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Abstract
Overall adiposity and body fat distribution are heritable traits associated with altered risk of
cardiometabolic disease and mortality. Performing rare variant (minor allele frequency<1%)
association testing using exome-sequencing data from 402,375 participants in the UK Biobank
(UKB) for nine overall and tissue-specific fat distribution traits, we identified 19 genes where
putatively damaging rare variation associated with at least one trait (Bonferroni-adjusted
P<1.58×10-7) and 52 additional genes at FDR≤1% (P≤4.37×10-5). These 71 genes exhibited
higher (P=3.58×10-18) common variant prioritisation scores than genes not significantly enriched
for rare putatively damaging variation, with evidence of monotonic allelic series (dose-response
relationships) among ultra-rare variants (minor allele count≤10) in 22 genes. Five of the 71
genes have cognate protein UKB Olink data available; all five associated (P<3.80×10-6) with
three or more analysed traits. Combining rare and common variation evidence, allelic series and
proteomics, we selected 17 genes for CRISPR knockout in human white adipose tissue cell
lines. In three previously uncharacterised target genes, knockout increased (two-sided t-test
P<0.05) lipid accumulation, a cellular phenotype relevant for fat mass traits, compared to
Cas9-empty negative controls: COL5A3 (fold change [FC]=1.72, P=0.0028), EXOC7 (FC=1.35,
P=0.0096), and TRIP10 (FC=1.39, P=0.0157); furthermore, knockout of SLTM resulted in
reduced lipid accumulation (FC=0.51, P=1.91×10-4). Integrating across population-based
genetic and in vitro functional evidence, we highlight therapeutic avenues for altering obesity
and body fat distribution by modulating lipid accumulation.

Introduction
One in four adults globally are either overweight or obese1,2. While higher overall adiposity
increases morbidity and mortality,1,3 disease risk is also informed by the location and distribution
of excess fat within particular depots4,5. Abnormal distribution of fat is often attributed to
lipodystrophy syndromes, which can cause generalised or selective fat mass loss and
depot-specific fat growth6. Independent of overall body mass index (BMI), individuals with higher
central adiposity have increased risk of cardiometabolic diseases, including type 2 diabetes
(T2D) and stroke7,8; in contrast, individuals with higher hip circumference, an indicator for gluteal
adiposity, have lower risk of such outcomes. For example, a standard deviation (SD) increase in
hip circumference has been shown to reduce risk of T2D by ~40%9 or myocardial infarction by
~10%10. Previous studies indicate that fat distribution, as assessed by waist-to-hip ratio (WHR),
has a strong heritable component independent of BMI, with narrow sense heritability of up to
56% in women and 32% in men8,11.

BMI-associated genes are enriched in tissues of the central nervous system, notably the
hypothalamus which is involved in appetite regulation12. Indeed, blockbuster GLP1-receptor
agonists that are prescribed for weight loss13,14 act primarily through the dorsomedial
hypothalamus to control food intake15. In contrast, genome-wide association studies (GWASs)
for WHR adjusted for BMI (WHRadjBMI) indicate enrichment of genes associated with fat
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distribution in adipose tissue16. However, there are currently few therapeutic avenues to modify
both obesity and fat distribution17.

Understanding the genetic aetiology of body fat and fat distribution may drive new therapies for
obesity. Mendelian genetic studies have identified rare variants in genes such as PPARG, a
master regulator of adipocyte differentiation, and INSR, the insulin receptor, associated with
lipodystrophies and extreme forms of central body fat distribution18,19. In the general population,
rare protein-coding variants with large effects can point to genetic and molecular mechanisms
underpinning fat distribution. For example, previous work has demonstrated that rare
loss-of-function alleles in GPR75 are protective against obesity20, and protein-truncating variants
in INHBE are associated with favourable fat distribution21.

Here, we integrated exome-sequencing (ES) and common variant GWASs for nine
obesity-related and fat distribution traits to nominate genes associated with overall obesity or
central adiposity in up to 402,375 participants in UKB. To understand the biological pathways by
which these genes may act, we assessed the proteome-wide consequences of these genes and
tested 1,463 plasma proteins for associations with body fat distribution in a subset of 42,828
individuals in UKB. Finally, we designed in vitro functional assays for lipid accumulation and
glucose uptake in human white adipocytes to biologically validate the identified genes using
CRISPR-Cas9 knockout (KO) experiments. Taken together, we demonstrate that converging
multi-modal evidence from GWAS, ES, proteomics, and in vitro KO studies can generate
therapeutic targets for obesity or lipodystrophy.

Results

Convergence of rare and common variant evidence for genes
associated with obesity and fat distribution
We performed rare variant (minor allele frequency [MAF] <1%) and gene-level testing across
1,827,504 variants in 18,788 genes for association with nine obesity or fat distribution related
traits, including overall obesity (BMI and body fat percentage), central fat distribution
(WHRadjBMI), and tissue-specific fat component phenotypes derived from dual energy X-ray
absorptiometry (DXA) and magnetic resonance imaging (MRI) scans (such as android tissue fat
percentage, abdominal fat ratio, and visceral adipose tissue volume), in up to 402,375
participants of European ancestry in the UKB (Supp. Tables 1 and 2). We defined damaging
rare variants as those annotated to be high-confidence predicted loss-of-function (pLoF) or
damaging missense using a combination of existing effect prediction tools (LOFTEE22, CADD23,
REVEL24, and SpliceAI25; Methods). To account for potential confounding due to nearby
common variants, we conditioned gene-level associations on fine-mapped GWAS loci on the
same chromosome (Methods).

We use the optimal sequence kernel association test (SKAT-O) when reporting P-values for all
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gene-level obesity and fat distribution trait associations. This approach unifies the burden test,
which is more powerful when a high density of variants in a gene are causal and have the same
effect direction, and the sequence kernel association test, which is more powerful when there is
a lower density of causal variants in a gene or when the causal variants have mixed effect
directions. However, SKAT-O does not provide effect size estimates, thus all gene-level effect
sizes are estimated by burden testing.

We identified 19 unique genes carrying rare damaging variation associated with BMI, body fat
percentage, or WHRadjBMI at exome-wide significance (SKAT-O P<1.58×10-7, Bonferroni
adjustment for 315,996 unique tests) (Table 1 and Figure 1a). Variant-level testing identified 12
rare missense variants significantly associated (P<5×10-8, canonical single-variant genome-wide
Bonferroni adjustment for one million independent genomic regions) with WHRadjBMI (8
variants), BMI (3), or body fat percentage (1) (Supp. Table 3). These variants were located in
nine genes, of which three (MC4R, PDE3B, PLIN1) also carried a significant burden of rare
damaging variation. Two genes (PDE3B and PLIN1) harboured more than one significantly
associated rare missense variant (Supp. Table 3). We found evidence of monotonic allelic
series, that is, increasingly large effects of increasingly damaging variants in a dose-response
relationship, among ultra-rare variants (minor allele count (MAC)≤10) in COL5A3, DIDO1, INSR,
PLIN1, PTPRG, PPARG and SLC12A5 (Figure 1b and Supp. Figure 3).
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Figure 1. Consequences of rare missense variation on obesity or fat distribution related traits in
UKB. a, Gene- and variant-level effects as a function of aggregated minor allele frequency. Only
gene-level results which are exome-wide or FDR≤1% significant are shown. Only fine-mapped common
(MAF>1%) variants with posterior inclusion probability ≥0.9 are shown. Effect sizes for BMI and body fat
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percentage are converted to the kg/m2 and fat percentage scale, respectively, by multiplying the effect
size in SD units by the empirical SD of each trait (4.75 kg/m2 for BMI, 8.51% for body fat percentage).
Genes selected for KO are outlined in black and labeled. Genes with highest and lowest effect size for
each trait are also labeled. Point sizes are scaled by effect size. b, Allelic series for exome-wide
significant genes with monotonic relationships between effect size and consequence severity in ultra-rare
(MAC≤10) variant burden tests. Confidence intervals for effect size defined as +/-1.96 standard errors. c,
Enrichment of Polygenic Priority Scores (PoPS)26 among exome-wide and FDR≤1% significant genes
compared to other genes. Significance of 1-sided t-test with alternate hypothesis that a significant gene
category has higher average PoPS than the non-significant gene category: ***P<0.001, **P<0.01,
*P<0.05. The mean PoPS for each gene category are indicated by black bars.

