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Abstract: Nasal endoscopy is crucial for the early detection of nasopharyngeal carcinoma (NPC), but its 

accuracy relies significantly on the physician's expertise, posing challenges for primary healthcare providers. 

Here, we retrospectively analysed 39,340 nasal endoscopic white-light images from three high-incidence 

NPC centres, utilising eight advanced deep learning models to develop an Internet-enabled smartphone 

application, "Nose-Keeper", that can be used for early detection of NPC and five prevalent nasal conditions 

and assessment of healthy individuals. Our App demonstrated a remarkable overall accuracy of 92.27% (95% 

Confidence Interval (CI): 90.66%-93.61%). Notably, its sensitivity and specificity in NPC detection 

achieved 96.39% and 99.91%, respectively, outperforming nine experienced otolaryngologists. Explainable 

artificial intelligence was employed to highlight key lesion areas, improving Nose-Keeper's decision-making 

accuracy and safety. Nose-Keeper can assist primary healthcare providers in diagnosing NPC and related 

diseases efficiently, offering a valuable resource for people in high-incidence NPC regions to manage nasal 

cavity health effectively. 
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Introduction 

Nasopharyngeal carcinoma (NPC) is the most common malignancy of the head and neck, particularly 

in East and Southeast Asia. Nonspecific early symptoms often lead to a delayed diagnosis, resulting in a 

suboptimal prognosis 1–4. The total survival rate of advanced cases over ten years typically falls between 50% 

and 70%. In contrast, the 5-year survival rate for promptly detecting nasopharyngeal carcinoma can 

approach 94%, highlighting the importance of early detection 5–9. Thus, devising a technique for timely NPC 

identification during clinical examinations is the primary aim of this study. 

Nasal endoscopy plays a crucial role in the early detection of NPC 5,10. However, the accuracy of this 

examination relies heavily on the medical experience and expertise of the operators. Non-otolaryngology 

specialists, such as primary care doctors, emergency doctors, general practitioners, and paediatricians, may 

encounter difficulties interpreting endoscopic images owing to professional obstacles and inadequate 

expertise. They often overlooked the characteristic signs of NPC and confused them with those of nasal or 

nasopharyngeal diseases. This negligence frequently leads to missed diagnosis, misdiagnosis and delayed 

referrals, resulting in patients missing critical treatment windows 11–13. This issue is particularly pronounced 

in low- and middle-income countries where healthcare resources are limited and disease awareness is 

inadequate. Moreover, patients frequently overlook early nasopharyngeal cancer symptoms such as 

headaches and nasal congestion 14,15. Concurrently, financial constraints also lead to delayed medical 

consultations, increasing the risk of missing crucial early diagnosis and treatment 9,16. Consequently, to 

improve early detection rates and patient prognosis, it is essential to develop a novel, easy-to-use, and 

inexpensive method for early detection of NPC using endoscopic images. 

Intelligent diagnostic solutions based on smartphones have enormous potential in the medical field, 

especially given the rapid growth of smartphone capabilities and the widespread application of deep learning 

algorithms 17. By analysing medical images immediately, these mobile health applications have 

demonstrated exceptional accuracy and efficiency in early disease identification and are becoming an 

emerging trend in healthcare 18. For example, advances in the early diagnosis of disorders such as keratitis, 

biliary atresia, ear infections, skin cancer, and lupus have been made, with some applications outperforming 

human expert performance 19–24. However, the creation of deep-learning smartphone applications for NPC 

remains an untapped research topic. Given the importance and complexity of identifying this malignancy, 

this gap highlights the importance and considerable potential of such applications. Therefore, exploring 

smartphone-based intelligent diagnostic methods for NPC promises to provide unique solutions for 

improving diagnostic accuracy and accessibility with significant scientific and practical significance. 

In this study, we retrospectively collected 39,340 endoscopic white light images of 2,134 NPC patients 

and 11,824 non-NPC patients without NPC from three centres in high-incidence areas of NPC and 
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developed eight advanced deep learning models with different architectures. Through validation, testing, and 

comparison with nine experienced otolaryngologists, we ultimately developed a smartphone application 

based on the Swin Transformer model called Nose-Keeper to improve the accuracy and efficiency of 

healthcare workers (especially primary healthcare providers) in diagnosing NPC, raise public's awareness of 

NPC, and refer patients to professional medical institutions in a timely manner. 

 

Results 

Performance evaluation of various models in internal test set 

Table 1 presents the average overall accuracy, standard deviation, and corresponding 95% CI of the 

eight models for the internal dataset. The results indicate that the eight models developed achieved 

encouraging results in diagnosing seven types of nasal endoscopic images using transfer learning strategies 

and a large-scale dataset. The average overall accuracy of all the models exceeded 0.92. SwinT performed 

the best among the eight models, with an average overall accuracy of 0.9515. ResNet had the lowest average 

overall accuracy among the eight models, reaching 0.9221. From the standard deviation perspective, the 

most stable model was MaxViT, followed by SwinT. In addition, PoolF exhibited the highest standard 

deviation and the worst stability. In addition, Supplementary Table 1 reports the time required for different 

models during the experimental process. 

Table 2 reports the precision, sensitivity, specificity, and f1-score of eight models for diagnosing 

nasopharyngeal carcinoma. The experimental results showed that the developed models almost exceeded 

0.9900 for all four indicators of nasopharyngeal carcinoma, except for the precision of ResNet. For 

sensitivity, SwinT achieved the best results, reaching 0.9984 (±0.0023) (0.9939-1.0000). For precision, 

specificity, and F1-score, PoolF achieved the best results, reaching 0.9959 (±0.0034) (0.9892-1.0000), 

0.9992 (±0.0006) (0.9980-1.0000), and 0.9969 (±0.0012) (0.9945-0.9993), respectively. Table 3 reports the 

performance of the eight models developed in diagnosing five non-NPC diseases and normal samples. Based 

on the results of evaluation metrics and the potential impact of model architecture on the performance of 

external testing, we chose SwinT, PoolF, Xception, and ConvNeXt as candidate models for the smartphone 

application. 

We initialised each candidate model parameter using the best weight from the five-fold cross-validation 

and then used the corresponding internal validation set to determine the optimal temperature for each 

candidate model when using a temperature scaling strategy. Figure 1 shows the result changes of calibration 

metrics (Brier-score and Log-Loss) for each model on the internal test set. The experimental results indicate 

that the pre- and post-calibration results (Figure 1a-b) of SwinT were the best among the candidate models. 

In comparison, the results of the remaining candidate models were obviously inferior to SwinT (Figure 
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1c-h). 

 

Testing the candidate models in external test set  

Four candidate models were tested using the external test set from LZH to further evaluate their 

performances in real-world clinical settings. Figure 2 shows the overall accuracy and confusion matrix of 

the four candidate models on the external test set. All the predicted results were shown after calibration. The 

confusion matrix was used to analyse the sensitivity and specificity of each model for a specific category. 

The experimental results indicate that SwinT (Figure 2a) achieved a state-of-the-art performance, far 

superior to Xception (Figure 2b), PoolF (Figure 2c) and ConvNeXt (Figure 2d). Concretely, it achieved the 

highest overall accuracy, reaching 92.27% (95% CI: 90.66%-93.61%). For NPC, the sensitivity and 

specificity of SwinT reached 96.39% (95% CI: 92.74%-98.24%) and 99.91% (95% CI: 99.47%-99.98%), 

respectively (Figure 2a). For non-NPC categories, the sensitivity and specificity of the SwinT exceeded 

86.00% and 95.00%, respectively. Figure 3 shows the ROC curves of the four candidate models. In terms of 

the ROC curve, the SwinT was also found to be the best model (Figure 3a). SwinT's AUCs for all seven 

categories were greater than 0.9900. For NPC, SwinT's AUC reached 0.9999 (95% CI: 0.9996-1.0000). In 

contrast, the AUCs of Xception (Figure 3b), PoolF (Figure 3c), and ConvNeXt (Figure 3d) for NPC were 

0.9994 (95% CI: 0.9985-0.9999), 0.9916 (95% CI: 0.9856-0.9958), and 0.9989 (95% CI: 0.9976-0.9997), 

respectively, 

However, compared to the internal test set, the performances of the four candidate models decreased on 

the external test set. We initially extrapolated that this phenomenon might be caused by the different imaging 

equipment and image acquisition process in the external test set. Figure 3 also presents the optimum Youden 

index results for each model for the different categories to compare the performance of the different models 

further. Experimental verification showed that SwinT was the best model for diagnosing NPC, with a 

Youden index of 0.992. SwinT also demonstrated excellent performance in diagnosing AH, AR, and CRP 

with Youden indices of 0.991, 0.925, and 0.924, respectively. The results fully demonstrated the application 

potential of SwinT in diagnosing different categories. Overall, the experimental results for the external test 

set indicated that SwinT performed the best among the four candidate models. Therefore, SwinT was chosen 

to deploy the smartphone application.  

