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Highlights 
 
 

• Many diseases are increasingly conceptualized as multifactorial, progressive processes   
 

• Robust prediction of progressive disease courses can advance risk stratification and 
treatment targeting 

 

• RiskPath provides optimizable timeseries AI to predict progressive disease with 
longitudinal cohort data  
 

• Enhanced explainability and functionality facilitates risk pathway mapping and compact 
models  

 
 
The Bigger Picture 
Identifying persons at elevated risk for a disease outcome is a key prerequisite for targeting 
interventions to improve health. Current risk stratification tools for common diseases are aging 
and achieve only moderate performance. Moreover, many diseases are increasingly recognized 
to be complex outcomes where individual risk is determined not by a single effect modifier but by 
time-dependent interactions among many contributory factors over the lifecourse. There is an 
urgent need to improve individual-level prediction for progressive diseases and understand how 
multifactorial risks interact over time so that risk stratification and accompanying prevention and 
intervention strategies can be targeted earlier and more effectively in the disease course. 
 
Summary       
 
Many diseases are the end outcomes of multifactorial risks that interact and increment over 
months or years. Timeseries AI methods have attracted increasing interest given their ability to 
operate on native timeseries data to predict disease outcomes. Instantiating such models in risk 
stratification tools has proceeded more slowly, in part limited by factors such as structural 
complexity, model size and explainability. Here, we present RiskPath, an explainable AI toolbox 
that offers advanced timeseries methods and additional functionality relevant to risk stratification 
use cases in classic and emerging longitudinal cohorts. Theoretically-informed optimization is 
integrated in prediction to specify optimal model topology or explore performance-complexity 
tradeoffs. Accompanying modules allow the user to map the changing importance of predictors 
over the disease course, visualize the most important antecedent time epochs contributing to 
disease risk or remove predictors to construct compact models for clinical applications with 
minimal performance impact.  
 

Introduction 
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Progressive diseases such as cardiovascular, neurodegenerative, metabolic and psychiatric 
disorders and cancer collectively represent >90% of morbidity, mortality and healthcare costs.1 
Individual risk for these complex conditions is determined by cumulative interactions among many 
contributory factors, presenting sequential opportunities for mitigation and prevention. Clinical 
medicine has long focused on developing risk stratification tools that stratify individual risk for 
progressive diseases in order to implement preventative strategies, target interventions or help 
choose among treatments. A risk stratification tool typically consists of a predictive model that 
explains outcome variance in the condition of interest with additional scoring logic to stratify 
individuals into risk categories such as high, medium or low. Popular tools are available to 
clinicians and the general public that stratify individual risk for many progressive, chronic 
diseases.  However, these tools are aging, exhibit only moderate predictive performance and 
were constructed with inputs from a single data collection interval. For instance, predictive 
accuracy varies from 0.51-0.83 in standard of care risk calculators in chronic obstructive 
pulmonary disease, diabetes, colorectal and breast cancer and cardiovascular conditions and 
positive predictive value (PPV, or precision) and specificity are frequently ≤0.15.2-18 Motivated by 
the desire to improve performance and construct models that better approximate the underlying 
disease process, interest has grown in using methods specialized for learning from timeseries 
data to predict progressive disease outcomes using longitudinal data. This is a fertile field offering 
many opportunities for discovery and development given the availability of both classic and 
emerging population cohorts collecting rich longitudinal data about their participants. Some (e.g. 
Nurses Health Study; Framingham Heart Study) collected data over decades. New cohorts 
continue to be formed such as the All of Us, UK Biobank and Million Veteran Program studies. 
Such observational cohorts with research foci usually collect more varied information than is 
typically available in an electronic health record with data collection conducted at wider, discrete 
time intervals, e.g., annually.  
 