Gene
(genomic
location)

Phenotype Consequence Variants
in mask

Total
MAF
(MAC)

SKAT-O
P-value

Burden
P-value

Effect size
[95% CI]

Effect size,
unweighted

ANKRD12
(18:9136228) WHRadjBMI pLoF 127 0.00038

(308) 1.71×10-9 6.67×10-8 0.010
[0.006, 0.013] 0.238

APBA1
(9:69427532) BMI pLoF 59 0.00016

(128) 6.25×10-8 5.18×10-8 0.019
[0.012, 0.026] 0.475

BLTP1
(4:122152331) BMI pLoF 282 0.00075

(600) 2.15×10-10 9.19×10-11 0.011
[0.007, 0.014] 0.258

COL5A3
(19:9959561) WHRadjBMI

pLoF plus
damaging
missense

362 0.00388
(3,111) 5.23×10-10 2.98×10-9 0.003

[0.002, 0.004] 0.078

DIDO1
(20:62877738) BMI pLoF 22 0.00003

(25) 1.14×10-7 1.14×10-7 0.042
[0.026, 0.057] 1.050

GPR151
(5:146513144)

Body fat % pLoF 37 0.01039
(8,209) 6.60×10-8 2.51×10-7 -0.002

[-0.003, -0.001] -0.043

BMI pLoF 37 0.01036
(8,313) 1.35×10-7 2.02×10-7 -0.003

[-0.004, -0.002] -0.058

INHBE
(12:57452323) WHRadjBMI pLoF 23 0.00119

(954) 3.27×10-9 1.37×10-7 -0.005
[-0.007, -0.003] -0.123

INSR
(19:7112255) WHRadjBMI pLoF 55 0.00019

(151) 6.38×10-8 4.20×10-7 -0.012
[-0.017, -0.007] -0.299

KEAP1
(19:10486125) WHRadjBMI

pLoF plus
damaging
missense

88 0.00034
(273) 1.76×10-11 2.52×10-12 0.012

[0.009, 0.016] 0.305

MC4R
(18:60371062) BMI pLoF 23 0.00023

(187) 9.30×10-13 1.87×10-13 0.021
[0.016, 0.027] 0.532

PDE3B
(11:14643804)

WHRadjBMI pLoF 68 0.00132
(1,057) 5.91×10-10 7.09×10-10 -0.007

[-0.009, -0.005] -0.166

Body fat % pLoF 66 0.00132
(1,046) 1.34×10-7 2.09×10-7 0.005

[0.003, 0.007] 0.102

PKD1
(16:2088708) WHRadjBMI pLoF 97 0.00022

(176) 7.68×10-11 8.50×10-7 0.012
[0.007, 0.017] 0.311

PLD1
(3:171600404) WHRadjBMI pLoF plus

damaging 240 0.01163
(9,324) 4.69×10-10 2.88×10-9 0.002

[0.001, 0.003] 0.044
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missense

PLIN1
(15:89664367) WHRadjBMI pLoF 48 0.00104

(836) 8.94×10-23 8.98×10-21 -0.009
[-0.011, -0.007] -0.233

PLIN4
(19:4502192)

WHRadjBMI pLoF 121 0.00444
(3,560) 1.00×10-13 3.25×10-14 0.004

[0.003, 0.005] 0.091

Body fat % pLoF 120 0.00444
(3,506) 1.23×10-10 2.11×10-10 -0.003

[-0.004, -0.002] -0.080

PPARG
(3:12287368) Body fat %

pLoF plus
damaging
missense

66 0.00021
(168) 2.90×10-8 4.34×10-7 -0.012

[-0.016, -0.007] -0.292

PTPRG
(3:61561569)

BMI pLoF 120 0.00024
(194) 1.37×10-8 8.31×10-8 0.015

[0.01, 0.021] 0.377

Body fat % pLoF 120 0.00024
(192) 1.35×10-7 8.25×10-7 0.011

[0.006, 0.015] 0.267

RIF1
(2:151409883) Body fat % pLoF 66 0.00011

(89) 1.41×10-7 1.41×10-7 0.017
[0.01, 0.023] 0.416

SLC12A5
(20:46021690) BMI pLoF 13 0.00002

(13) 1.21×10-7 1.21×10-7 0.058
[0.036, 0.079] 1.446

Table 1. Exome-wide significant gene-level associations. Gene-level exome-wide significance
threshold: SKAT-O P<1.58×10-7. Genomic location indicates the chromosome and base pair coordinates
for the start of the gene in Genome Reference Consortium Human Build 38. Variants in the mask are
those which are included in the SKAT-O test for a given gene. They include all variants in the gene with
MAF<1% and consequence annotation matching the specific mask. Total MAF is the sum of MAF for all
variants in the mask. In parentheses, MAC is the total minor allele count for the gene among individuals
included in the association test. The effect size of a gene is estimated using burden testing and is in units
of the phenotype’s SD. The 95% confidence interval is defined by an interval centred on the effect size
point estimate, +/-1.96 standard errors. The unweighted effect size is a version of the burden effect size
that does not weight variants by Beta(MAF; 1, 25), the default weighting used by SAIGE. Using the
unweighted effect sizes puts the gene-level effect on the same scale as variant-level effects. See Supp.
Note 1 for calculation of unweighted effect size. WHRadjBMI, waist-to-hip ratio adjusted for BMI; BMI,
body mass index; pLoF, predicted loss-of-function.

Genes associated with obesity and fat distribution in rare variant gene-level tests overlapped
with those highlighted by common variant associations, demonstrated by a significant
enrichment of the Polygenic Priority Score (PoPS)26 (one-sided t-test P<0.05, Figure 1c) among
genes harbouring exome-wide significant damaging rare variant association signals. Moreover,
52 rare-variant gene-level associations which do not reach exome-wide significance but pass a
less stringent significance threshold (SKAT-O P≤4.37×10-5, using the Benjamini-Hochberg
procedure27 for FDR≤1% on minimum SKAT-O P-value across traits and two variant masks;
Methods) are also significantly enriched for PoPS scores (one-sided t-test P<0.01, Figure 1c),
indicating value in examining these additional genes as potential therapeutic targets for obesity
and lipodystrophy (Supp. Table 4). Five additional gene-level associations also passed the
FDR≤1% significance threshold, but were supported by minor allele counts less than five (Supp.
Note 2).
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Of the 31 genes known to cause severe monogenic obesity or lipodystrophy6,28, three (PPARG,
PLIN1, and MC4R) are associated with an obesity or fat distribution trait at the exome-wide level
(P<1.58×10-7) in our rare-variant gene-level association testing, representing a 125-fold
enrichment over random chance (Fisher’s exact test P=3.87×10-6). Of the 71 FDR-significant
genes, 23 have previously been reported to have rare variant gene-level associations with traits
related to obesity or fat distribution in UKB participants, across a variety of variant annotation
and gene-level association testing methods (Supp. Table 11)20,21,29,30.

Although we did not find any genes associated with phenotypes derived from tissue-specific fat
components at exome-wide significance (Bonferroni P<1.58×10-7), nine gene-level associations
for these tissue-specific fat component phenotypes were significant at the FDR≤1% threshold
(P≤4.37×10-5), including six genes associated with the ratio of android to gynoid tissue fat
percentage, two with visceral adipose tissue volume and one with android fat percentage (Supp.
Table 4).

To evaluate the phenome-wide effects of genes related to obesity and fat distribution, we
scanned 4,529 phenotypes in Genebass31 summary statistics for associations with the 71
FDR-significant genes. We found 549 significant associations (Genebass SKAT-O P≤9.69×10-6,
FDR≤1%) across 211 traits for 42/71 genes (Supp. Figure 5, Supp. Table 5). The most
significant Genebass associations were among blood biochemistry lipid phenotypes (Supp.
Figure 5a, Supp. Table 5). We also observed shared associations across FDR-significant genes
for phenotypes significantly genetically correlated to BMI and body fat percentage, such as fat
mass and distribution traits. For example, eight FDR-significant genes (BLTP1, DIDO1,
GPR151, MC4R, PDE3B, PLIN4, RIF1, UBR2) are associated with arm fat mass, leg fat mass,
arm fat percentage, whole body fat mass, leg fat percentage, and hip circumference (all traits
have common variant LD Score regression32 rg>0.80, P<1×10-300 with BMI and body fat
percentage, Supp. Table 5)33. We see some evidence for pleiotropy, as defined by associations
with phenotypes genetically uncorrelated with BMI or body fat percentage, among results with
common variant genetic correlations available: PDE3B and STAB1 are associated with platelet
distribution width (BMI rg=0.025, P=0.274; body fat percentage rg=9.7×10-4, P=0.958) and
ANKRD12 is associated with neutrophil percentage (BMI rg=-0.029, P=0.117; body fat
percentage rg=-8.8×10-3, P=0.639) (Supp. Table 5).

Sex- and age-specific effects of genes associated with obesity
and fat distribution
We performed all association tests in sex-specific strata, identifying three genes (INSR, PDE3B,
PLIN4) with significant differences (sex-difference34 P<2.67×10-6, Bonferroni adjusted for 18,737
genes tested for sex-differential effects) in burden effect sizes. We observed opposing
sex-specific effects for INSR on WHRadjBMI (female burden beta (SE)=-0.00458 (9.44×10-4),
male beta=0.00195 (0.00100), sex-difference P=1.66×10-6). We found that female-specific
effects may be driving the reported sex-combined associations between WHRadjBMI and
PDE3B (female beta=-0.0169 (0.00169), male beta=-0.00288 (0.00179), sex-difference
P=8.02×10-9) and PLIN4 (female beta=0.00822 (9.15×10-4), male beta=0.00108 (9.86×10-4),
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sex-difference P=8.19×10-8) (Supp. Figure 6a, Supp. Table 6). Within the sex-specific analysis,
we find two genes with female-specific associations (P<2.67×10-6, Bonferroni adjusted for
18,737 genes tested for sex-specific effects) of pLoF variation on obesity and fat distribution
(CASQ1 with body fat percentage, female SKAT-O P=1.12×10-6; PLXND1 with WHRadjBMI,
female P=9.69×10-10), and two genes with male-specific associations, both for the ratio of
android to gynoid tissue fat percentage (ZNF841 male P=1.04×10-6; TINF2 male P=4.84×10-7)
(Supp. Figure 6b, Supp. Table 6), which do not reach significance at the FDR≤1% threshold
(P≤4.37×10-5) in sex-combined analyses.