Robustness of the SwinT in the external test set 

Figure 4 reports the results of the robustness analysis of the SwinT. Figure 4a illustrates examples 

from the external test set using various transformation strategies. Figure 4b-f details the performance 

metrics (overall accuracy, sensitivity, precision, specificity, and f1-score) of SwinT across the 12 enhanced 

datasets. The SwinT showed good robustness to rotation changes, likely benefiting from the training of the 
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model with random rotation augmentations. For Gaussian blur transformation, the performance of the model 

decreased with an increase in the blur level, but the overall performance remained relatively stable. When 

using a slight decrease (Brightness I) or increase (Brightness II) in brightness, the accuracy of the model was 

minimally affected by interference, and its overall performance remained relatively steady. However, an 

excessive increase in brightness caused a significant decrease in model performance, affecting the sensitivity 

(AH, CRP, NPC, and RHI), precision (AH), F1-score (AH, CRP, and NPC), and specificity for AH. 

Similarly, when applying slight decreases (Saturation I) and increases (Saturation II) in the saturation, the 

accuracy of the model was not significantly affected. However, significant saturation enhancement 

(Saturation III) led to notable deviations in accuracy, particularly affecting the sensitivity for AH, precision 

for CRP and RHI, F1-score for AH and CRP, and specificity for CRP and RHI. 

Heatmap and Comparison of diagnostic results between SwinT and otolaryngologists  

Figure 5 visually explains the model's internal decision-making mechanism and represents the results 

of the human-machine comparison experiment. Figure 5a shows the heat maps generated by SwinT using 

the Grad-CAM algorithm for seven types of nasal endoscopic images. Experimental results indicated that 

SwinT could effectively focus on the key areas of each type of image. Visually, the colour distribution of the 

heat map conformed to the professional insights of otolaryngologists. For NPC, Grad-CAM effectively 

helped SwinT to highlight the lesion area. 

Figure 5b shows the performance of SwinT and the nine otolaryngologists in diagnosing different 

diseases. In Figure 5b, the closer the color was to green or yellow, the more accurate the doctor or model 

was in diagnosing the disease. The average sensitivity of the nine physicians for NPC was 0.8927. Among 

them, the best doctor to diagnose NPC was a doctor with eight years of clinical experience, with a sensitivity 

of 0.9433, and the worst doctor was a doctor with three years of clinical experience, with a sensitivity of 

0.8247. Obviously, SwinT outperformed all experts in diagnosing NPC. Furthermore, for AR, SwinT 

outperformed all experts. Because SwinT was prone to misjudge CRP as an AH, its performance was not as 

good as that of experts. For AH, the SwinT was superior to most other physicians. The SwinT was superior 

to some doctors in terms of the DNS, NOR, and RHI scores. Figure 5c and Supplementary Figure 1 show 

the performance differences between SwinT and the nine otolaryngologists in diagnosing various types of 

endoscopic images in more detail. Based on the optimum Youden index results of SwinT and 

otolaryngologists, we concluded that SwinT outperformed all otolaryngologists in diagnosing AH, AR, NPC, 

and RHI. When diagnosing the remaining three types of endoscopic images, SwinT was slightly inferior to 

some otolaryngologists (clinical experience: from five years to nine years). 

Display of the Smartphone Application 

The main function of Nose-Keeper (Figure 6) is to read real-time images captured by a nasal 
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endoscope connected to an Android phone with a Micro USB interface or to load local nasal endoscope 

images (for example, the user can capture images from other endoscope devices, and then the image is 

uploaded to the smartphone album) (Figure 6a). Subsequently, by clicking the one-click detection button 

(Figure 6b) on the application, the user can obtain the diagnosis results of the image using the AI model. In 

addition, we listed a heat map corresponding to the original image on the results page to enhance the 

security of the application and to remind users to pay attention to the diseased area actively (Figure 6c). 

Nose-Keeper can also read multiple endoscopic images simultaneously and use a voting mechanism to 

further improve prediction accuracy (Supplementary Note 6). In particular, we listed reference images of 

various diseases and some common medical sense to improve the users' understanding of diseases and 

medical procedures. Such an intelligent application will potentially help the majority of primary care 

providers who lack clinical experience and professional knowledge in diagnosing nasal diseases, and the 

public residing in high-risk areas will primarily judge whether the captured nasal endoscopic image contains 

NPC, common nasal cavities, and nasopharynx diseases. We tested the running speed of Nose-Keeper using 

four different Android smartphones (i.e., Xiaomi 14, Xiaomi 12S Pro, HUAWEI nova 12, and HUAWEI 

mate 60) at a network speed of 100Mb/S. The results show that the time consumption is approximately 0.5s 

to 1.1s. For more detailed feature introductions and user pages of Nose-Keeper, please refer to 

Supplementary Figure 2 and Supplementary Movie 1.  

 

Discussion 

To the best of our knowledge, this study is the first to develop a smartphone application based on a 

deep learning model named Nose-Keeper to diagnose NPC and non-NPC effectively. To ensure the 

practicality of Nose-Keeper, we retrospectively collected 6,014 NPC white-light endoscopic images and 

33,326 white-light endoscopic images of common diseases of the nasal cavity, nasopharynx, and normal 

nasal cavities from three hospitals and trained eight different deep learning models. In this study, to shorten 

the training time of the model and improve the generalisation of the model as much as possible, we used a 

popular transfer learning strategy. Through extensive evaluation and testing (including model metric 

comparison, model calibration, robustness analysis, and human-machine comparison), we found that the 

developed SwinT reached state-of-the-art application potential and encapsulated it into Nose-Keeper. 

Compared to nine otolaryngologists with different diagnostic experiences, Nose-Keeper outperformed all 

otolaryngologists in diagnosing NPC. For diseases other than NPC, the diagnostic performance of the model 

was comparable to that of most physicians. In addition, we used the Grad-CAM algorithm in the application 

to visually display the areas in the image that affect the decision-making results of the model, which 

effectively reminds users to pay attention to the lesion area. Because the Nose-Keeper is deployed on a 
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cloud server, its operation is not affected by the hardware. Users only need to use the Internet to obtain 

diagnostic results from the Nose-Keeper in real-time.  

Previously, researchers in the field of computer vision used convolutional neural networks to process 

various images. Researchers have recently begun to focus on powerful architectures of Vision Transformers. 

Initially, Vision Transformers were applied to natural language processing systems such as the recently 

popular large language models. Compared with traditional convolutional neural networks, Vision 

Transformers rely on a self-attention mechanism to achieve better results in image processing. Considering 

that Vision Transformers are attracting more and more attention and may be more suitable for processing 

medical images, we tentatively trained four Vision Transformers and four convolutional neural networks in 

this work to obtain the best model. The experimental results demonstrated that most of the selected Vision 

Transformers were better than convolutional neural networks for diagnosing nasal endoscopic images. In 

particular, we found that Swin Transformer achieved state-of-the-art performance on both the internal and 

external test sets. From the perspective of Swin Transformer's internal modeling mechanism, Swin 

Transformer is essentially a hierarchical Transformer that uses shifted windows. Swin Transformer 

constructs a hierarchical representation by starting from small-sized patches and gradually merging 

neighboring patches in deeper Transformer layers 25. By employing the shifted window based self-attention, 

Swin Transformer only calculates self-attention within a local window, which greatly reduces the 

computational complexity. Meanwhile, in consecutive Swin Transformer blocks, the shifted windowing 

scheme allows for cross-window connection, i.e., the model can shift the windows in a certain pattern to 

ensure that the lesion feature information flows between different windows. The unique mechanism of the 

Swin Transformer enables it to maintain the advantages of the Vision Transformers in modeling long-range 

dependencies while effectively capturing local information in nasal endoscopy images, thereby improving 

the accuracy in diagnosing NPC and non-NPC diseases. These findings provide practical guidance for nasal 

endoscopy researchers. 