Major algorithmic classes that can model timeseries data at the individual level include classical 
statistical, state space, Bayesian and dynamic linear techniques, functional data analysis and 
deep learning, or AI. The latter offers specific advantages in modeling the course of progressive 
disease: it requires no assumptions about priors or the data structure and can learn from native 
rather than engineered features. Recent work has utilized timeseries AI to construct predictive 
models for various conditions such as cardiovascular, renal, neurologic and multi-disease 
outcomes,19-31 though more often using electronic health records, physiologic or clinical data and 
for diagnostic use cases. This prior work has typically not been explainable at the feature level 
nor optimized the structural configuration of the AI architectures and has obtained heterogenous 
performance. Of note, timeseries AI architectures easily participate in overparameterized 
learning. This refers to the behavior of complex algorithms with more parameters than the number 
of training data points, which is commonly seen in ‘black box’ models such as deep or ensemble 
learning. For instance, the parameters of a deep learning model are the total number of weights 
and biases. In these scenarios, models initially follow the traditional bias-variance curve seen in 
classical machine learning where test error decreases and then increases. However, if 
parameters are further increased, test error decreases again to a level below the nadir of the initial 
bias-variance curve. This phenomenon has been dubbed ‘double descent.’ Thus, despite the 
ostensible potential for overfitting, overparameterized models perform very well empirically and 
the mathematical basis for this behavior has recently been explained.32,33 Since timeseries AI 
architectures are structurally complex, they will almost always be overparameterized unless 
applied in extremely large datasets. Moreover, this property can be a strength that improves 
performance beyond the bias-variance learning regime by increasing the model’s capacity to learn 
complex patterns, generalize well and converge to good minima.  
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Many extant predictive studies using timeseries AI in biomedicine have also used a large and/or 
unconstrained number of predictors without emphasizing explainability. These characteristics 
tend to limit their potential for practical deployment within patient-facing risk stratification tools and 
make them more suited as automated decision-support or diagnostic tools running in high-
capacity environments, where it is possible to passively ingest all required inputs from an 
electronic health record. Creating explainable models can also facilitate engagement with expert 
clinical opinion to shape and make meaning in predictive modeling. Moreover, in many settings it 
is desirable to use smaller and simpler models given resource constraints or user preference. 
Since clinicians and patients have engaged in risk stratification in common progressive diseases 
for decades, they are accustomed to using tools that ask for ≤10 specific and typically 
recognizable pieces of data. Finally, the full potential of explainable timeseries AI modeling has 
not been exploited. Since these algorithms can operate on native longitudinal data, they present 
the opportunity to inform intervention and prevention discovery by interrogating, for example, how 
risk interactions evolve over time epochs leading up to the disease outcome. 

 
To address these opportunities, we present RiskPath, a toolbox for timeseries prediction in 
longitudinal tabular cohort data. RiskPath offers three leading advanced architectures for learning 
in timeseries data as well as comparisons with popular classical machine learning approaches. 
Automated optimization of deep learning topology is integrated into predictive modeling to 
facilitate the production of robust models with optimized architectures. Users can also explore 
performance-complexity tradeoffs to quantify the performance impact of configuring a simpler 
model with fewer neurons. Similarly, users may want to reduce the number of predictors in their 
models given expert input, deployment constraints or to achieve smaller models to improve 
usability. The feature ablation module visualizes the relative importance of predictors to help guide 
these decisions. RiskPath enhances translational explainability by embedding the Gradient 
SHAP34,35 process, a game-theoretic approach for gradient-based models, and using its output to 
generate novel metrics that delineate cumulative risk pathways.   

 
In this study we illustrate RiskPath’s capabilities and performance in three benchmark, ongoing 
cohort studies that collect the type of rich tabular data historically used in preparing predictive 
models for instantiation in risk stratification tools. The Adolescent Brain Cognitive Development 
(ABCD) cohort is the largest long-term study of child and adolescent development in the US. The 
Multi-Ethnic Study of Atherosclerosis (MESA) is designed to investigate the development and 
progression of cardiovascular and metabolic disease in a diverse, multi-ethnic population. The 
Cardiovascular Health Study (CHS) is a large, long-term observational study focused on 
understanding cardiovascular disease in older adults. Eight different outcomes were predicted 
across these cohorts that are examples of highly prevalent progressive disease processes: 
anxiety; depression; attention deficit hyperactivity disorder (ADHD); disruptive behaviors; total 
mental illness burden; hypertension; borderline hypertension and metabolic syndrome.  
 