We leveraged the age at diagnosis of obesity in longitudinal health records linked to UKB
participants to identify that a burden of rare missense variation (MAF<1%) in five genes was
associated (P<2.35×10-4, Bonferroni adjusted for 213 gene-consequence mask pairs) with
elevated lifetime risk of obesity (Supp. Figure 7, Supp. Table 7). Individuals carrying rare
missense variants in MC4R (Cox proportional hazard ratio [HR] (SE)=1.46 (0.0843),
P=7.75×10-6), men with pLoF variants in SLTM (HR=5.37 (0.354), P=2.05×10-6) and damaging
missense variants in PCSK1 (HR=1.86 (0.165), P=1.63×10-4), and women with pLoF variants in
DIDO1 (HR=11.2 (0.578), P=2.85×10-5) and SLC12A5 (HR=14.8 (0.708), P=1.45×10-4) were at
risk of earlier age at onset of obesity (Supp. Figure 7, Supp. Table 7).

Proteome-wide consequences of obesity and fat distribution traits
and associated genes
We assessed the relationship between nine obesity and fat distribution traits (Supp. Figure 8,
Supp. Table 2) and 1,463 plasma proteins profiled in a subset of 42,828 individuals in the UKB
Olink Plasma Proteomics Project35. To do this, we regressed the obesity and fat distribution
traits on each protein level independently, and adjusted for sex, age and age2, age-by-sex
interactions, UKB assessment centre, and the first 21 genetic principal components (PCs).

We found that 1,345 proteins (92% of the proteins tested) were significantly associated with at
least one obesity or fat distribution trait (P<3.80×10-6, Bonferroni adjustment for 13,167 tests,
Figure 2, Supp. Table 8, Supp. Figures 8 and 9), adding to previous reports that obesity is
accompanied by a sweeping alteration of the entire plasma proteome36,37. 407 proteins were
significantly associated with all nine body fat traits (Supp. Figure 9), of which 331 (81%) were
positively correlated with all traits, and 71 (17%) were negatively correlated with all traits.

To identify significantly enriched pathways among associated proteins, we applied
GSEAPreranked38 to a list of proteins ordered by the z-score of the most significant association
across the nine traits. 27 pathways were enriched (FDR<25% GSEA default threshold) among
proteins whose levels were positively correlated with obesity or fat distribution traits, including:
organic acid binding, known to play a role in metabolic disease39 (42 proteins, FDR=7.2%,
FWER P=0.0671), interleukin-10 signalling, linked to insulin resistance40 (30 proteins,
FDR=9.0%, FWER P=0.293), and cellular response to salt, possibly reflecting the association
between dietary sodium intake and obesity41 (20 proteins, FDR=9.1%, FWER P=0.161) (Supp.
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Table 9). We did not find any pathways markedly enriched (FDR<25%) among proteins
negatively correlated with obesity or fat distribution traits.

Across the proteome, only five proteins (CCN5, PTPRF, SLITRK2, THY1, and XG) displayed
heterogeneity in the direction of their effects on obesity and fat distribution traits, all of which
were positively associated with BMI, body fat percentage, and all tissue-specific fat
components, but negatively associated with WHRadjBMI (all assocations P<3.80×10-6, Supp.
Figure 10 and Supp. Table 8). Overexpression of CCN5 improves insulin sensitivity in obese
mice42, and overexpression of THY1 activity blocks adipocyte formation through inhibition of
PPARG in mouse cell lines43. These results indicate potential therapeutic targets to alter fat
distribution independent of overall obesity.

Figure 2. Relationship of the plasma proteome with obesity and fat distribution related traits in
UKB. Quantile-quantile (QQ) plots of the observed P-value against expected P-value (on the log scale)
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for proteome-wide associations with each trait. A red point indicates a protein has a positive effect on the
trait, a blue point indicates a negative effect. The null expectation (observed equal to expected) and 95%
CI for the null are indicated by the black dashed line and grey shading. The ten most significant proteins
are labelled in black text. The five proteins with mixed direction of effect across traits are labelled in red
text. BMI, body mass index; WHRadjBMI, waist-to-hip ratio adjusted for BMI, BodyFat%, body fat
percentage; AndroidFat%, android tissue fat percentage; GynoidFat%, gynoid tissue fat percentage,
AndGynRatio, ratio of android to gynoid fat percentage; TotalFat%, total body fat percentage; VAT,
visceral adipose tissue volume; AbdFatRatio, abdominal fat ratio.

Figure 3. Relationship of the plasma proteome with genes associated with obesity and fat
distribution in UKB. Volcano plots of gene burden effect on the proteome for 11 genes significantly
associated with obesity and fat distribution traits (SKAT-O P≤4.37×10-5). Red and blue points indicate
proteins with significant gene-level associations (burden P<2.44×10-7, Bonferroni adjustment for 204,743
unique tests; significance threshold indicated by dashed line). Red points indicate positive gene burden
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effect and blue points indicate negative gene burden effect. Grey points indicate non-significant
associations. The consequence mask of each result is indicated by the shape of the point: Circles are the
result of a pLoF-only burden mask, diamonds are the results of a pLoF and damaging missense mask.
Effect size is in units of protein standard deviations.

As proteins can link genotype to phenotype, we assessed the proteomic consequences of rare
damaging variation in the 71 genes associated with obesity that were identified in the previous
section. We performed this gene burden scan for 1,456 proteins in the UKB Olink proteomics
data (Methods). Of the five genes which were FDR≤1% significant and had corresponding
measurements of cognate protein levels, three (APOM, CPM, and MFAP5) show the expected
direction of effect, i.e. a burden of rare damaging variation in the gene significantly reduces
protein levels (burden P<2.44×10-7, Bonferroni adjustment for 204,743 unique tests, Figure 3
and Supp. Table 10). However, damaging variation in FXYD5 is associated with significantly
higher levels of plasma FXYD5 (burden beta (SE)=0.0474 (0.00559), P=2.14×10-17). Association
of damaging variation in PLIN1 with plasma PLIN1 did not reach Bonferonni-adjusted
significance.

Seven obesity or fat distribution associated genes were significantly associated (burden
P<2.31×10-7) with at least one non-cognate plasma protein (Figure 3 and Supp. Table 10). The
burden of pLoF variation in PDE3B, associated with lower WHRadjBMI (beta (SE)= -0.00676
(0.001096), burden P= 7.09×10-10), is also associated with increased levels of CD300LG (beta
(SE)=0.0213 (0.00382), burden P=2.67×10-8) and CLMP (beta (SE)=0.0221 (0.00378), burden
P=4.63×10-9). CLMP is an adipocyte-adhesion molecule associated with adipocyte
differentiation, and its overexpression reduces weight gain in mice44. We also found an
association between damaging variation in GIGYF1, for which burden of pLoF variation is
associated with increased WHRadjBMI (beta (SE) = 0.01145 (0.00243), burden P=2.60×10-6),
and lower plasma levels of the paired receptors PILRA (beta (SE)= -0.0108 (0.00191), burden
P=1.79×10-8) and PILRB (beta (SE)= -0.0122 (0.00194), burden P=2.85×10-10). PILRA drives
macrophage infiltration into adipose and liver tissue and induces obesity when knocked out in
mice45. Finally, we found multiple plasma proteins significantly associated with damaging
variation in obesity and fat distribution genes ABCA1 (8 proteins), PKD1 (26), and STAB1 (37)
(Figure 3 and Supp. Table 10). The latter encodes a scavenger receptor and is a known
pleiotropic locus46.

Nominating target genes for in vitro functional characterisation
through CRISPR knockout
As adipose tissue is enriched for the expression of fat distribution genes identified from common
variant GWASs16, we assessed the mRNA counts of overall and tissue-specific fat
distribution-associated genes from our exome-wide gene-level association testing in
differentiated human white adipose tissue derived pre-adipocytes (hWAT) in vitro (Figure 4a).
Genes with FDR-significant results in gene-level tests had higher expression in hWAT 8 and 24
days after differentiation compared to non-significant genes (one-sided t-test P=5.29×10-42,
comparing mRNA normalised counts). From the 56 of 71 FDR-significant genes sufficiently
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expressed in differentiated hWAT (mean normalised mRNA count >10 at 8 and 24 days after
differentiation), we selected 14 genes for functional characterisation using CRISPR KO which:
(1) have been well characterised for their role in adipogenesis or adipocyte lipid and glucose
metabolism (PPARG47–52, PLIN153–57, INSR58–61), (2) demonstrated monotonic allelic series
indicating a dose-response relationship with gene dosage (ABCA1, COL5A3, DENND5B, INSR,
PCSK1, PLIN1, PPARG) (Supp. Figure 3), (3) significantly altered protein levels (P<2.31×10-7)
due to obesity or fat distribution associated genetic variation in UKB (MFAP5) (Supp. Table 8),
(4) associated with obesity age-of-onset (SLTM, PCSK1) (Supp. Figure 7, Supp. Table 7), or (5)
are implicated in lipid or glucose metabolism pathways by mouse whole-body or
adipocyte-specific gene perturbation (Supp. Table 11). We considered the first set of these
(PPARG, PLIN1, and INSR) as positive controls, and included IRS1, IRS2, and TBC1D4 as
additional positive controls based on previous evidence for their effects on insulin-mediated
glucose uptake (Supp. Table 11)61–72.

Using the Toronto KnockOut version 3.0 library73, we selected four guide RNAs per gene target
to generate 17 KO hWAT cell lines and two negative control cell lines, wild-type and Cas9 empty
vector (Figure 4c and Supp. Table 12). We confirmed gene KO through significantly decreased
(P<0.05, one-sided Wald test) mRNA expression relative to expression in Cas9-empty cell line
(Figure 4d) and performed western blots for KOs which were not confirmed by mRNA
expression (Figure 4e, Supp. Figure 12). We could not confirm KOs of PCSK1 or PLIN1 with
mRNA expression or western blots. Transcriptome-wide changes observed from RNA-seq and
lower protein expression observed from western blots suggest PPARG was at the least
substantially knocked down.