The World Health Organization (WHO) Global Observatory for eHealth (GOe) defines mHealth as 

medical and public health practice supported by mobile devices 26. mHealth has the potential to change 

healthcare and support public health and primary healthcare 27. With the booming development of 

smartphones in our daily lives, the combination of advanced medical technology and mHealth to manage 

diseases has become an unstoppable trend 28. Nowadays, smartphones have become an indispensable part of 

daily life, and mHealth applications have found a place in healthcare systems 29. On a global scale, the 

penetration rate of smartphones reached 68% in 2022 30. Especially in developing countries, the number of 

smartphone owners is constantly increasing, leading to significant social and economic changes 31. In 2022, 

nearly nine in 10 internet users in Southeast Asia located in the high incidence area of NPC will use 
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smartphones this year 32. All these facts prompted us to develop a smartphone application called 

Nose-Keeper which utilize artificial intelligence and may drive the development of the primary healthcare 

industry. With the support of the Internet, especially in developing countries and areas with high incidences 

of NPC, Nose-Keeper can be used to improve the care of nasal health and reduce medical costs. It can be 

predicted that with the further increase of the penetration rate of smartphone devices and the Internet in the 

future, the availability of Nose Keeper will be greatly improved, and it can effectively provide as many 

patients with fast, convenient and non-professional primary diagnosis services.  

NPC is a severe public health problem in the underdeveloped Southeast Asian countries. In Indonesia, 

13,000 new cases of NPC are reported every year 33. NPC is the fifth most common cancer and ninth most 

common cancer in Malaysia and Vietnam 34,35. Unfortunately, NPC is characterised by its high invasiveness 

and early metastasis. Owing to the insufficient number of experts in these countries, lack of sufficient 

experience among most primary care providers, and lack of medical awareness and adequate financial 

income among patients themselves, misdiagnosis and delayed diagnosis often occur, seriously threatening 

the lives of patients. Many patients with NPC are at an advanced stage when they first seek treatment 36. 

Clinically, NPC is considered to be the result of the interaction between Epstein-Barr virus (EBV) infection 

and genetic and environmental factors (such as drinking, smoking, and eating salted fish) 37. Therefore, 

during the actual medical consultation process, general practitioners or doctors in primary care institutions 

can comprehensively consider the diagnostic results, risk factors, and EB antibody results of the 

Nose-Keeper, thereby further improving the reliability of the diagnostic results and providing timely 

referrals for patients with NPC. The general public can use Nose-Keeper as a daily nasal health management 

tool. Specifically, the public can purchase high-resolution electronic nasal endoscopes on the market, learn 

about and use the endoscope under an instruction manual, and regularly upload nasal images to Nose-Keeper. 

In addition, our experiments show that Nose-Keeper is even more sensitive to NPC than a clinician with 

nine years of experience; therefore, it may also be used as an auxiliary tool to reduce the work stress of 

experts. 

Recently, several deep learning studies on NPC have been published. In 2018, Li et al. 38 used 28,966 

white-light endoscopic images to develop a deep learning model for detecting the normal nasopharynx, NPC, 

and other nasopharyngeal malignant tumours. Their model performance surpassed that of experts, with an 

overall accuracy of 88.7%. In 2022, Xu et al. 39 developed a deep learning model using 4,783 

nasopharyngoscopy images to identify NPC and non-NPC (inflammation and hyperplasia). In 2023, He et al. 

40 developed a deep learning model using 2,429 nasal endoscopy video frames and an algorithm named You 

Only Look Once (YOLO) for real-time detection of NPC in endoscopy videos. The sensitivity of their 

system for the detection of NPC was 74.3%. Compared with these studies, our work has the following 
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highlights. First, our dataset consisted of 39,340 white-light endoscopic images containing both NPC and six 

categories of non-NPCs. The scale of our dataset is the largest ever, and the images were from three 

hospitals in areas with a high incidence of NPC, indicating that our dataset is more representative of 

real-world data. Second, by verifying many deep learning models with different architectures, we found that 

the Vision Transformers using the transfer learning strategy were better than the convolutional neural 

network using the transfer learning strategy for diagnosing NPC, providing model development guidance for 

subsequent researchers. The third and most important point is that we developed the Nose-Keeper. This is 

the first smartphone-based cloud application for NPC diagnosis in the world and is convenient to operate. To 

ensure the safety of the Nose-Keeper, we used the Grad-CAM algorithm to explain the decision-making 

process of the Nose-Keeper model visually and compared it with that of nine otolaryngologists. In addition, 

Nose-Keeper can identify five common diseases in daily life that are similar in appearance and clinical 

manifestations to NPC. These category settings make Nose-Keeper more reasonable and reliable. In fact, in 

areas with a high incidence of NPC, the number of non-NPC patients is far greater than the number of NPC 

patients. Therefore, Nose-Keeper can also provide convenient primary diagnostic services for numerous 

non-NPC patients and reduce their concerns about NPC, thereby alleviating the burden on the local medical 

system. Likewise, people in low-incidence areas of NPC can use Nose-Keeper as a nasal health management 

tool in their daily lives.  

The application of the Nose-Keeper in healthcare in developing countries is expected to have a 

significant positive impact. Its primary advantage is that it significantly improves the early diagnosis of NPC 

and other diseases. Given that developing countries may lack skilled medical professionals and advanced 

medical facilities, the preliminary screening features of smartphone applications can significantly enhance 

early detection rates. This is especially important for decreasing misdiagnoses or missed diagnoses, which 

helps save medical resources and reduces reliance on more expensive and sophisticated treatment plans. In 

addition, the Nose-Keeper can be used as an educational tool to raise public knowledge of NPC and other 

frequent nasopharyngeal disorders, particularly in places with limited medical education resources. Primary 

healthcare professionals (PHCPs) play a significant role in developing countries. A Nose-Keeper is an 

essential auxiliary tool for accurate and effective disease diagnosis. In the future, the Nose-Keeper will 

incorporate advanced artificial intelligence algorithms, improve its ability to recognise a broader spectrum of 

nasal and ENT ailments and serve as a comprehensive diagnostic tool for various nasal health issues. 

Simultaneously, artificial intelligence will be employed to deliver personalised health advice based on 

user-specific data, such as lifestyle and environmental changes, to lower the risk of illness. By analysing 

anonymised aggregate data from users, Nose-Keeper can discover trends and patterns in NPC and other 

ENT disorders, providing helpful information for public health policies and resource allocation, particularly 
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in areas with high disease incidence. Finally, recognising the value of education in health management, the 

Nose-Keeper will undertake an education campaign on NPC and general nasal health to raise public 

awareness and early detection rates. The adoption of these functions and goals will allow Nose-Keeper to 

play an increasingly crucial role in the healthcare systems of developing countries. 

We acknowledge several limitations in our study. First, the absence of prospective testing due to dataset 

constraints may influence the confidence healthcare professionals and common users have in the 

Nose-Keeper. Second, Nose-Keeper currently lacks an image quality control function, which can result in 

unreliable outputs when processing images of substandard quality, such as those with blur, uneven lighting, 

or improper angles. Third, the datasets used were collected with professional equipment in medical settings. 

Therefore, biases inherent in our dataset, such as variations in image quality, imaging protocol, and imaging 

view, might limit the applicability of Nose-Keeper in non-clinical environments. There is a need to validate 

the performance of our model on images captured by household endoscopes, which have not yet been 

included in our dataset. Fourth, Nose-Keeper requires internet connection to link up with the cloud-based AI 

model for lesions detection. For some developing countries that have not yet popularize the Internet, 

Nose-Keeper's availability is relatively limited. Therefore, there is a need to develop lightweight AI models 

to eliminate the need for high-performance devices in our next-generation Nose-Keeper, so as to achieve 

both cloud and local deployment simultaneously. Fifth, all patients in this study were Chinese. For safety 

reasons, it is crucial to use endoscopic data from people living in other high-risk areas (Such as Vietnam, 

Indonesia and Malaysia) to test Nose-Keeper. Future work will focus on prospective testing, developing an 

independent image quality control system, collecting images of different people using household nasal 

endoscopes and constructing a larger dataset including various image qualities. Additionally, recognizing 

that nasopharyngeal carcinoma diagnosis must also consider a patient's clinical information like gender, age, 

dietary habits, and genetic factors, future studies will aim to develop multimodal deep learning models that 

integrate these variables. 