We show that RiskPath achieves very robust performance and provides new ways to map and 
visualize cumulative risk pathways for progressive diseases. Our work also contributes to the 
evolving literature on overparameterized machine learning and feature ablation in tabular 
timeseries data, with practical demonstrations in several large, independent real-world cohorts.  
 

Results 
 
Overview of the Toolbox 
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RiskPath offers three advanced architectures for timeseries prediction with three-dimensional 
(3D) tabular data: Transformer; Temporal Convolutional Network; and Long Short-Term Memory 
(LSTM) Network. Leading methods treating the tabular timeseries as two-dimensional (2D) data 
are also available: Feedforward Artificial Neural Network (ANN); Random Forest (RF); Support 
Vector Machine (SVM) and Logistic Regression (LR) with the elastic net regularization. Users may 
select one, any or all methods to perform comparisons. An integrated optimization layer for deep 
learning architectures identifies optimal network width (number of hidden units) in a principled, 
automated fashion and allows the user to explore performance-complexity tradeoffs across 
structural configurations. The feature ablation module allows users to examine relationships 
between feature importance and performance. RiskPath offers new metrics to interrogate fitted 
3D timeseries models that utilize the raw output of Gradient SHAP. Predictor Path computes and 
visualizes how predictor importance changes over time epochs. Epoch Importance computes and 
visualizes the relative importance of different time epochs in the timeseries. A number of utilities 
are also packaged with RiskPath including visualization tools, feature selection with the LASSO 
(linear) and Boruta (nonlinear) methods and 3D matrix concatenation with five different options 
for padding incomplete timeseries matrices. Here, we demonstrate results after applying RiskPath 
to predict depression, anxiety, disruptive behaviors, ADHD and total mental illness burden in the 
ABCD cohort; hypertension and borderline hypertension in the CHS cohort; and metabolic 
syndrome in the MESA cohort. 
 
Performance of timeseries and classical machine learning methods are similar  
 
Performance of optimized timeseries AI models and the best performer among optimized 
feedforward neural networks, Random Forest, SVM and logistic regression models was similar 
(Table 1a and 1b). Among the three timeseries architectures available in RiskPath, temporal 
convolutional networks and transformers performed better than LSTMs. The margin of 
improvement is idiosyncratic among learning tasks. For instance, transformers or temporal 
convolutional networks improve accuracy by 1-2% in mental illness prediction in ABCD, but do 8-
10% better in predicting metabolic syndrome in the MESA cohort. To assess the degree of 
performance sensitivity to sample size, we sub-sampled the data and repeated our analyses in 
samples of size 50% and 25% of original samples for each experiment. Performance across 
techniques and predictive targets did not markedly differ in the sensitivity analysis. These results 
may be inspected in Supplementary Table 1. In addition, plots of Receiver Operating 
Characteristic (ROC) curves are available in Supplementary Figure 3.  
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As expected, classical approaches were faster in training models since they do not operate on 
native timeseries data, have simpler architectures and do not undergo topologic optimization. 
Training times for deep learning models (including the feedforward network) are in the range of 1 
(smaller ABCD samples) to 45 minutes (larger CHS samples). Of note, these training times are 
for the entire topologic optimization process which here trains 42 models. Therefore, the training 
time of an individual deep learning model is much less than the total training time reported in 
Table 1b. All optimized test models, which represent the prototypes that would be embedded in 
risk stratification tools, including timeseries AI, require < 2 seconds to complete. 
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Table 1a and 1b: Comparative performance of timeseries AI and machine learning methods in 

predicting eight disease conditions across the ABCD, MESA and CHS cohorts. 