Abnormal lipid accumulation and insulin resistance are hallmarks of adipose tissue
dysfunction74. Molecular pathways associated with lipid droplet formation, lipid metabolism and
lipid biosynthesis and insulin sensitivity were differentially regulated with body fat distribution in
our UKB proteomics analysis (Supp. Table 9). We therefore measured lipid accumulation using
BODIPY staining75, and assayed insulin sensitivity through glucose uptake, measured using a
fluorescent glucose analog76, under basal and insulin-stimulated conditions in hWAT KO cell
lines (Methods). The lipid accumulation assay was conducted for six replicates of each KO cell
line and the glucose uptake assays were conducted for three replicates under basal and
insulin-stimulated conditions each.
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Figure 4. CRISPR KO strategy. a, Mean normalised mRNA counts across four time points (days after
differentiation: 0, 3, 8, 24) in human white adipocyte tissue for 71 genes passing FDR≤1% significance
(SKAT-O P≤4.37×10-5) versus all non-significant genes (n=60,605). Error bars indicate +/-1.96 standard
errors of the mean normalised mRNA count. b, Selection strategy for genes to include in conditional KO
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experiment. Numbers in parentheses indicate the number of genes in a given group. c, Experimental
design for CRISPR KO, adipocyte cell culture and imaging. d, Confirmation of KO efficacy using relative
mRNA expression. Error bars indicate +/-1.96 standard errors. One-sided Wald test comparing mRNA
count in KO cell line relative to count in Cas9 empty, with the alternative hypothesis that the count is lower
in the KO: ***P<0.001, **P<0.01, *P<0.05. IRS1 KO samples were excluded from RNA sequencing due to
low RNA concentrations. e, Example of confirmation of KO efficacy using western blots for IRS2. For
western blots of all other KOs not confirmed by RNA sequencing (ABCA1, IRS1, PCSK1, PLIN1, PPARG)
see Supp. Figure 12.

Knockout of obesity and fat distribution associated genes alters in
vitro lipid accumulation and insulin response
We observed significantly reduced (P<0.05 in two-sided t-test of mean fold change [FC] in
fluorescence between KO and control Cas9-empty cell line) lipid accumulation and
insulin-stimulated glucose uptake in four of six positive control KOs: PPARG (lipid accumulation
FC=0.245, P=5.53×10-7; glucose uptake FC=0.622, P=0.0186), IRS2 (lipid FC=0.370,
P=9.66×10-6; glucose FC=0.622, P=0.0150), IRS1 (lipid FC=0.507, P=5.58×10-5; glucose
FC=0.747, P=0.0477), and TBC1D4 (lipid FC=0.741, P=0.0264; glucose FC=0.796, P=0.0469)
(Figures 5a and 5c, Supp. Table 13). Three KOs displayed reduced glucose uptake even in the
basal state: PPARG (FC=0.656, P=0.0203), IRS1 (FC=0.667, P=0.0242), IRS2 (FC=0.685,
P=0.0335) (Figure 5c, Supp. Table 13). Inactivation of PPARG through KO has previously been
shown to lower lipid accumulation49,51,52, while KO or knockdown of IRS1, IRS2, and TBC1D4
have previously been shown to reduce insulin-stimulated glucose uptake61,62,66,68–70, providing
validation of the assays used here.

We observed significantly increased lipid accumulation relative to Cas9-empty cells in KOs of
EXOC7 (FC=1.35, P=0.0096), TRIP10 (FC=1.39, P=0.0157), and COL5A3 (FC=1.72,
P=0.0028) (Figure 5a, Supp. Table 13). The products of these genes are all variously involved in
lipid uptake, synthesis, and adipogenesis. EXOC7 is a component of the exocyst complex,
which regulates the uptake of free fatty acids by adipocytes77. TRIP10 is an interactor of the
thyroid hormone receptor (TR-β1)78, which regulates de novo fatty acid synthesis79. TR-β1 has
been proposed as a target to treat dyslipidaemia80, and the TR-β1 agonist resmetirom is
currently in Phase III clinical trials for treating non-alcoholic fatty liver disease81. We also
observed increased lipid accumulation in KOs of COL5A3 (FC=1.72, P=2.78×10-3) (Figure 5a,
Supp. Table 13) – as a ubiquitous component of the extracellular matrix, type V collagen informs
the proper differentiation and development of adipocytes82.

Finally, we noted reduced lipid accumulation in KOs of the novel target SLTM (FC=0.514,
P=1.91×10-4) (Figure 5a, Supp. Table 13). SLTM encodes the SAFB-like transcription modulator,
which regulates the GLI family of transcription factors in mice83. These GLI transcription factors
in turn control expression of lipid metabolic genes, including critical adipogenesis transcription
factors PPARG and C/EBP (α, β, γ, and δ)84. While this suggests a novel therapeutic target for
altering fat deposition, more work is needed to understand why individuals carrying rare pLoF
variants in SLTM have higher BMI (burden beta (SE) = 0.0191 (0.00455), SKAT-O P=2.65×10-6).

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 22, 2024. ; https://doi.org/10.1101/2024.09.19.24313913doi: medRxiv preprint 

https://paperpile.com/c/bTVAKJ/ZhhY+e1En+3IDo
https://paperpile.com/c/bTVAKJ/4n9W+ZhPd+iT8E+j5MY+XGzU+tk4p
https://paperpile.com/c/bTVAKJ/mNzY
https://paperpile.com/c/bTVAKJ/oBjG
https://paperpile.com/c/bTVAKJ/0rmG
https://paperpile.com/c/bTVAKJ/6Na9
https://paperpile.com/c/bTVAKJ/sds1
https://paperpile.com/c/bTVAKJ/hjPV
https://paperpile.com/c/bTVAKJ/YIA6
https://paperpile.com/c/bTVAKJ/mlGz
https://doi.org/10.1101/2024.09.19.24313913
http://creativecommons.org/licenses/by-nc/4.0/


None of the 13 target genes that were not demarcated as positive controls displayed effects on
basal or insulin-stimulated glucose uptake in KO cell lines (Figure 5c, Supp. Table 13).
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Figure 5. Effect of CRISPR single-gene KO on lipid accumulation and glucose uptake in human
adipocytes. a, Effect of single-gene KO on lipid accumulation measured by mean cytoplasm intensity of
BODIPY dye fluorescence. b, Differentiated human adipocyte KOs stained with BODIPY (green) and
Hoechst (blue), imaged at 10x magnification. c, Effect of single-gene KO on glucose uptake under basal
(black points) and insulin-stimulated conditions (yellow) measured by mean cytoplasm intensity of

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 22, 2024. ; https://doi.org/10.1101/2024.09.19.24313913doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.19.24313913
http://creativecommons.org/licenses/by-nc/4.0/


2-NBDG fluorescent glucose analog. d, Differentiated human adipocyte KOs stained with 2-NDBG
(green) and Hoechst (blue), imaged at 10x magnification. Rows 1-3 show adipocytes under basal
conditions, rows 4-6 show adipocytes under insulin-stimulated conditions. Fold changes of all basal and
insulin-stimulated glucose uptake results are calculated relative to Cas9-empty cells under basal
conditions. When testing the effect of KO on insulin-stimulated glucose uptake, each KO is compared to
the Cas9-empty cells under insulin-stimulated conditions. Two-sided t-test of mean fold change relative to
Cas9-empty cells: ***P<0.001, **P<0.01, *P<0.05. #Genes selected as positive controls for lipid
accumulation or glucose uptake. FC, fold change.

Transcriptome-wide effects of gene knockouts
Obesity-gene KOs had wide-ranging effects on the hWAT transcriptome, with between eight and
3,253 genes differentially expressed (|log2(fold change)|>1, FDR-adjusted P<0.05) in KO cell
lines as compared to Cas9-empty negative controls (Figure 6 and Supp. Table 14). We
examined the molecular effects of these KOs through pathway enrichment analyses for
pathways in the KEGG85, REACTOME86, and GO:Biological Process and GO:Molecular
Function87 databases.

KO of PPARG, a master regulator of adipogenesis, significantly alters 95 pathways (Family-wise
error rate [FWER] P<0.05), including: (1) transcriptional regulation through PRC2-driven DNA
methylation (genes=59, P<0.0001), histone acetylation (genes=138, P<0.0001), and small
RNAs (genes=102, P=0.0001), (2) protein synthesis by modulating rRNA expression through
SIRT1 (genes=63, P<0.0001), ERCC6 (CSB) and EHMT2 (G9a) (genes=71, P<0.0001) and the
B-WICH chromatin remodelling complex (genes=86, P=0.0001), and (3) functions critical to cell
division such as assembly of the ORC complex at the origin of replication (genes=64,
P<0.0001), condensation of prophase chromosomes (genes=69, P<0.0001), and cell cycle
checkpoints (genes=286, P<0.0001) (Supp. Table 15). As expected, PPARG KO also alters
pathways important for adipogenesis, such as the transcription of androgen-receptor regulated
genes (genes=62, P<0.0001), RUNX1 regulation88 (genes=89, P=0.0001), formation of the
beta-catenin TCF trans-activating complex89 (genes=87, P=0.0001), and pre-NOTCH
expression and processing90 (genes=104, P=0.0003) (Supp. Table 15). KOs of other positive
control genes also significantly affected (FWER P<0.05) cell metabolic pathways, including
linoleic acid metabolism (IRS2 KO; genes=24, P=0.0004), fatty acid metabolism and
adipogenesis (TBC1D4 KO; genes=84, P=0.0013), and ketone metabolism (TBC1D4 KO;
genes=125, P=0.0037) (Supp. Table 15), indicating molecular mechanisms by which these
genes regulate adipocyte lipid accumulation.