The Transformer model has been widely applied in multimodal learning tasks and has achieved great 

success, becoming the backbone of multimodal models 41. At the same time, using multimodal clinical 

information for medical diagnosis has become a common practice in modern medicine 42. Especially, our 

work has fully validated that the Transformer model can effectively diagnose diseases such as 

nasopharyngeal carcinoma. Based on these insights, we have developed a strategic roadmap for integrating 

multimodal data (Figure 7, Supplementary Note 4) to enhance the practicality of Nose-Keeper in the future. 

We believe that with the enrichment and improvement of endoscopic datasets, the advancement of 

smartphones and deep learning technologies, Transformer-based multimodal models can be used to diagnose 

nasal and nasopharyngeal lesions in patients. More precisely, the future Nose-Keeper will use Transformers 
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to extract and integrate clinical information (text input) of patients and endoscopic images (image input) 

from different regions of the nasal cavity (such as inferior turbinate, middle turbinate and nasopharynx), 

effectively detecting whether patients have one or more diseases. Especially, the fused multimodal features 

can be further utilized to generate image captions, which can help primary healthcare professionals and the 

public better understand various lesions 43. In addition, another key point of the future Nose-Keeper is to 

utilize model compression technology (Such as knowledge distillation, model pruning and model 

quantization) to reduce the device performance requirements of applications, thereby achieving local 

deployment and efficient cloud deployment. 

In summary, this study represents a significant advancement in NPC diagnostics through developing 

Nose-Keeper, a smartphone cloud application based on cutting-edge Swin Transformer technology. Our 

findings demonstrate that Nose-Keeper surpasses the diagnostic sensitivity of nine professional 

otolaryngologists in diagnosing NPC. This was achieved by analysing a diverse and extensive nasal 

endoscopic dataset from multiple centres, supported by testing eight different deep learning models. 

Nose-Keeper's user-friendly interface enables both medical professionals and the general public to upload 

endoscopic images and receive real-time AI-based preliminary screening results. Nose-Keeper is especially 

crucial in regions with limited access to specialized nasal endoscopy services since it not only improves 

primary diagnosis accuracy but also enhances awareness of NPC among primary healthcare providers and 

residents in high-risk areas. Furthermore, the study lays groundwork for future research into mobile 

healthcare and cancer detection, expanding the potential impact of DL-based smartphone app across other 

medical fields. 

 

Methods 

This study was divided into three main parts: collecting datasets, constructing deep learning models, and 

developing mobile applications. Figure 8 illustrated this workflow. The details of the study were 

comprehensively presented in the following subsections. 

Construction of the Multi-Centre Dataset 

In this study, we reviewed and constructed a dataset from three hospitals located in high-risk areas of 

nasopharyngeal carcinoma. We retrospectively collected numerous white-light nasal endoscopic images of 

patients with NPC from the Department of Otolaryngology of the Second Affiliated Hospital of Shenzhen 

University (SZH) and the Department of Otolaryngology of Foshan Sanshui District People's Hospital (FSH) 

between 1 January 2014 and 31 January 2023. Given that the early clinical symptoms of NPC (such as 

headache, cervical lymph node enlargement, nasal congestion, and nosebleeds) are similar to those of 

common diseases of the nasal cavity and nasopharynx 44, and rhinosinusitis, allergic rhinitis, and chronic 
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sinusitis may be risk factors for NPC 45–47, we collected white-light nasal endoscopic images of non-NPC 

patients visiting SZH and FSH from the same period to develop deep learning models. In addition, Leizhou 

People's Hospital (LZH) provided nasal endoscopic images of patients who visited the Department of 

Otolaryngology between 1 January 2015 and 31 April 2022. From an application perspective, including the 

images of non-NPC patients in the dataset can effectively improve the comprehensiveness and accuracy of 

the results of the deep learning model for diagnosing nasal endoscopic images. The collected images were 

divided into seven categories (Figure 9): NPC (Figure 9a), adenoidal hypertrophy (AH) (Figure 9b), 

allergic rhinitis (AR) (Figure 9c), chronic rhinosinusitis with nasal polyps (CRP) (Figure 9d), deviated 

nasal septum (DNS) (Figure 9e), normal nasal cavity and nasopharynx (NOR) (Figure 9f) and rhinosinusitis 

(RHI) (Figure 9g). Table 4 presents the detailed characteristics of the dataset. 

This study was approved by the Ethics Committee of the Second Affiliated Hospital of Shenzhen 

University, the Institutional Review Board of Leizhou People's Hospital and the Ethics Committee of Foshan 

Sanshui District People's Hospital (reference numbers: ‘BY-EC-SOP-006-01.0-A01’, ‘BYL20220531’ and 

SRY-KY-2023045’) and adhered to the principles of the Declaration of Helsinki. Due to the retrospective 

nature of the study and the use of unidentified data, the Institutional Review Boards of SZH, FSH and LZH 

exempted informed consent. Supplementary Note 5 presents more detailed ethics declarations and 

procedures. 

Diagnostic criteria of the nasal endoscopic images 

In this study, to ensure the accuracy of the endoscopic image labels, three otolaryngologists with over 

15 years of clinical experience set the diagnostic criteria based on practical clinical diagnostic processes and 

reference literature. Specifically, the expert combined each patient's endoscopic examination results with the 

corresponding medical history, record of clinical manifestations, computed tomography results, allergen 

testing results (such as skin-prick testing and serum allergen-specific IgE testing), lateral cephalograms, 

histopathological examination results, and laboratory test results (such as nasal smear examination) to 

further review and confirm the diagnostic results of the existing nasal endoscopic images of each patient. A 

diagnosis based on the aforementioned medical records was considered the reference standard for this study. 

Our otolaryngologists independently reviewed all data in detail before any analysis and validated that each 

endoscopic image was correctly matched to a specific patient. Patients with insufficient diagnostic medical 

records were excluded. During the review process, when an expert doubted the diagnostic results of a 

particular patient, the three experts jointly made decisions on the patient's medical records and various 

examination results to determine whether to include the patient in this study. The standard diagnosis for 

seven types of nasal endoscopic images in the dataset was as follows: (1) Nasopharyngeal carcinoma: 

providing the standard diagnostic label for patient images directly based on histopathological examination 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 22, 2024. ; https://doi.org/10.1101/2024.09.19.24313954doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.19.24313954


results 48,49; (2) Rhinosinusitis: further combining the patient's medical history, clinical manifestations, and 

computed tomography examination 50; (3) Chronic rhinosinusitis with nasal polyps: further combining the 

patient's medical history, clinical manifestations, computed tomography results, and pathological tissue 

biopsy results 51,52; (4) Allergic rhinitis: further combining the patient's medical history, clinical 

manifestations, and allergen testing or laboratory methods 53–55; (5) Deviation of nasal septum: further 

combine the patient's medical history and clinical manifestations and secondary analyse and evaluate the 

shape of the nasal septum 56. (6) Adenoid hypertrophy: further combine the patient's medical history, clinical 

manifestations, or lateral cephalograms 57,58. (7) Normal nasal cavity and nasopharynx: further combination 

of the patient's medical history and clinical manifestations. The nasal mucosa of a normal nasal cavity 

should be light red, and its surface should be smooth, moist, and glossy. The nasal cavity and 

nasopharyngeal mucosa show no congestion, edema, dryness, ulcers, bleeding, vasodilation, 

neovascularization, or purulent secretions. Table 5 details the distribution of image categories across 

hospitals. 

Deep transfer learning models 

Transfer learning (TL) aims to improve the performance of new tasks by leveraging pre-learned 

knowledge of similar tasks. It has significantly contributed to medical image analysis, as it overcomes the 

data scarcity problem and saves time and hardware resources 59.  