Performance in out of sample testing is shown for baseline models obtained with all inputs 

remaining after feature selection (Supplementary Table 2). Algorithm settings may be viewed in 

Supplementary Table 3. A Temporal Convolutional Network and a Transformer model are 

abbreviated as TCN and Trans respectively. 

 
Topologic optimization improves performance of deep learning architectures  
 
For deep learning architectures including timeseries AI and feedforward neural networks, we used 
RiskPath to vary network width (number of neurons or hidden units) in the range [8,1200] and find 
the optimal structural configuration with best generalization performance in out of sample testing. 
This point is identified by finding the best test performance in the portion of the learning curve 
where test accuracy and loss have stabilized. Figure 1 shows example RiskPath visualizations 
of how topologic optimization is achieved for predicting anxiety with different timeseries AI 
architectures. In these performance-complexity curves, performance increasingly improves as 
network width is increased past the classical bias-variance zone and interpolation point before 
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test accuracy and loss flattens. Red triangles in these plots indicate optimal model topology. This 
is typical behavior, as may be seen in other disease targets in Supplementary Figure 1.  

 
 
 
 
 
Feature ablation has minimal impact on or improves generalization  
 
Fine tuning fitted predictive models by removing features may be motivated by the desire for 
simpler or more compact models, data or system constraints or in response to expert input. The 
feature ablation module in RiskPath provides a principled basis for feature reduction in fitted 
models. Here, predictor importances calibrated with mean 
SHAP values are analyzed to identify the point of diminishing 
returns where additional features are “no longer worth the 
corresponding performance benefit.”36 Figure 2 gives an 
example of this process using a Transformer to predict 
anxiety.  Predictor importance may be observed to quickly 
decrease and asymptote over weaker features, where the 
latter are excellent candidates for ablation. An obvious ‘knee’ 
is visible representing the point of diminishing returns. This 
typical behavior may be seen in other disease prediction 
models in Supplementary Figure 2. RiskPath embeds 
Lavorini’s kneefinder function37 to automatically find this point 
by determining the maximum distance between the 
importance curve and a cord from first to last importance 
(Figure 2a). Users can also specify a fixed number of 
predictors and re-fit more compact models with the most 
important predictors meeting this threshold. We applied 
these processes across the best performing timeseries AI 
models to quantify the impact of feature ablation using the 
most important features up to the point of diminishing 
returns and the 10 most important features, where the latter 
corresponds to the number most often seen in risk stratification tools. This post hoc analysis 

Figure 1: Performance-

complexity tradeoffs in 

prediction of anxiety with 

three different timeseries 

AI architectures 

The relationship between 

increasing network width 

and accuracy (top) or 

binary cross-entropy loss 

(bottom) is shown for 

predicting anxiety with 

LSTM, temporal 

convolutional network or 

transformer architectures 

in the ABCD cohort.  Red 

triangles indicate the 

optimal structural 

configuration identified by 

RiskPath. A Temporal 

Convolutional Network is 

abbreviated as TCN. 

 

 

Figure 2: Feature ablation 

a shows a schematic of how the 

point of diminishing returns is 

identified for b the prediction of 

anxiety in the ABCD cohort using 

a transformer architecture.   
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showed that ablating features based on their importances results in minimal performance impact 
(Table 2) or minor performance improvement in certain models.  

 
 
 
 
 
 
 
 
 
 
 

Table 2: Performance impact of feature ablation in timeseries AI prediction 

Performance statistics are shown for the best-performing model in out of sample testing using 

RiskPath with a) the most important features prior to the point of diminishing returns and b) the 10 

most important features. Performance metrics presented correspond to the same individual 

models as Table 1 after feature ablation. 
 