We observed enrichment of several mitotic, transcription, and translation pathways in KOs of
lipid accumulation-altering genes EXOC7 and TRIP10 (Supp. Table 15), but did not find
mechanisms directly implicated in lipid accumulation. On the other hand, while MLXIPL KO did
not affect lipid accumulation or glucose uptake in our assays, we nevertheless observed
enrichment (FWER P<0.05) of pathways involved in adipogenesis, such as interferon α/β
signalling91 (genes=66, P=0.0016) and lipopolysaccharide binding92 (genes=32, P=0.0284).
MLXIPL encodes the carbohydrate-responsive element-binding protein (ChREBP), which is
thought to regulate gene expression in response to glucose and reduces adipose tissue mass in
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mouse KO models93. While this may be a potential therapeutic target for fat distribution, mice
deficient in MLXIPL/ChREBP do not tolerate fructose in their diet and develop severe diarrhoea
and irritable bowel syndrome94.

Figure 6. Effect of gene KO on differential gene expression in human adipocytes. a, Gene
differential expression results from RNA sequencing data performed on hWAT wild-type and single-gene
KOs. Gene differential expression analysis was performed with DESeq295, comparing each cell line
(wild-type hWAT or KO) to the Cas9-empty cell line. All significance thresholds use Padj, a P-value
corrected for multiple testing calculated in DESeq2. Blue points indicate genes which are significantly
downregulated (Padj<0.05, log2FC<1). Red points indicate genes which are significantly upregulated
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(Padj<0.05, log2FC>1). Grey points are all other genes. Genes are labelled if they are in the top five most
significant (lowest Padj) red or top five most significant blue points, in the top five most significant
regardless of point colour, or have abs(log2FC)>10. The horizontal and vertical dashed lines indicate the
significance cutoffs of Padj<0.05 and abs(log2FC)>1, respectively. b, Counts of significantly downregulated
(blue, Padj<0.05 and log2FC<-1) and upregulated (red, Padj<0.05 and log2FC>1) genes for each
single-gene KO and hWAT. The y-axis is sorted by the total number of differentially expressed genes for
each KO condition. FC, fold change.

Discussion
Through a series of population-level genetic and in vitro functional genomics investigations, we
demonstrate a model to map the biological mechanisms of obesity and body fat distribution,
from variant to molecular function to systemic phenotype. We utilised complementary rare
variant gene-based analyses and common variant prioritisation to nominate 71 genes with
robust associations to BMI, WHRadjBMI, body fat percentage, and six tissue-derived fat
components in up to 402,375 participants in UKB. By evaluating the sex-specific and
phenome-wide associations of these genes, we built a comprehensive understanding of their
systemic effects. Combining multiple lines of genomic, transcriptomic, proteomic, and prior
functional evidence, we selected 17 genes for functional characterisation by CRISPR KO in
human white adipose tissue (hWAT) cell lines. Among these 17 genes were six “positive
controls”, of which three replicated known effects of KO on lipid accumulation and glucose
uptake in adipocytes. We also observed reduced lipid accumulation in SLTM KO, and increased
lipid accumulation in KOs of COL5A3, EXOC7 and TRIP10; many of these are potential
therapeutic targets to regulate body fat mass and/or distribution. Finally, we observed
transcriptomic changes consistent with altered adipogenesis in MLXIPL KO cell lines. Taken
together, our population-based and in vitro genetics investigations highlight molecular
mechanisms and therapeutic avenues for fat distribution.

The recent growth in sample sizes of whole-exome sequenced participants in biobanks has
accelerated the development of gene-level analyses96–98. By annotating rare variants with their
putative functional consequences and then collapsing these across each gene, gene-level
testing has enabled the discovery of novel genes associated with complex human traits31,99.
While gene-level testing is a powerful strategy for gene discovery, it remains limited by the
requirement of high-quality functional annotations of rare variants. Here, we combined evidence
from CADD, REVEL, and SpliceAI annotations23–25 to generate high-confidence sets of variants,
and integrated evidence from common variant studies to prioritise putative risk genes for
functional follow up. In the future, improved rare variant masks, such as those incorporating
non-coding rare variation outside exonic regions, may help identify additional therapeutic targets
to alter fat distribution.

Genome-wide common variant and exome-wide rare variant analyses can provide
complementary lines of evidence to nominate genes associated with human traits99,100. We
found that genes implicated for obesity and body fat distribution by a burden of rare damaging
variation were: (1) associated with rare Mendelian forms of obesity and lipodystrophies, and (2)
also prioritised by common variant prioritisation scores26 for BMI, WRHadjBMI and body fat
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percentage. Converging evidence from across the allele frequency and phenotypic severity
spectra can therefore identify high-confidence genes for a range of human traits. Assessing the
sex-specific and phenome-wide consequences of these genes can provide evidence for
therapeutic potential, for example by revealing possible side-effects on platelet distribution or
neutrophil percentage.

Our evaluation of the proteome-wide consequences of obesity and fat distribution associated
genetic variation revealed putative novel mechanisms and therapeutic targets for fat distribution.
For example, individuals carrying rare variants in PDE3B have higher levels of the
adipocyte-adhesion molecule CLMP and lower WHRadjBMI; the overexpression of CLMP
reduces weight gain in mice44. While PDE3B is a well-known regulator of energy homeostasis101,
it may additionally act on adipogenesis through its effect on CLMP, which we propose as a
therapeutic modulator of obesity. We also found an association between damaging variation in
GIGYF1 and increased WHRadjBMI, accompanied by lower plasma levels of the paired
receptors PILRA and PILRB. Loss of function in GIGYF1 has previously been suggested to
impact metabolic health through mosaic loss of the Y chromosome in leukocytes102; we suggest
that it may additionally impact obesity by lowering expression of PILRA, a gene that drives
macrophage infiltration into adipose and liver tissue and induces obesity when knocked out in
mice45.

We measured the effects of CRISPR gene KOs on lipid accumulation and glucose uptake (in
basal and insulin-stimulated conditions) in hWAT cell lines. To ensure our in vitro assays were
robust and replicable we performed each assay with six (lipid accumulation) or three (glucose
uptake under basal or insulin-stimulated conditions) replicates, and included a set of “positive
control” genes that have previously been characterised to affect the readouts of interest.
However, we were unable to fully confirm the KO effect in two genes selected as positive
controls, PPARG and PLIN1. The KO of PPARG shows a combination of transcriptome-wide
disruption in the differential expression analysis and reduction in protein expression from the
western blot, suggesting at least a partial knockout. Lipid accumulation and glucose uptake
results were also consistent with expected results of a successful PPARG KO. Since we could
not confirm complete KO of PPARG, we avoid reference to this KO as a positive control for the
lipid/glucose assay results. We do observe clear evidence of disruption, and therefore retain the
KO for downstream analyses with the caveat that interpretation should be tempered by the
possibility of incomplete knockout. The KO of PLIN1 could not be confirmed by mRNA
differential expression or by protein expression measured by western blot. The difficulty in
observing protein expression with a western blot may be due to low expression of PLIN1 in the
undifferentiated adipocytes used for western blots, as indicated by our longitudinal mRNA
analysis of wild-type hWAT (Supp. Figure 11).

Three of four positive controls with confirmed KOs (IRS1, IRS2, TBC1D4) affected lipid
accumulation or insulin-stimulated glucose uptake in hWAT KO cell lines. Two positive controls
with confirmed KOs (IRS1, IRS2) also affected basal glucose uptake, however this may be due
to the KO affecting adipocyte differentiation rather than affecting a glucose uptake pathway
independent of insulin. The only positive control with confirmed KO and which did not
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significantly affect lipid accumulation or glucose uptake was INSR. INSR encodes the insulin
receptor gene, whose KO is expected to decrease insulin-stimulated glucose uptake59. Indeed,
when we pool replicates from basal and insulin-stimulated states, we observe a significant
decrease in glucose uptake in INSR KO cell lines, but with a smaller effect size than other
positive control KOs (Supp. Note 3). We were likely under-powered to identify the effect of INSR
KO on glucose uptake with only three replicates per cell line.

Of the two genes carrying rare missense variation associated with increased BMI and with
confirmed KOs, EXOC7 KO increased lipid accumulation in hWAT cell lines while SLTM KO
decreased lipid accumulation. Rare missense variation in PPARG is associated with decreased
body fat percentage and the disruption of PPARG in hWAT cell lines resulted in decreased lipid
accumulation. Similarly, of the two genes affecting central obesity (WHRadjBMI or ratio of
android to gynoid tissue fat percentage) with confirmed KOs significantly increasing lipid
accumulation, COL5A3 was correspondingly associated with increased central obesity, whereas
TRIP10 was associated with decreased central obesity. Our results demonstrate the importance
of systematically characterising the functional effects of gene perturbation at the level of cell
lines and model organisms, which may not follow the expected direction of effect based on
missense variation in humans. A limitation of our CRISPR screen was the introduction of
complete gene KOs; more sensitive study designs in the future may seek to mimic the effects of
specific missense or damaging variation.