In this study, we effectively combined deep learning models, which are popular in artificial intelligence, 

with this powerful strategy. To build an optimal nasopharyngeal cancer diagnostic model, we studied Vision 

Transformers (ViTs), convolutional neural networks (CNNs), and hybrid models based on the latest 

advances in deep learning in the field of computer vision. Among them were (1) Transformers: Swin 

Transformer (SwinT) 25, Multi-Axis Vision Transformer (MaxViT) 60, and Class Attention in Image 

Transformers (CaiT) 61. These models were selected for their ability to model long-range dependencies and 

their adaptability to various image resolutions, which are crucial for medical image analysis. These represent 

the latest shifts in deep learning from convolutional to attention-based mechanisms, providing a fresh 

perspective on feature extraction. (2) CNNs: ResNet 62, DenseNet63, and Xception64. CNNs have gradually 

become the mainstream algorithm for image classification since 2012, and have shown very competitive 

performance in medical image analysis tasks 65. ResNet and DenseNet set benchmarks in terms of depth and 

feature propagation, whereas depthwise separable convolutions of Xception offer a balance between 

parameter efficiency and feature extraction. (3) Hybrid Models: PoolFormer (PoolF) 66 and ConvNeXt 67. 

These models combine the strengths of CNNs and Transformers. They were included because of their 

potential to leverage both the local feature extraction of CNNs and the global context modelling of 

Transformers, which is advantageous for the heterogeneous nature of medical images. We then initialised the 
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eight architectures using pretrained weights obtained by classifying the large natural image dataset ImageNet 

68. Because the original number of nodes of the classifiers of these networks was 1000, we reset the number 

of nodes of their classifiers to seven to fit our dataset. After completing initialization and adjusting the 

classifier, we did not choose to fine-tune some layers but instead performed comprehensive training on the 

entire model from scratch. Moreover, we performed probability thresholding based on Softmax. 

Explainable artificial intelligence in medical image 

In medical imaging, Explainable Artificial Intelligence (XAI) is critical because it fosters trust and 

understanding among medical practitioners and facilitates accurate diagnosis and treatment by elucidating 

the rationale behind AI-driven image analysis. In this study, we used Gradient-weighted Class Activation 

Mapping (Grad-CAM) 69 to generate a corresponding heatmap. Red indicates high relevance, yellow 

indicates medium relevance, and blue indicates low relevance. Grad-CAM helps to visualise the regions of 

an image that are important for a particular classification. This is crucial in medical image classification, as 

it helps people understand which parts of the image contribute to model decision-making and validates 

whether the model focuses on disease-related features. By providing visual explanations through heat maps, 

Grad-CAM can help build trust among medical practitioners and the public regarding the decisions made by 

AI systems.  

Development process of models and smartphone applications 

All the nasal endoscopic images were divided into two parts. The first part contained 38073 images 

from SZH and FSH, which were used as the development dataset for training and validating the performance 

of the model. The development dataset was further divided into three parts in a 7:1:2 ratio, i.e., internal 

training, internal validation, and internal test sets. The second part contained 1267 images from the LZH, 

which were used as an external test set to test the performance of the model in real-world settings and verify 

the robustness of the model.  

Before training the various networks, we resized all images to 224×224×3. Subsequently, the images 

were normalised and standardised using the mean [0.2394,0.2421,0.2381] and standard deviation [0.1849, 

0.28, 0.2698] of the three channels. To improve the robustness and generalisation ability of the models, we 

utilised the Transformers Library provided by Pytorch to automatically transform (RandomRotation, 

RandomAffine, GaussianBlur and Color Jitter) the image inputs during training. The loss functions of All 

models uniformly used the cross-entropy loss function. During the training process, we employed the 

AdamW optimiser with a 0.001 initial learning rate, β1 of 0.9, β2 of 0.999, and weight-decay of 0.0001 to 

optimise eight models' parameters. We set the number of epochs to 150 and used a batch size of 64 for each 

model training.   

We adopted an early stopping strategy, which meant that the model training will be stopped 
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automatically stopped when its accuracy (patience and min_delta were set to 10 and 0.001, respectively) on 

the internal validation set no longer significantly improved for some time, thereby preventing overfitting. 

We calibrated each model using an internal validation set with temperature scaling, a method for calibrating 

deep learning models and assessed the calibration performance using the Brier-Score and Log-Loss. During 

the validation and inference stages, the model's image preprocessing process was consistent with the training 

stage, but automatic image transformation was no longer implemented. We used the PyTorch framework 

(version 2.1), a computer with the Ubuntu 20.04 system and an NVIDIA GeForce RTX 4090 to complete the 

entire experiment. The weights of all models were saved in ‘Pth’ format.  

In this study, we developed a responsive and user-friendly Android application that prioritises 

maintainability and scalability. Utilising Java for native Android development, we embraced the MVVM 

design pattern for application modularisation, incorporating bidirectional data binding for seamless UI and 

data synchronisation. Our tech stack included Retrofit for network requests alongside third-party libraries 

like ButterKnife, Gson, Glide, EventBus, and MPAndroidChart for enhanced functionality and user 

experience, complemented by custom animations and NDK for hardware interaction. At the backend, we 

leveraged SSM (Spring + SpringMVC + MyBatis), Nginx, and MySQL for a high-performance architecture. 

For database, we used MySQL to manage data and adopted Redis for caching. The backend of the 

application and deep learning model were deployed on a high-performance Cloud Server (Manufacturer: 

Tencent; Equipment Type: Standard Type S6; Operating System: Centos 7.6; CPU: Intel® Xeon® Ice Lake; 

Memory: DDR4) with Nginx load balancing to optimise server resource utilisation (See Supplementary 

Note 1 for details). To ensure the security of applications and personal privacy data, we used encryption 

protocols and algorithms and toolkits that comply with industry standards (See Supplementary Note 2 for 

details). When utilizing Nose-Keeper, all input images must go through an image preprocessing pipeline 

consistent with the model inference stage. 

Model evaluation and statistical analysis 

For the development datasets (SZH and FSH), eight models were evaluated using five standard metrics: 

overall accuracy (equation (1)), precision (equation (2)), sensitivity (equation (3)), specificity (equation (4)), 

and f1-score (equation (5)). The definitions of these five metrics were as follows (See Supplementary Note 

3 for details). 
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To avoid performance uncertainty caused by random splitting of the development dataset, we used a 

five-fold cross-validation strategy to evaluate the potential of various models on the development dataset 

and then selected four more excellent models from the eight models that can be used for the smartphone 

application based on the quality of the metric results. After selecting the four candidate models, we used a 

confusion matrix and Receiver Operating Characteristic (ROC) curve to further evaluate the performance of 

the candidate models in an external test set (LZH). A larger area under the ROC curve (AUC) indicated 

better performance. We used the Beset model to develop a smartphone application. Statistical analyses were 

performed using Python 3.9. Owing to the large sample size of the internal dataset and the use of five-fold 

cross-validation, we used the normal approximation to calculate the 95% confidence intervals (CI) of overall 

accuracy, precision, sensitivity, specificity, and f1-score. In the external test set, we used an Empirical 

Bootstrap with 1000 replicates to calculate the 95% CI of the AUC. The 95% CIs of overall accuracy, 

sensitivity and specificity were calculated using the Wilson Score approach in the Statsmodels package 

(version 0.14.0). 

Analysing the Robustness of the deep learning models via data augmentation 

The use of images with different data augmentations to test the model can reveal its adaptability to input 

changes and analyse its robustness 70. In particular, data augmentation simulates possible image 

transformations in practical applications, thereby testing the stability and performance of a model when 

faced with unseen or changing images. This strategy helps developers identify the potential weaknesses of 

the model, guide subsequent improvements, and enhance the application reliability of the model in complex 

and ever-changing environments. We used an external test set to analyse the prediction result changes of the 

model under Gaussian blur, Saturation changes, Image rotation and Brightness changes. Prior to testing 

the model, we augmented the external test set using Pillow (version 9.3.0). For each transformation, we 

assigned different parameter values to the built-in functions of Pillow, resulting in 12 enhanced datasets 

from the external datasets. 

