification observed in the middle slice dataset, there
was additional confusion among T1WI, T2WI, and FLAIR.

Discussion
Our results indicate that EfficientNet V2 Small and DenseNet121 outperform the other seven models in small-sample
classification tasks. The superior performance of EfficientNet V2 Small can be attributed to its auto-scaling capabilities
and the optimization of both training speed and parameter efficiency. Meanwhile, DenseNet121 excels due to its
feature reuse mechanism, making both models particularly effective for handling small-sample datasets. In contrast,
AlexNet model struggled with small samples datasets due to its simpler structure and lack of modern enhancements
such as residual or dense connections. Moreover, AlexNet’s large number of parameters tends to induce overfitting.
Contemporary models like MobileNet and EfficientNet mitigate overfitting risks more effectively by optimizing network
structures and parameters, thus enhancing both performance and resource efficiency.

The adoption of voting ensemble methods further improved performance by aggregating predictions from multiple
models. This method not only increased the stability and robustness of our model but also mitigated the risks of random
errors or overfitting, particularly with sparse data. By combining predictions through a majority-rule process, ensured
reliable results even when individual models performed suboptimally. This approach also demonstrated versatility
by leveraging the strengths of diverse model architectures, balancing bias and variance, and improving tolerance
to errors. Compared to previous studies,6,8,12–16 which typically required several thousand to tens of thousands of
training samples, our tool achieved comparable or superior accuracy rates with a smaller dataset. This highlights the
effectiveness of our approach.

Our analysis of model performance, comparing predicted labels with ground truth, is illustrated in Figure 4. Selected
examples from two datasets demonstrate various prediction errors. Notably, images with index numbers 141 showed
errors across both datasets. In both datasets, images with index numbers 141 are identical, and their header files list the
ProtocolName as “localizer”, indicating a localization scan. However, these images bear similarities to T1WI, leading
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to misclassification by the model. These images are labeled as discarded images, which, as previously discussed, are
typically excluded from radiological diagnostics and categorized as “other.” In the middle slice dataset, image number
11 was incorrectly classified from DTI to low b-value DWI due to the subtle differences between DTI and DWI,
especially when image contrast is not pronounced. Image number 206 was influenced by image number 141, resulting
in misclassification. Additionally, in the proximal first slice dataset, images numbered 84 and 88 were inaccurately
predicted due to poor image quality, such as only showing part of the skull, highlighting the model’s limitations with
low-quality images. Moreover, the model incorrectly classified the FLAIR image with index number 115 as a DWI
due to the prominent central highlight of the image, revealing a specific shortcoming in recognizing certain types of
images. In the case of image index 224, which features bones, the model also made an erroneous judgment. These
results indicate that although the model generally performs well, it struggles with lower quality or less informative
images. Future efforts should aim to enhance the model’s discriminatory capabilities, particularly for edge cases, to
boost overall prediction accuracy.

Moreover, this study was exclusively trained and tested on brain MRI data, which limits the effectiveness of the
developed deep learning architecture to brain MRI alone. As highlighted in the study by Kim et al.12, the research
could expand to include different types of MRI data, such as chest and abdominal MRIs. This extension would not
only validate the model’s generality in processing MRI images from various body regions but would also enhance its
accuracy and practical utility in clinical applications.

In future research, we aim to enhance the training methodology and broaden the applications of our model. Initially,
we observed that the model’s misclassification of T1WI, T2WI, and other MRI images when analyzing middle slice
data stemmed primarily from the image quality rather than erroneous model assessments. To rectify this, we intend
to refine the classification labels by dividing the “other” category into more specific subcategories, such as “other
sequences”, “T1WI discarded”, “T2WI discarded”, etc. This modification will enable the model to more precisely
recognize and differentiate the subtle variances among MRI images, thereby boosting overall classification accuracy.
Furthermore, we plan to explore the integration of classified MRI data with other data types to develop multimodal
datasets. For instance, the NACC dataset includes structured data and cerebrospinal fluid (CSF) bio-experimental data.
By combining these with our MRI dataset, we aim to investigate and predict clinical outcomes such as Alzheimer’s
Disease (AD), mild cognitive impairment (MCI), and the progression from MCI to AD. This multimodal approach will
not only augment the model’s capacity to understand and forecast complex medical conditions but could also enhance
diagnostic accuracy and support personalized treatment strategies. Through these initiatives, we hope to advance the
model’s performance and extend its relevance and impact in clinical settings.

Conclusion
In this study, we developed a deep learning toolkit tailored for MRI datasets characterized by small and unrefined
samples, achieving effective and accurate classification of MRI sequences. The adoption of a voting ensemble method
further improved the model’s classification accuracy and stability across various testing scenarios. Despite these
advancements, our results also exposed challenges, particularly with lower-quality images or those lacking complete
information, indicating areas where model performance can be further improved. Future research will focus on refining
model architecture and training processes, as well as incorporating multimodal datasets to leverage a broader range of
medical information, thereby deepening diagnostic capabilities.
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