In summary, we demonstrate that the convergence of evidence across rare and common
genetic variation, combined with large-scale proteomics, can help identify high-confidence target
genes for overall adiposity and body fat distribution. We provided in-depth functional
characterisation through CRISPR KOs in human adipocytes, allowing us to nominate candidate
genes for therapeutic targets. Through the functional readouts and transcriptomic analyses, we
also highlighted several novel molecular mechanisms by which genetic variation may impact
obesity. Our results provide a model by which future work can integrate genetic and functional
evidence to identify, design, and validate potential drug targets to alter overall and
tissue-specific fat distribution.

Methods

Imputed data quality control

Sample quality control and assigning population labels
Beginning with the 487,409 individuals with phased and imputed genotype data, we restricted to
unrelated individuals with low autosomal missingness rates used for PCs by Bycroft et al.103. We
then used genotyping array data, subset to LD-pruned autosomal variants, from these samples
to project into the PC space defined by the 1000 Genomes dataset104, ensuring that we correctly
account for shrinkage bias in the projection105. Next, we used the ‘super-population’ labels
(AFR=Africans, AMR=Admixed Americans, EAS=East Asians, Europeans=EUR, South
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Asians=SAS) of the 1000 Genomes dataset to train a RF classifier, using the randomForest
(4.6) library in R106, and predicted the super-population for each of the UKB samples. Samples
with classification probability >0.99 for the European super-population, were retained for
downstream analysis.

Following our ancestry based filtering regime, we remove samples who withdrew from UKB
participation as well as those individuals who were omitted from phasing and imputation. For
GWAS, we further subset individuals passing imputed data quality control to those who also
passed exome sequencing quality control (described below), resulting in a set of 397,315
individuals.

Variant quality control
Over 92 million imputed variants across the autosomes and chromosome X are available for
analysis. As a starting point for our initial collection of GWAS, we subset to variants with MAF
>0.1% in the subset of individuals defined in the sample QC procedure and an INFO score >0.8
from the UKB SNP manifest file. Following this collection of filtering steps, 16.7 million variants
were retained for common variant GWAS. After performing GWAS, two additional filters were
performed, retaining variants with Hardy-Weinberg P>1×10-10, calculated on the whole QCed
subset of individuals, and retaining variant-level summary statistics if MAF >0.1%, calculated for
each GWAS. This results in 13,117,850 variants for downstream common variant analysis.

Exome sequencing data quality control

Exome sequencing data quality control summary
Using the UKB Research Access Platform we accessed the gnomAD VCFs containing
GATK-called genotypes for 454,671 individuals. We followed an identical sample QC protocol to
Karczewski et al.31, filtering individuals on covariate-regressed individual-level metrics using
median absolute deviations. We removed variants flagged by the gnomAD QC team for failing
one or more of their filters (AC0, RF, MonoAllelic, InbreedingCoeff). Genotype calls were set to
missing if they failed filters for genotype quality, depth and alelle balance (described in
Karczewski et al.31). We filter to European ancestry using the super-population ancestry labels
assigned with an RF classifier, described above for imputed data quality control.

Variant and sample-level QC
We defined ‘high quality’ variants as those MAF>0.1% and call rate ≥0.99 falling within the UKB
capture intervals plus 50 bp padding. These variants were used to evaluate sample-level
metrics of mean call rate and depth and retained samples satisfying all of the following:

● Genetic sex inferred as XX or XY (specifically, genetic sex is defined).
● Mean call rate ≥0.99 among high quality variants.
● Mean coverage ≥20x among high quality variants.
● Not withdrawn.
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Next, we removed variants satisfying at least one of the following criteria:

● The variant lies outside the UKB capture plus 50 bp padding.
● The variant lies within a low complexity region.
● The variant lies within a segmental duplication.

Among this (sample, variant) set, we ran Hail’s sample_qc()107 to remove samples lying
outside the median±4 median absolute deviations (MADs) within each super-population (see
above section on imputed data quality control). The QC protocol was split by UKB ES tranche
(50k, 200k, 450k) to guard against batch effects, as tranches were sequenced in separate runs.
The following metrics were used for QC:

● Number of deletions (n_deletion).
● Number of insertions (n_insertion).
● Number of SNPs (n_snp).
● Ratio of insertions to deletions (r_insertion_deletion).
● Ratio of transitions to transversions (r_ti_tv).
● Ratio of heterozygous variants to homozygous alternate variants (r_het_hom_var).

Following MAD filtering (Supp. Figure 1, Supp. Table 1), 402,375 European samples were
retained for analysis. For each sample, we excluded non-passing sites as described in
Karzcewski et al.31. Briefly, an RF classifier was trained to distinguish true positives from false
positive variants using a collection of allele and site annotations. Variants were assigned ‘PASS’
to maximise sensitivity and specificity across a series of readouts in trio data and
precision-recall in two truth samples, after which samples with excess heterozygosity (defined
as inbreeding coefficient <-0.3) were removed. Next, we removed low quality genotypes by
filtering to the subset of genotypes with depth ≥10 (5 among haploid calls), genotype quality
≥20, and minor allele balance >0.2 for all alternate alleles for heterozygous genotypes.
Following this filter, we remove variants that were not called as “high quality” among any
sample. The resulting high quality European call set consisted of 402,375 samples and
25,229,669 variants.

Variant consequence annotation
We annotated exome-sequencing variants using Variants Effect Predictor (VEP) v105
(corresponding to GENCODE v39)108 with the LOFTEE v1.04_GRCh3822 and dbNSFP109

plugins, annotating variants with CADD v1.623, and REVEL using dbNSFP4.324 and
loss-of-function confidence using LOFTEE. We provide code and instructions for this step in our
VEP_105_LOFTEE repository110, which contains a Docker/Singularity container for
reproducibility of annotations. Next, we ran SpliceAI v1.325 using the GENCODE v39 gene
annotation file to ensure alignment between VEP and SpliceAI transcript annotations. For
variant-specific annotations we use ‘canonical’ transcripts. We separated variants by transcript
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using bcftools +split-vep and filtered to MANE Select111 protein-coding transcripts. If the
gene lacked a MANE Select transcript we selected the canonical transcript defined by
GENCODE v39. Using this collection of missense, pLoF, and splice metrics, and annotations of
variant consequence on the canonical transcript, we then determine a set of variant categories
for gene-based testing.

Variant consequence categories
1. High confidence pLoF: High-confidence LoF variants, as defined by LOFTEE22

(LOFTEE HC).
2. Damaging missense/protein-altering: At least one of:

a. Variant annotated as missense/start-loss/stop-loss/in-frame indel and
(REVEL≥0.773 or CADD≥28.1 or both).

b. Any variant with SpliceAI delta score (DS)≥0.2 where SpliceAI DS the maximum
of the set {DS_AG, DS_AL, DS_DG, DS_DL} for each annotated variant (where
DS_AG, DS_AL, DS_DG and DS_DL are delta score (acceptor gain), delta score
(acceptor loss), delta score (donor gain), and delta score (donor loss),
respectively).

c. Low-confidence LoF variants, as defined by LOFTEE (LOFTEE LC)
3. Other missense/protein-altering: Missense/start-loss/stop-loss/in-frame indel not

categorised in (2).
4. Synonymous: Synonymous variants with SpliceAI DS<0.2 in the gene.

REVEL and CADD score cut-offs are chosen to reflect the supporting level for pathogenicity
(PP3) from the American College of Medical Genetics and Genomics and the Association for
Molecular Pathology (ACMG/AMP) criteria112.

Phenotype curation
We used the following nine phenotypes, either directly measured by UKB or derived from UKB
phenotypes: body mass index (UKB code: 21001), waist-to-hip ratio (derived from waist
circumference [UKB code: 48] and hip circumference [UKB code: 49]) with BMI regressed out,
body fat percentage (UKB code: 23099), android tissue fat percentage (UKB code: 23247),
gynoid tissue fat percentage (UKB code: 23264), ratio of android to gynoid tissue fat percentage
(derived phenotype), total tissue fat percentage (UKB code: 23281), visceral adipose tissue
volume (UKB code: 22407), abdominal fat ratio (UKB code: 22434).

Genetic association testing

Genetic association testing summary
All variant- and gene-level associations were performed in the European-ancestry subset of the
UKB using the Scalable and Accurate Implementation of GEneralised mixed model (SAIGE)96, a
mixed model framework that accounts for sample relatedness.
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In SAIGE step 0, we constructed a genetic relatedness matrix (GRM) using the UKB genotyping
array data. The genotyped data is LD pruned using PLINK (--indep-pairwise 50 5
0.05) 113, and the sparse GRM is calculated using the createSparseGRM.R function within
SAIGE, using 5,000 randomly selected markers, with relatedness cutoff of 0.05,

To generate a variance ratio file for subsequent steps in SAIGE, we selected 2000 variants from
the genotyping array data to define a PLINK dataset. For testing common variants in imputed
data, we extracted 2000 variants with MAC≥20. For testing the exome-sequencing data, we
extracted two sets of 1000 variants with 10≤MAC<20 and MAC≥20, and combined these sets of
markers.

In SAIGE step 1 for each trait, the null model is fit using the curated phenotype data and sparse
GRM, with no genetic contribution. Default parameters were used in SAIGE, except
--relatednessCutoff 0.05, --useSparseGRMtoFitNULL TRUE and
--isCateVarianceRatio TRUE. In the sex-combined analyses, we account for age, sex,
age2, age × sex, age2 × sex, and the first 21 PCs as fixed effects; and age, age2, and the first 21
PCs in sex-specific analyses. All continuous traits were inverse rank normalised using the
--invNormalize flag in SAIGE. For SAIGE step 2, we always use the flag --LOCO FALSE
and --is_fastTest TRUE.