Novel explainability metrics map risk pathways 
and epoch contribution to prediction 

 
While SHAP is a popular method for adding 
explainability to black box models, mean predictor 
importance across samples is typically the only metric 
reported, and has not generally been done in 
timeseries AI studies. A substantial motivation in 
developing RiskPath to model progressive diseases 
with timeseries AI is the latter’s ability to operate 
directly on unmodified tabular data since this opens 
the opportunity to probe the behavior of predictors 
over time. RiskPath leverages Gradient SHAP raw 
output to derive new metrics that allow clinically-
relevant interpretation of the timeseries inputs. Epoch 
Importance computes and visualizes the relative 
importance of different time epochs leading up to 
disease outcome. An example is shown in Figure 3 
predicting hypertension in the CHS cohort where each 
time epoch represents a year. Here, it may be 
observed that the importance of different time epochs 
to the prediction varies considerably from year to year.  
 
Predictor Path computes and visualizes how predictor importance changes over antecedent time 
epochs to map the cumulative risk interactions that predict progressive disease outcomes.  

Figure 3: Relative importance of time 

epochs  

The Epoch Importance metric is used 

to compute the relative contribution 

of each antecedent time epoch risk 

for hypertension in the CHS cohort.  
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The additional granularity offered by this 
approach shows how individual predictor 
importance may vary substantially from one 
period or lifestage to the next. Figure 4 gives 
ADHD prediction in the ABCD cohort as an 
example. In this analysis time epochs 
correspond to increasing age in children aged 
9-13 years. As may be seen, the contribution 
of screen use time and executive function 
(cognitive control) deficits to risk for ADHD 
rises sharply in the run up to adolescence 
while the importance of other predictors 
remains relatively stable. 
 
 
 
 
 
 
 

 

Discussion 
 
Interest in using timeseries AI approaches to model disease processes and clinical decision-
making has grown in recent years and been further invigorated by the expansion of techniques 
like transformer architectures.38 While there is increasing acceptance of AI for clinical risk 
stratification, this has been more the case in convolutional neural networks applied to imaging 
data. These have built on advances in computer vision to produce risk predictions for melanoma,39 
tuberculosis,40 lung cancer,41 diabetic retinopathy42 and macular edema43 with clinically-deployed 
classifiers that are equal to or better in discriminating cases than board-certified specialists44-46 
with accuracy of ~0.88-0.95 and good sensitivity and specificity.43,46,47 AI applications using tabular 
data from longitudinal observational cohorts for predictive modeling, historically among the most 
classic translational use cases, have gained less traction. Common challenges are the 
interrelated issues of performance, usability and data collection.48 Where a clinical image is a 
single-shot acquisition of high-dimension data, tabular features in predictive models that are 
instantiated in risk stratification tools must usually be collected anew and singly from patients. 
Moreover, iteratively incorporating clinician insights, usability constraints and model optimization 
promotes the construction of predictive models that generalize well and are parsimonious and 
user-friendly. In turn, explainability is important to help facilitate these processes.49 RiskPath is 
designed to facilitate easy comparisons and structural optimization for complex timeseries 
architectures, enhanced explainability and principled approaches to fine-tuning predictors in 
prediction in longitudinal cohorts.  
 
Our performance comparisons across varied progressive diseases and independent cohorts 
yielded several interesting observations. Overall, performance in timeseries AI algorithms 
operating on 3D data and feedforward and classical machine learning techniques operating on 
2D data (after Haar wavelet transformation) achieved similar performance. All algorithms 
achieved 0.85-0.99 across all performance metrics including sensitivity (recall), specificity and 
PPV, where ≥0.85 is a pragmatic benchmark for clinical utility. This is superior to existing predictive 
studies using tabular cross-sectional data for risk stratification purposes in mental health (~0.70-