Comparison of the diagnostic performance between deep learning model and clinicians 

The representativeness of the external test set is crucial for fully comparing the performance differences 

between AI and human experts. Therefore, when retrospectively collecting endoscopic images, in addition to 

ensuring the accuracy of image labels, our expert team also fully considered the severity of lesions, different 

stages of disease, and differences in appearance in each endoscopic image. Meanwhile, the expert group also 
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ensured as much as possible the age difference and gender balance of the entire dataset. Especially, the time 

span of external test set has reached five years. We recruited nine otolaryngologists with different clinical 

experiences from three institutions, i.e., one year (two otolaryngologists), three years (one otolaryngologist), 

four years (one otolaryngologist), five years (one otolaryngologist), six years (one otolaryngologist), eight 

years (two otolaryngologists), and nine years (one otolaryngologist). Before each expert independently 

evaluated the external test set, we shuffled dataset and renamed each image as "test_xxxx. jpg" and 

distributed it to all experts. We required experts to independently evaluate each endoscope within a specified 

time frame to simulate the physical and mental stress faced by experts in actual clinical settings, which 

further reflects the efficiency of AI. Notably, we prohibited experts from consulting diagnostic guidelines 

and mutual communication. All expert evaluation results were anonymized and automatically verified 

through a python program. Finally, we plotted a diagnostic performance heatmap, confusion matrix, ROC 

curve, and optimal Youden-index to comprehensively and intuitively demonstrate the performance 

differences between AI and clinicians in diagnosing different diseases. 

Data availability 

A subsample of the internal test set with 110 images per diagnostic class is available upon reasonable request 

from the authors. 

Code availability 

The custom codes and model weights for Nose-Keeper development and evaluation in this study are 

accessible on GitHub (https://github.com/YubiaoYue/Nose-Keeper). 
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Table 1. Average overall accuracy of different models. 

Model  Fold1 Fold2 Fold3 Fold4 Fold5 Average overall accuracy (95% CI) 

SwinT 0.9519 0.9547 0.9519 0.9539 0.9449 0.9515 (±0.0039) (0.9481-0.9549) 

MaxViT 0.9350 0.9448 0.9358 0.9456 0.9284 0.9379 (±0.0072) (0.9316-0.9443) 

PoolF 0.9484 0.9531 0.9503 0.9523 0.9473 0.9503 (±0.0025) (0.9481-0.9524) 

CaiT 0.9373 0.9448 0.9440 0.9480 0.9387 0.9426 (±0.0045) (0.9387-0.9465) 

ResNet 0.9231 0.9369 0.9239 0.9342 0.9221 0.9280 (±0.0070) (0.9219-0.9341) 

DenseNet 0.9393 0.9421 0.9385 0.9452 0.9331 0.9396(±0.0045) (0.9357-0.9436) 

Xception 0.9460 0.9460 0.9456 0.9476 0.9347 0.9440(±0.0052) (0.9394-0.9486) 

ConvNeXt 0.9409 0.9468 0.9495 0.9515 0.9390 0.9455(±0.0054) (0.9408-0.9503) 
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Table 2. NPC Diagnosis performance (Average, standard deviation and 95% CI) of various models. ‘*’ 

represents the best result of the specific metric. 

Model Precision Sensitivity Specificity F1-score 

SwinT 
0.9949 (±0.0031) 

(0.9888-1.0000) 

0.9984 (±0.0023) 

(0.9939-1.0000)* 

0.9991 (±0.0006) 

(0.9979-1.0000) 

0.9966 (±0.0015) 

(0.9937-0.9995) 

MaxViT 
0.9910 (±0.0145) 

(0.9626-1.0000) 

0.9938 (±0.0072) 

(0.9797-1.0000) 

0.9983 (±0.0027) 

(0.9930-1.0000) 

0.9923 (±0.0061) 

(0.9803-1.0000) 

PoolF 
0.9959 (±0.0034) 

(0.9892-1.0000)* 

0.9979 (±0.0022) 

(0.9936-1.0000) 

0.9992 (±0.0006) 

(0.9980-1.0000)* 

0.9969 (±0.0012) 

(0.9945-0.9993)* 

CaiT 
0.9949 (±0.0047) 

(0.9857-1.0000) 

0.9954 (±0.0033) 

(0.9889-1.0000) 

0.9991 (±0.0009) 

(0.9973-1.0000) 

0.9951 (±0.0011) 

(0.9929-0.9973) 

ResNet 
0.9883 (±0.0066) 

(0.9754-1.0000) 

0.9964 (±0.0029) 

(0.9907-1.0000) 

0.9978 (±0.0012) 

(0.9954-1.0000) 

0.9923 (±0.0024) 

(0.9876-0.9970) 

DenseNet 
0.9918 (±0.0033) 

(0.9853-0.9983) 

0.9964 (±0.0043) 

(0.9880-1.0000) 

0.9985 (±0.0006) 

(0.9973-0.9997) 

0.9941 (±0.0027) 

(0.9888-0.9994) 

Xception 
0.9949 (±0.0018) 

(0.9914-0.9984) 

0.9969 (±0.0034) 

(0.9902-1.0000) 

0.9991 (±0.0003) 

(0.9985-0.9997) 

0.9958 (±0.0021) 

(0.9917-0.9999) 

ConvNeXt 
0.9933 (±0.0061) 

(0.9813-1.0000) 

0.9948 (±0.0075) 

(0.9801-1.0000) 

0.9988 (±0.0011) 

(0.9966-1.0000) 

0.9940 (±0.0037) 

(0.9867-1.0000) 
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Table 3. Non-NPC diagnosis performance (Average, standard deviation and 95% CI) of various models. 

Model 
AH AR 

Precision Sensitivity Specificity F1-score Precision Sensitivity Specificity F1-score 

SwinT 
0.9922 (±0.0036) 

(0.9851-0.9993) 

0.9869 (±0.0080) 

(0.9712-1.0000) 

0.9989 (±0.0005) 

(0.9979-0.9999) 

0.9895 (±0.0023) 

(0.9850-0.9940) 

0.8599 (±0.0329) 

(0.7954-0.9244) 

0.7951 (±0.0307) 

(0.7349-0.8553) 

0.9873 (±0.0035) 

(0.9804-0.9942) 

0.8256 (±0.0169) 

(0.7925-0.8587) 

MaxViT 
0.9877 (±0.0099) 

(0.9683-1.0000) 

0.9863 (±0.0167) 

(0.9536-1.0000) 

0.9983 (±0.0014) 

(0.9956-1.0000) 

0.9869 (±0.0073) 

(0.9726-1.0000) 

0.8774 (±0.0176) 

(0.8429-0.9119) 

0.7068 (±0.0393) 

(0.6298-0.7838) 

0.9904 (±0.0016) 

(0.9873-0.9935) 

0.7824 (±0.0255) 

(0.7324-0.8324) 

PoolF 
0.9922 (±0.0037) 

(0.9849-0.9995) 

0.9928 (±0.0043) 

(0.9844-1.0000) 

0.9989 (±0.0005) 

(0.9979-0.9999) 

0.9925 (±0.0038) 

(0.9851-0.9999) 

0.8448 (±0.0346) 

(0.7770-0.9126) 

0.8218 (±0.0365) 

(0.7503-0.8933) 

0.9851 (±0.0044) 

(0.9765-0.9937) 

0.8321 (±0.0133) 

(0.8060-0.8582) 

CaiT 
0.9889 (±0.0059) 

(0.9773-1.0000) 

0.9909 (±0.0036) 

(0.9838-0.9980) 

0.9985 (±0.0008) 

(0.9969-1.0000) 

0.9899(±0.0042) 

(0.9817-0.9981) 

0.8211 (±0.0569) 

(0.7096-0.9326) 

0.7994 (±0.0439) 

(0.7134-0.8854) 

0.9825 (±0.0076) 

(0.9676-0.9974) 

0.8076 (±0.0117) 

(0.7847-0.8305) 

ResNet 
0.9800 (±0.0085) 

(0.9633-0.9967) 

0.9869 (±0.0066) 

(0.9740-0.9998) 

0.9973 (±0.0012) 

(0.9949-0.9997) 

0.9834 (±0.0046) 

(0.9744-0.9924) 

0.8366 (±0.0230) 

(0.7915-0.8817) 

0.7067 (±0.0599) 

(0.5893-0.8241) 

0.9865 (±0.0028) 

(0.9810-0.9920) 

0.7648 (±0.0340) 

(0.6982-0.8314) 

DenseNet 
0.9871 (±0.0163) 

(0.9552-1.0000) 

0.9882 (±0.0037) 

(0.9809-0.9955) 

0.9982 (±0.0023) 

(0.9937-1.0000) 

0.9876 (±0.0095) 

(0.9690-1.0000) 

0.8414 (±0.0311) 

(0.7804-0.9024) 

0.7406 (±0.0476) 

(0.6473-0.8339) 

0.9863 (±0.0038) 

(0.9789-0.9937) 

0.7864 (±0.0219) 

(0.7435-0.8293) 