Common variant association testing in imputed data
We performed single-variant genetic association testing of the UKB imputed data using SAIGE
version 1.1.6.3 on the Oxford Biomedical Research Computing cluster. For consistency across
analyses, only individuals who passed sample-level quality control in both the imputed and
exome-sequencing data were included.

Following null model fitting, we carried out variant testing in SAIGE step 2 with default
parameters, except for --is_Firth_beta TRUE and --pCutoffforFirth=0.1.

Finemapping
Using summary statistics from the common variant association tests, finemapping loci are
identified for each trait. Starting with the most significant variant in the pool of genome-wide
significant variants, a 1 Mb window centred around the variant is created. All genome-wide
variants falling in this window are considered part of the locus defined by the most significant
variant and removed from the pool of genome-wide significant variants. Then we proceed to the
next most significant variant in the pool of genome-wide significant variants and repeat until the
pool of genome-wide significant variants is empty. Loci with overlapping windows are merged.

LD matrices were calculated with LDstore v2.0114, using the same set of individuals used in the
GWAS for each trait. Finemapping was performed with FINEMAP v1.4114, using shotgun
stochastic search and allowing a maximum of 10 causal SNPs per locus.
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Rare variant and gene-level testing in exome sequencing data
We carried out rare variant and gene-level genetic association testing in the European-ancestry
subset of the UKB exome sequencing data using SAIGE. All analyses involving the exome
sequencing data was carried out on the UKB Research Analysis Platform (RAP) using SAIGE
version wzhou88/saige:1.1.996.

Following null model fitting, we carried out variant and gene-level testing in SAIGE step 2 using
the variant categories described above, with the --is_single_in_groupTest TRUE flag.
All other parameters were set to default, except
--maxMAF_in_groupTest=0.0001,0.001,0.01, although we only report results for
maximum MAF of 0.01. We included the following collection of group tests, using the
annotations defined above (see ‘Variant consequence annotation’ methods section):

● High confidence pLoF
● High confidence pLoF or damaging missense/protein-altering

For genes with no damaging missense/protein altering variants, only the pLoF variant
consequence mask was considered when performing Bonferroni multiple-testing correction.

Obesity and fat distribution trait gene-level association tests
For each gene and for each obesity and fat distribution trait we tested the SKAT-O association
of rare variant (MAF<1%) variation. Exome-wide statistical significance (P < 1.58×10-7) for
gene-level tests was defined using Bonferroni correction for 315,996 unique
phenotype-gene-consequence mask combinations.

To expand the set of obesity and fat distribution associated genes to consider for functional
screening, we followed an FDR-control process similar to Zhou et al.115. We selected the
gene-level association result which had the lowest SKAT-O P-value (across all phenotypes and
both variant masks) and applied the Benjamini-Hochberg procedure to identify 83 significant
genes when controlling FDR to 1% (corresponding to a P-value of 4.37×10-5). If we had
performed the FDR-controlled selection using the full set of results instead of taking the result
with the lowest P-value this would be equivalent to an FDR of 12.0%.

We re-ran the gene-level association tests for the 83 FDR-significant genes, conditional on the
top finemapped common (MAF<0.1%) variants for finemapped loci (described above). For each
trait, we identified finemapped common variants for each trait which have the highest Bayes
factor for being a causal variant (i.e. strongest evidence for causality) in their respective loci.
Variants tied for the highest Bayes factor are all selected. There are a total of 915 finemapped
trait-variant pairs (846 unique variants) on which to condition. We used the --condition flag in
SAIGE to condition on the selected common variants when performing gene-level tests for the
corresponding phenotype. We perform the gene-level association tests for each chromosome
independently and only conditioned on common variants from the same chromosome as the
genes being tested.
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After conditioning, seven genes (ACVR1C, PRPH, PYGM, SEC16B, TNFRSF6B, TRIM40,
TUBE1) were no longer significant at the predefined SKAT-O P≤4.37×10-5 threshold, leaving 76
genes. Of these 76, five genes (DEFB112, CHMP4B, FEZF2, GLP1R, PCBD2) were flagged as
having very low minor allele count (MAC<5), leaving 71 genes to be considered for functional
screening.

Olink proteomics
For burden testing across the proteome in the 71 FDR-significant genes, we used 1,456
proteins available in the UKB Olink proteomics data, excluding those which had >10% sample
missingness (TACSTD2, CTSS, PCOLCE, NPM1) and zero variance component in SAIGE Step
1 (ENPP5, FOLR3, PM20D1). Statistical significance (P<2.44×10-7) for gene burden was
defined using Bonferroni correction for 204,743 unique phenotype-gene-consequence
combinations.

Common variant gene prioritisation scores
We used Polygenic Priority Scores calculated by Weeks et al.26 for UKB BMI, WHRadjBMI and
body fat percentage. Scores were downloaded from https://www.finucanelab.org/data.

Age at diagnosis analyses
We curated age at diagnosis of obesity from the UKB linked primary care and hospital record
data using mapping tables generated by Kuan et al.116. Any codes related to “history of obesity”,
for which accurate age at diagnosis could not be extracted, were excluded. We left-truncated
observations at the age of the first record (of any code) in either primary care or hospital data,
and right-censored at the age of the last record. For each of the 71 FDR-significant genes
identified from ES analyses, we performed Cox-proportional hazards modelling117 to estimate
differences in lifetime risk of developing obesity between carriers of pLoF, damaging missense,
other missense, synonymous, or non-coding variants (at MAF<1%) and wild-type individuals
(reference group). All effects were adjusted for sex (in sex-combined analyses), the first 10
genetic PCs, birth cohort (in ten-year intervals from 1930 to 1970), and UKB assessment centre.
Cox modelling was performed using the R package survival v3.3.1118. We visualised age at
onset probabilities using Kaplan-Meier survival curves with the R package survminer v0.4.9119.

Genebass gene-level summary statistics
Gene-level association test summary statistics were calculated by Karczewski et al.31 and
downloaded as a Hail Matrix Table from https://app.genebass.org/downloads. Only
pLoF-associated results corresponding to our 71 FDR≤1% genes were used. Associations were
significant if Genebass SKAT-O P≤9.69×10-6, controlled for FDR≤1% using the
Benjamini-Hochberg procedure27.
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Genetic correlation estimates
Genetic correlation estimates were accessed from the Neale lab’s UKB genetic correlation
browser: https://ukbb-rg.hail.is/rg_browser/. These genetic correlations were estimated using LD
Score regression32, using summary statistics from common (MAF>0.1%) imputed variant
GWAS.

Trait-protein association tests
To assess the effect of plasma protein on each obesity or fat distribution trait, we performed
multiple linear regression with each inverse-rank normalised obesity or fat distribution trait as
the dependent variable and the plasma protein as the explanatory variable, along with the same
covariates used for genetic association testing except sequencing tranche:

trait ~ protein + sex + age + age2 + sex*age + sex*age2 + PC1 + PC2 + … + PC21 +
assessment centre.

Statistical significance (P<3.80×10-6) for a significant association between protein and trait was
defined using Bonferroni correction for a total of 13,167 trait-protein combinations. We used the
Python package UpSetPlot120 to generate UpSet plots.

Pathway enrichment

Trait-protein associations
Using GSEAPreRanked38 we tested for pathway enrichment in a list of proteins ranked by
z-score of the most significant trait association across the nine obesity and fat distribution traits.
Pathways with positive normalised enrichment score (NES) are those enriched in proteins with
strong positive direction of effect (high magnitude positive z-score) in obesity and fat distribution
traits. Pathways with negative NES are enriched in proteins with strong negative direction of
effect (high magnitude negative z-score).

CRISPR RNA sequencing
We used Gene Set Enrichment Analysis (GSEA)38 to test for pathway enrichment in CRISPR
adipocytes RNA sequencing data. Regularised log transformed mRNA counts calculated by
DESeq2 are provided to GSEA. The pathway enrichment for each KO or wild-type hWAT is
compared against the baseline control, the empty Cas9 vector, such that pathways with more
positive NES are those enriched in Cas9 empty and those with more negative NES are those
enriched in the KO or hWAT.

For both the CRISPR RNA sequencing and trait-protein association results we use pathway
sets from KEGG Legacy, KEGG Medicus, REACTOME, GO:Biological Process, and
GO:Molecular Function, downloaded from GSEA’s Molecular Signatures Database
v2023.2.Hs38. When running GSEA or GSEAPreRanked we use 10,000 permutations.
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Selecting target genes
To choose target genes for CRISPR-Cas9 KO we consider all gene association results with
FDR<0.01 which remain significant (P≤4.37×10-5) after conditioning on common variation
significantly associated with the trait (Methods). We then compiled multiple lines of evidence for
each gene:

● Sufficiently expressed in wild-type hWAT cells (RNA-seq transcript counts >10 at eight
and 24 days after differentiation).

● Responsible for a monogenic form of lipodystrophy6 or obesity28.
● Monotonic allelic series indicating a dose-response relationship with gene dosage and a

obesity or fat distribution trait.
● Significantly altered protein levels due to obesity or fat distribution associated genetic

variation
● Significant obesity age-of-onset association.
● Published functional work involving gene knockout or knockdown implicates the role of

the gene in adiposity.