Figure 4: Risk Pathway Mapping 

The Predictor Path metric is used to 

compute predictor importance within time 

epochs and map shifting predictor 

importance over time. 
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0.80 accuracy and AUROC50-58) and cardiovascular and metabolic disease (0.65-0.81 accuracy 
and AUROC2-4,59). Similar performance between ‘3D’ and ‘2D’ models is an expected result, since 
timeseries AI tends to yield greater performance increments in longer input series than are 
typically available in a longitudinal cohort.60 Notably, timeseries AI pulled ahead a little in the 
hypertension models, which use data from 10 time epochs. We observed a clear performance 
separation among timeseries methods with transformer and temporal convolutional architectures 
excelling. However, there was no single best timeseries architecture, supporting the value of 
comparing across architectures when fitting a predictive model in a specific dataset. Also as 
expected, deep learning models took longer to train since these went through the structural 
optimization process with 42 model fits. The current release of RiskPath was not parallelized in 
order to provide baseline comparisons with classical techniques. A forthcoming update will include 
GPU parallelization to speed computations. A simple approach to managing computational 
overhead in RiskPath would be to survey a smaller and/or sparser range of model widths in the 
optimization process. Other strategies include model parallelism, training in the cloud, pruning 
and quantization and checkpointing and resuming. Dropout is also a popular strategy in deep 
learning, though its application to timeseries learning can be controversial. Shen et al. and Dantas 
et al provide further detailed reviews of strategies for improving efficiency in deep learning.61,62    
 
We highlight that the above observations are the case after optimization of timeseries AI. Figure 
1 shows that alternative structural configurations with smaller model widths to the optimal model 
selected by RiskPath can yield accuracy and AUROC of 0.75-0.85. This is often – though not 
exclusively – the performance range observed in existing studies that apply timeseries AI to 
clinical tabular data (see: Introduction for examples), supporting the value of topologic 
optimization in this algorithmic class. There is no principled method to discover the optimal 
topology of a deep neural network, and many practitioners use heuristics or trial and error. We 
approached optimization through the prism of recent theoretical discoveries that explain the 
empirically strong generalization performance of rich, overparameterized ‘black box’ models that 
would be expected to overfit under classical bias-variance concepts in machine learning. This 
phenomenon has been demonstrated in multiple data types and architectures.63 We contribute to 
this literature by showing that an optimization approach that progressively adds network width 
can take advantage of ‘double descent’ behavior to identify an optimal topologic configuration for 
deep networks operating on tabular data in eight tasks across 3 independent real-world datasets. 
This framework can also provide a useful way to quantify the performance impact of choosing 
less-parameterized deep learning models, such as might be preferred in lower-resource settings 
or for runtime efficiency. RiskPath visualizations of these performance-complexity tradeoffs can 
help guide pragmatic decisions regarding these choices. Alternative approaches to altering 
parameterization include increasing the number of observations (for example by supplementing 
with synthetic data64) or by informing a smaller model with knowledge from a larger model that is 
less or not overparameterized. Approaches to the latter include transfer learning,65 meta-
learning,66 knowledge distillation67 or knowledge graphs.68,69 While outside the scope of the 
current study, additional work in this dynamic field will inform how manipulation of the relationships 
among structural parameters and the number of input features and observations can optimize 
learning in timeseries AI.  
 
Model parsimony can be an important issue in translational settings with tabular data collected 
from patients. In data inputs collected singly, additional assays and assessments can incur 
additional patient, clinician and administrative burden and accompanying discomfort, pain and/or 
cost. More generally, parsimony is generally considered to support improved generalization and 
explainability. The need to transition away from “off-the-shelf” AI and deep learning has been 
highlighted70 and it has been shown that redundancy in feature representations exists even in 
image or language tasks, permitting ablation and/or recovery training with minimal (or even 
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improved) performance impact.71,72 This suggests that the majority of features can be safely 
ablated without a substantial impact to performance. In the present work, we operationalize these 
insights by providing a feature ablation module that maps predictor importance to performance 
metrics and identifies a point of diminishing returns. We tested this across disease conditions and 
cohorts, finding that the majority of features can be safely ablated to the point of diminishing 
returns with minimal impact to performance, including sensitivity, specificity and PPV. Further, 
timeseries AI predictive models for hypertension and metabolic syndrome in the CHS and MESA 
cohorts showed slightly improved testing performance after ablation in a practical demonstration 
of parsimony improving generalization. These observations held true even when features were 
ablated beyond the point of diminishing returns to the tighter threshold of 10 predictors expected 
by community users of predictive models embedded in risk stratification tools. Taken together, our 
results suggest that timeseries AI models constructed in tabular, longitudinal cohort data can be 
safely constrained to much smaller input feature sets with minimal performance impact and in 
certain datasets even exhibit improved generalization properties.  
 