Xception 
0.9928 (±0.0054) 

(0.9822-1.0000) 

0.9889 (±0.0055) 

(0.9781-0.9997) 

0.9990 (±0.0007) 

(0.9976-1.0000) 

0.9908 (±0.0053) 

(0.9804-1.0000) 

0.8379 (±0.0349) 

(0.7695-0.9063) 

0.7780 (±0.0125) 

(0.7535-0.8025) 

0.9852 (±0.0042) 

(0.9770-0.9934) 

0.8064 (±0.0130) 

(0.7809-0.8319) 

ConvNeXt 
0.9890 (±0.0117) 

(0.9661-1.0000) 

0.9850 (±0.0085) 

(0.9683-1.0000) 

0.9985 (±0.0016) 

(0.9954-1.0000) 

0.9869 (±0.0064) 

(0.9744-0.9994) 

0.8352 (±0.0505) 

(0.7362-0.9342) 

0.7844 (±0.0547) 

(0.6772-0.8916) 

0.9845 (±0.0067) 

(0.9714-0.9976) 

0.8069 (±0.0251) 

(0.7577-0.8561) 

Model 
CRP DNS 

Precision Sensitivity Specificity F1-score Precision Sensitivity Specificity F1-score 

SwinT 
0.9605 (±0.0206) 

(0.9201-1.0000) 

0.9563 (±0.0181) 

(0.9208-0.9918) 

0.9954 (±0.0025) 

(0.9905-1.0000) 

0.9582 (±0.0095) 

(0.9396-0.9768) 

0.9493 (±0.0165) 

(0.9170-0.9816) 

0.9512 (±0.0186) 

(0.9147-0.9877) 

0.9884 (±0.0041) 

(0.9804-0.9964) 

0.9500 (±0.0041) 

(0.9420-0.9580) 

MaxViT 
0.9642 (±0.0176) 

(0.9297-0.9987) 

0.9134 (±0.0524) 

(0.8107-1.0000) 

0.9960 (±0.0020) 

(0.9921-0.9999) 

0.9373 (±0.0261) 

(0.8861-0.9885) 

0.9336 (±0.0152) 

(0.9038-0.9634) 

0.9461 (±0.0154) 

(0.9159-0.9763) 

0.9848 (±0.0038) 

(0.9774-0.9922) 

0.939s7 (±0.0083) 

(0.9234-0.9560) 

PoolF 
0.9702 (±0.0131) 

(0.9445-0.9959) 

0.9410 (±0.0145) 

(0.9126-0.9694) 

0.9967 (±0.0015) 

(0.9938-0.9996) 

0.9553 (±0.0087) 

(0.9382-0.9724) 

0.9441 (±0.0071) 

(0.9302-0.9580) 

0.9452 (±0.0055) 

(0.9344-0.9560) 

0.9873 (±0.0018) 

(0.9838-0.9908) 

0.9446 (±0.0021) 

(0.9405-0.9487) 

CaiT 
0.9723 (±0.0185) 

(0.9360-1.0000) 

0.9196 (±0.0288) 

(0.8632-0.9760) 

0.9969 (±0.0022) 

(0.9926-1.0000) 

0.9448 (±0.0111) 

(0.9230-0.9666) 

0.9388 (±0.0203) 

(0.8990-0.9786) 

0.9440 (±0.0083) 

(0.9277-0.9603) 

0.9860 (±0.0050) 

(0.9762-0.9958) 

0.9412 (±0.0083) 

(0.9249-0.9575) 

ResNet 
0.9560 (±0.0131) 

(0.9303-0.9817) 

0.8873 (±0.0531) 

(0.7832-0.9914) 

0.9953 (±0.0017) 

(0.9920-0.9986) 

0.9195 (±0.0248) 

(0.8709-0.9681) 

0.9093 (±0.0348) 

(0.8411-0.9775) 

0.9375 (±0.0199) 

(0.8985-0.9765) 

0.9785 (±0.0094) 

(0.9601-0.9969) 

0.9225 (±0.0094) 

(0.9041-0.9409) 

DenseNet 
0.9541 (±0.0335) 

(0.8884-1.0000) 

0.9372 (±0.0258) 

(0.8866-0.9878) 

0.9947 (±0.0043) 

(0.9863-1.0000) 

0.9449 (±0.0082) 

(0.9288-0.9610) 

0.9430 (±0.0086) 

(0.9261-0.9599) 

0.9388 (±0.0084) 

(0.9223-0.9553) 

0.9871 (±0.0021) 

(0.9830-0.9912) 

0.9408 (±0.0030) 

(0.9349-0.9467) 

Xception 
0.9729 (±0.0119) 

(0.9496-0.9962) 

0.9295 (±0.0246) 

(0.8813-0.9777) 

0.9970 (±0.0014) 

(0.9943-0.9997) 

0.9505 (±0.0131) 

(0.9248-0.9762) 

0.9385 (±0.0136) 

(0.9118-0.9652) 

0.9397 (±0.0192) 

(0.9021-0.9773) 

0.9860 (±0.0036) 

(0.9789-0.9931) 

0.9389 (±0.0035) 

(0.9320-0.9458) 

ConvNeXt 
0.9589 (±0.0261) 

(0.9077-1.0000) 

0.9464 (±0.0277) 

(0.8921-1.0000) 

0.9953 (±0.0032) 

(0.9890-1.0000) 

0.9522 (±0.0150) 

(0.9228-0.9816) 

0.9519 (±0.0064) 

(0.9394-0.9644) 

0.9397 (±0.0162) 

(0.9079-0.9715) 

0.9893 (±0.0015) 

(0.9864-0.9922) 

0.9457 (±0.0094) 

(0.9273-0.9641) 

Model 
NOR RHI 

Precision Sensitivity Specificity F1-score Precision Sensitivity Specificity F1-score 

SwinT 
0.9371 (±0.0105) 

(0.9165-0.9577) 

0.9525 (±0.0128) 

(0.9274-0.9776) 

0.9758 (±0.0046) 

(0.9668-0.9848) 

0.9446 (±0.0045) 

(0.9358-0.9534) 

0.9485 (±0.0227) 

(0.9040-0.9930) 

0.9725 (±0.0147) 

(0.9437-1.0000) 

0.9956 (±0.0020) 

(0.9917-0.9995) 

0.9603 (±0.0179) 

(0.9252-0.9954) 

MaxViT 
0.9085 (±0.0139) 

(0.8813-0.9357) 

0.9569 (±0.0100) 

(0.9373-0.9765) 

0.9635 (±0.0064) 

(0.9510-0.9760) 

0.9320 (±0.0049) 

(0.9224-0.9416) 

0.9057 (±0.0430) 

(0.8214-0.9900) 

0.9623 (±0.0224) 

(0.9184-1.0000) 

0.9914 (±0.0045) 

(0.9826-1.0000) 

0.9322 (±0.0139) 

(0.9050-0.9594) 

PoolF 
0.9361 (±0.0109) 

(0.9147-0.9575) 

0.9462 (±0.0087) 

(0.9291-0.9633) 

0.9756 (±0.0046) 

(0.9666-0.9846) 

0.9411 (±0.0034) 

(0.9344-0.9478) 

0.9554 (±0.0200) 

(0.9162-0.9946) 

0.9755 (±0.0171) 

(0.9420-1.0000) 

0.9962 (±0.0017) 

(0.9929-0.9995) 

0.9652 (±0.0127) 

(0.9403-0.9901) * 

CaiT 
0.9322 (±0.0118) 

(0.9091-0.9553) 

0.9379 (±0.0169) 

(0.9048-0.9710) 

0.9742 (±0.0052) 

(0.9640-0.9844) 

0.9349 (±0.0058) 

(0.9235-0.9463) 

0.9223 (±0.0319) 

(0.8598-0.9848) 

0.9704 (±0.0215) 

(0.9283-1.000) 

0.9931 (±0.0030) 

(0.9872-0.9990) 

0.9455 (±0.0198) 

(0.9067-0.9843) 

ResNet 0.9122 (±0.0240) 0.9384 (±0.0280) 0.9655 (±0.0114) 0.9246 (±0.0066) 0.8982 (±0.0491) 0.9490 (±0.0252) 0.9908 (±0.0049) 0.9222 (±0.0272) 
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(0.8652-0.9592) (0.8835-0.9933) (0.9432-0.9878) (0.9117-0.9375) (0.8020-0.9944) (0.8996-0.9984) (0.9812-1.0000) (0.8689-0.9755) 