Using these lines of evidence we separated the genes into categories: positive controls (genes
previously implicated in obesity pathways by functional work in human adipocytes), plausible
candidates (genes which have not been implicated in adiposity pathways by functional work in
human adipocytes, but have suggestive evidence from other functional work or from
GWAS/burden association results), and impossible candidates (RNA-seq counts are too low or
gene seems to be associated with a pathway that we are not testing). From these categories we
chose three positive controls (PLIN1, PPARG, INSR) and 11 plausible genes (COL5A3, ABCA1,
EXOC7, MFAP5, MLXIPL, PCSK1, UBR2, TRIP10, DENND5B, HERC1, SLTM). We note that
although PCSK1 is well-characterised as a driver of monogenic obesity, we do not consider it a
positive control for our experiment because it primarily acts through neuroendocrine pathways
rather than adipose tissue-specific lipid or glucose metabolism121. We included three additional
positive controls (IRS1, IRS2, TBC1D4) to act as positive controls for the glucose uptake assay
due to previous evidence suggesting their role in insulin-stimulated glucose uptake (Supp. Table
11).

Cell Culture and Reagents
Human white adipose tissue cells were cultured in Dulbecco′s Modified Eagle′s Medium
(DMEM, Sigma Aldrich, Cat # D6546) with 10% foetal bovine serum (FBS, ThermoFisher Cat #
A5256801) in a 37°C humidified incubator with 5% CO2

122.

Cell Line generation
Guide RNAs (gRNAs) (four gRNAs per gene target) were commercially synthesised and cloned
into the lentiviral vector pLentiCRISPRv2 (GenScript, UK). gRNA sequences are listed in Supp.
Table 12. Lentivirus for individual gRNAs was produced. Briefly, CRISPR plasmids were
cotransfected in HEK293T with packaging vectors pMD2.G (Addgene, 12259) and psPAX2
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(Addgene, 12260) using FuGENE® HD Transfection Reagent (Promega Cat #E2311). Viral
supernatant was collected at 48 hours and 72 hours post-transfection. hWAT cells were
transduced and selected for 3 days in 1 μg/ml puromycin with media changes as required.

Differentiation of human white adipose tissue cells
The wild-type hWAT and single-gene KO (including the negative control ‘KO’ with the empty
Cas9 vector) cells were cultured in Dulbecco's Modified Eagle Medium (DMEM) containing 10%
fetal bovine serum (FBS). To differentiate into adipocytes via addition of differentiation mixture,
the cells were induced with 0.5mM 3-isobutyl-1-methylxanthine (IBMX, Sigma Cat # 5879) and
0.1μM dexamethasone (Sigma Cat #1756), 33µM Biotin (Sigma Cat # 4639), 17µM
Pantothenate (Sigma Cat #5155), 0.5μM insulin (Sigma Cat # 2643), 2nM
3,3′,5-Triiodo-L-thyronine (T3, Sigma, Cat #6397), and 1μM Rosiglitazone (APE Cat #A4304) for
3 days. Next, culture medium was replaced to DMEM supplemented with 10% FBS and 33µM
Biotin, 17µM Pantothenate, 0.5μM insulin, 2 nM 3,3′,5-Triiodo-L-thyronine, and 1μM
Rosiglitazone for 3 days. Medium was subsequently changed every 3 days for the following
days.

Lipid staining with BODIPY
Undifferentiated and differentiated hWAT and single-gene KO cells were stained with 2.9 μM
BODIPY 505/515 (ThermoFisher Cat # 4639) and Hoechst (Hoechst 33342, Trihydrochloride,
Trihydrate - 10 mg/mL solution in water, ThermoFisher Cat # H3570) for 15 min at 37°C in
complete medium, washed with PBS. Cells were analysed for fluorescence intensity using an
Opera Phenix™ High-Content Screening System (Revvity, UK) and Harmony® high-content
analysis software v4.9 (Revvity, UK) provided by the Cellular High Throughput Screening Group
(cmd.ox.ac.uk). For each KO condition, there were six replicates of undifferentiated and
differentiated cells.

Glucose uptake assay
Undifferentiated and differentiated hWAT and single-gene KO cells were stained with
2-NBD-Glucose (Cayman Cat# 11046) for 1 hour. After 1 hour, Hoechst (Hoechst 33342,
Trihydrochloride, Trihydrate -10mg/mL solution in H2O, ThermoFisher Cat# H3570) was added
for 15 min at 37°C. They were then washed with PBS pH 7.4, 1X (ThermoFisher Cat#
10010-015). Cells were analysed for fluorescence intensity using an Opera PhenixTM

High-Content Screening System (Revvity, UK) and Harmony high-content analysis software v4.9
(Revvity, UK) provided by the Cellular High Throughput Screening Group (cmd.ox.ac.uk). For
each KO condition, there were six replicates of undifferentiated and differentiated cells, with
three replicates each for the basal and insulin-stimulated conditions.

RNA sequencing of human white adipose tissue cells
Wild-type hWAT and single-gene KO cells were seeded in six-well plates and collected after
either (1) zero (undifferentiated), 3, 8 or 24 days of differentiation when assessing sufficient
expression in wild-type hWAT or (2) 14 days of differentiation when performing RNA-seq for cell
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lines involved in the CRISPR KO experiment (wild-type hWAT, and single-gene KO cells,
including Cas9-empty cells). Following collection, RNA was isolated using TRIzol (Thermo
Fisher Scientific, Carlsband, CA, USA) according to the manufacturer’s protocol. Subsequently,
RNA samples were purified using the Direct-zol™ RNA Miniprep protocol as per manufacturer’s
(Zymo Research, Cat # R2050) recommendations. Quantification of RNA was performed using
the Nanodrop 1000 Spectrophotometer. All RNA samples were sequenced using Illumina
2x150bp paired-end sequencing. Read alignment was performed with STAR123. Transcript
quantification estimation was performed with RSEM124. Normalised transcript counts were
calculated with DESeq295. The single-gene KO for IRS1 had insufficient RNA for sequencing
and therefore was excluded from RNA sequencing and downstream analyses involving
RNA-seq data.

Immunoblotting
Cells were washed with ice-cold PBS and lysed with a radioimmunoprecipitation assay (RIPA)
buffer containing protease and phosphatase inhibitors. Following 30 minutes of incubation in the
lysis buffer, the cells were centrifuged (12000 rpm, 4°C, 15 min). The samples were denatured
in 4x sodium dodecyl sulfate (SDS) sample buffer at 95°C for 10 minutes. For immunoblotting,
equal amounts of total cell protein were separated by Tris-glycine SDS-PAGE gradient (4-15%
acrylamide) gels (#3450123; Bio-Rad). Proteins were then transferred to polyvinylidene
difluoride (PVDF) membranes transferred onto nitrocellulose membranes (Millipore).
Nonspecific antibody binding was blocked through incubation with blocking solution (5% milk in
TBS-T) under constant shaking for 1 hour. After blocking, the membrane was incubated at 4°C
with a primary antibody solution overnight. The following primary antibodies were used: ABCA1
(#96292, Cell Signalling Technology), IRS1 (#PA1-1057, Invitrogen), IRS2 (#PA5-119208,
Invitrogen), PLIN1 (#9349, Cell Signalling Technology), PCSK1 (#ab220363, Abcam), PPARγ
(D69) Antibody (#2430; Cell Signalling Technology), SLTM (#PA5-59154, Invitrogen), and
beta-actin monoclonal antibody (#AM4302, Invitrogen). Membranes were washed three times
with TBS-T for 15 minutes. The corresponding appropriate secondary antibodies (anti-Rb/M
800, IRDye 800CW) were incubated for 1 hour, and the membrane was washed three times with
TBS-T. An Odyssey CLx Infrared imaging system (LI-COR) was used to detect the signal.

Differential expression analysis of CRISPR adipocyte RNA sequencing
Differential expression analysis was performed using DESeq295 on RNA sequencing data from
CRISPR adipocytes. Genes with raw count less than 10 were removed. The Cas9-empty cell
line was used as the baseline condition. Each KO or wild-type hWAT was then separately
compared to Cas9 empty.

In the differential expression results of the IRS2 KO, two genes (FYN, NTNG1) have Padj=0,
which makes it impossible to take the log when plotting. For the purpose of visualisation, we
assign a -log10(Padj) value of 303.88 to these genes, which is one greater than the highest
-log10(Padj) value observed in the data for nonzero Padj.
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Statistical analysis of lipid accumulation and glucose uptake assays
We quantify lipid accumulation and glucose uptake using mean cytoplasm fluorescence of the
BODIPY or 2-NBD-Glucose stain, as measured by the Opera Phenix™ High-Content Screening
System. For each KO and the wild-type hWAT, we combined replicates with the baseline
negative control, Cas9 empty, and regress readout against KO status:

readout ~ is_ko + 1

For wild-type hWAT replicates, is_ko is True to separate Cas9 empty and the wild-type
replicates. After regression, we calculated Cook’s distance for each observation. Outliers were
removed if Cook’s distance exceeded the median of the F distribution with degrees of freedom n
and n-p, where n is the number of observations included in the regression (lipid accumulation
n=12; glucose uptake n=6) and p is the number of predictors, including the intercept (p=2)125.
Only one observation was flagged as an outlier, for the SLTM KO: cytoplasm mean fold change
relative to Cas9 empty=1.618, Cook’s distance=0.865. We removed this outlier and reran the
regression for SLTM KO lipid accumulation.

We consider the KO to have a significant effect on the readout if P<0.05 for the is_ko term from
the linear regression. Note that this is the equivalent of a two-sided t-test of mean readout
between observations from Cas9 empty and a single-gene KO or the wild-type hWAT.

Data and code availability
Summary statistics for all phenotypes will be made available through the GWAS Catalog upon
publication. All code used in this study will be made available through GitHub upon publication.
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