DenseNet 
0.9128 (±0.0190) 

(0.8756-0.9500) 

0.9451 (±0.0215) 

(0.9030-0.9872) 

0.9657 (±0.0087) 

(0.9486-0.9828) 

0.9284 (±0.0077) 

(0.9133-0.9435) 

0.9395 (±0.0124) 

(0.9152-0.9638) 

0.9653 (±0.0167) 

(0.9326-0.9980) 

0.9948 (±0.0011) 

(0.9926-0.9970) 

0.9522 (±0.0114) 

(0.9299-0.9745) 

Xception 
0.9283 (±0.0110) 

(0.9067-0.9499) 

0.9456 (±0.0173) 

(0.9117-0.9795) 

0.9723 (±0.0050) 

(0.9625-0.9821) 

0.9367 (±0.0049) 

(0.9271-0.9463) 

0.9196 (±0.0263) 

(0.8681-0.9711) 

0.9827 (±0.0175) 

(0.9484-1.0000) 

0.9928 (±0.0027) 

(0.9875-0.9981) 

0.9498 (±0.0145) 

(0.9214-0.9782) 

ConvNeXt 
0.9317 (±0.0129) 

(0.9064-0.9570) 

0.9468 (±0.0086) 

(0.9299-0.9637) 

0.9737 (±0.0055) 

(0.9629-0.9845) 

0.9391 (±0.0060) 

(0.9273-0.9509) 

0.9279 (±0.0142) 

(0.9001-0.9557) 

0.9796 (±0.0187) 

(0.9429-1.0000) 

0.9936 (±0.0015) 

(0.9907-0.9965) 

0.9528 (±0.0065) 

(0.9401-0.9655) 
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Table 4. The characteristic of datasets from various hospitals, Male: M; Female: F. 

Characteristics SZH Dataset FSH Dataset LZH Dataset 

No. of collected 

images 
119,620 56,716 15,133 

No. of patients 12,583 7,568 1,891 

Race of the patients Asian Asian Asian 

No. of qualified images 23,788 14,285 1,267 

No. of patients with 

definitive diagnosis 
7,948 4,743 1,267 

Age range/Mean 4-96/37 2-95/35 3-97/46 

Sex: n (%) 
M: 4019(50.57%) 

F: 3929(49.43%) 

M: 2638(55.63%) 

F: 2105(44.37%) 

M: 591(46.65%) 

F: 676(53.35%) 

Level of hospital 
Tertiary 

General Hospitals 

Tertiary 

General Hospitals 

Secondary 

General Hospitals 

Location of hospital 
Shenzhen, 

Guangdong, China 

Foshan, 

Guangdong, China 

Leizhou, 

Guangdong, China 

The operating systems 

and endoscopes for 

obtaining images 

System: Olympus 

CV-170 Digital 

Endo-Vision 

Endoscope: Matrix 

E2, XION GmbH 

System: STORZ Xenon 

Nova 300 

Endoscope: STORZ 

Image 1 HUB H3-Z 

System: SD-HD668P 

(Shenda endoscope) 

Endoscope: Shenda, 

J0200G 

Image resolution(pixel) ~ 850×850 ~ 720×570 ~ 480×540 
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Table 5. The description of all nasal endoscopic white light images used in this study. ‘N’ means the number 

of patients corresponding to the images. 

Disease 

Categories 

Number of images  

(SZH) 

Number of images 

(FSH) 

Number of images 

(LZH) 

Number of total 

images (N, %) 

NPC 
3,526 images 

(N=1,171, 8.39%) 

2,312 images 

(N=769, 5.51%) 

194 images 

(N=194, 1.39%) 

6,032 images 

(N=2134, 15.29%) 

AH 
2,468 images 

(N=824, 5.06%) 

2,121 images 

(N=706, 5.06%) 

153 images 

(N=153, 1.10%) 

4,742 images 

(N=1683, 12.06%) 

AR 
2,079 images 

(N=698, 5.00%) 

1,288 images 

(N=424, 3.04%) 

112 images 

(N=112, 0.80%) 

3,479 images 

(N=1234, 8.84%) 

CRP 
3,124 images 

(N=1,044, 7.48%) 

797 images 

(N=261, 1.87%) 

130 images 

(N=130, 0.93%) 

4,051 images 

(N=1435, 10.28%) 

DNS 
4,316 images 

(N=1446, 10.36%) 

2,685 images 

(N=892, 6.39%) 

233 images 

(N=223, 1.60%) 

7,234 images 

(N=1435, 18.42%) 

NOR 
5,931 images 

(N=1,981, 14.19%) 

4,491 images 

(N=1,495, 10.71%) 

347 images 

(N=347, 2.49%) 

10,769 images 

(N=3823, 27.39%) 

RHI 
2,344 images 

(N=784, 5.62%) 

591 images 

(N=196, 1.40%) 

98 images 

(N=98, 0.70%) 

3,033 images 

(N=1078, 7.72%) 

Total 

Images 

23,788 images 

(N=7,948, 56.94%) 

14,285 images 

(N=4,743, 33.98%) 

1,267 images 

(N=1,267, 9.08%) 

39,340 images 

(N=13,958, 100%) 
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Figure 1: The result changes of calibration metrics of four candidate models in diagnosing different 

categories. The result changes of Brier-Score and Log-Loss of each model for each category were plotted. a 

Brier-Score of SwinT. b Log-Loss of SwinT. c Brier-Score of Xception. d Log-Loss of Xception. e 

Brier-Score of PoolF. f Log-Loss of PoolF. g Brier-Score of ConvNeXt. h Log-Loss of ConvNeXt. 

Particularly, “ALL” in X-axis means the calibration performances of the entire external test set. 
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Figure 2: Confusion matrix of four candidate models in the images from LZH. The figure also 

reports the overall accuracy of each model on the external test set and the corresponding confidence interval. 

a The confusion matrix of the SwinT. b The confusion matrix of the Xception. c The confusion matrix of the 

PoolF. d The confusion matrix of the ConvNeXt. 
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Figure 3: Receiver operating characteristic curve (ROC) and optimum Youden-index results of 

candidate models. a The ROC and optimum Youden-index results of SwinT. b The ROC and optimum 

Youden-index results of Xception. c The ROC and optimum Youden-index results of PoolF. d The ROC and 

optimum Youden-index results of ConvNeXt. 
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Figure 4: Performance comparison of SwinT on the external test dataset using 12 image 

transformations. a Examples of 12 image transformations. b Sensitivity of SwinT for external test set. c 

Precision of SwinT for external test set. d F1-score of SwinT for external test set. e Specificity of SwinT for 

external test set. f Overall accuracy of SwinT for external test set.  
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Figure 5: The heatmaps and Human-machine comparison results. a the heatmaps of different nasal 

endoscopic images generated by Grad-CAM. b Comparison of the sensitivity between SwinT and 

otolaryngologists. c The ROC curve of SwinT, the optimum Youden-index results of SwinT and the 

otolaryngologists. 
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Figure 6: The application page and usage process of Nose-Keeper. The application process mainly 

includes login, upload image, submit identification, and finally output detection result report. a The home 

page after login. b The page after uploading the image. c The result page after data processing. 
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Figure 7: A Transformer-based strategic roadmap for enhancing the diagnostic capability and clinical 

utility of Nose-Keeper. On this image, the multi-modal information fusion strategy combined with clinical 

information in subsequent studies is shown, providing a research direction for relevant researchers. 

  

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 22, 2024. ; https://doi.org/10.1101/2024.09.19.24313954doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.19.24313954


 

Figure 8: The flow chart of our work. This flowchart illustrates in detail the process of dataset 

construction and how to develop Nose-Keeper using deep learning models. a The collection process of 

datasets. b The development process of deep learning models and our smartphone application. 
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Figure 9: Some typical endoscopic images of different diseases. These endoscopic images are given 

from different angles and parts for each disease type. a Nasopharyngeal carcinoma (NPC). b Adenoidal 

hypertrophy (AH). c Allergic rhinitis (AR). d Chronic rhinosinusitis with nasal polyps (CRP). e Deviated 

nasal septum (DNS). f Normal nasal cavity and nasopharynx (NOR). g Rhinosinusitis (RHI). 
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