Enhancing the explainability of AI supports many aspects of model construction. While it is 
increasingly common for studies using deep learning to report overall or mean predictor 
importance using explainability techniques like SHAP, this is not typically the case in timeseries 
AI prediction. Timeseries AI methods offer interesting opportunities to interrogate the 
developmental course of disease and reason not only about which predictors influence disease 
risk but also when they have the largest impact and how cumulative risk pathways shift over 
lifestages. Here, we construct two new explainability metrics that focus on these latter constructs 
and complement the conventional mean feature importance metric. Using Epoch Importance, we 
are able to identify time periods or epochs that make larger contributions to risk for disease 
outcomes. This could be used to inform prevention or intervention planning. For instance, Figure 
3 suggests that 2 and 4 years prior to the index epoch are relatively more important to risk for 
hypertension. Predictor Path helps visualize how risk predictors shift in importance to inform our 
understanding of how cumulative disease pathways operate over time. In the example given in 
Figure 4, mapping the cumulative risk interactions that predict ADHD suggests that youth screen 
time use and executive function, both of which are susceptible to intervention, become 
increasingly important risk contributors over adolescence.  
 
Taken together, our results across eight different conditions in three large, independent cohorts 
suggest that timeseries AI approaches that include topologic optimization and enhanced 
explainability can predict outcomes with parsimonious models that generalize well and inform our 
understanding of the cumulative risk processes that underpin progressive diseases. While we 
here apply approaches to classic longitudinal cohorts for the purpose of constructing predictive 
models angled toward risk stratification in progressive disease, RiskPath may be useful in other 
biomedical use cases where longitudinal data is available and enhanced translational 
explainability is valuable such as developmental processes or public health monitoring. 
 

Experimental Procedures 
 
Resource Availability 
 
Lead contact 
 
Further information and requests will be fulfilled by the lead contact, Nina de Lacy 
(nina.delacy@utah.edu) 
 
Data and code availability   
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ABCD data used in this study may be obtained by applying to the ABCD Repository at the 
National Institute of Mental Health Data Archive (https://nda.nih.gov/abcd): DOI: 10.15154/z563-
zd24 
 
CHS data used in this study may be obtained by applying to the BioLINCC repository at the 
National Institutes of Health (https://biolincc.nhlbi.nih.gov/home/): Accession Number: 
HLB00040019a 
 
MESA data user in this study may be obtained by applying to the BioLINCC repository at the 
National Institutes of Health (https://biolincc.nhlbi.nih.gov/home/): Accession Number: 
HLB00640824a 
 
RiskPath is an open source code repository in Python and PyTorch that is available at our 
GitHub repository (https://github.com/delacylab/RiskPath). 
 
Data used in this study 
 
This study has been deemed not human subjects research by the University of Utah Institutional 
Review Board. 
 
ABCD cohort data 

The ABCD data used in this study comes from the ABCD open science repository. ABCD is an 
epidemiologically-informed study launched in 2017 which is collecting data over 10 years from a 
21-site cohort of adolescents across the US. Participants (52% male; 48% female) were enrolled 
at age 9-10 and are currently 13-14 years old. This is a naturalistic, unstratified cohort. Further 
descriptions of the overall design as well as recruitment procedures and the participant sample 
may be found in Jernigan et al; Garavan et al; and Volkow et al.73-75 and the study website at 
abcdstudy.org. ABCD collects rich multimodal data of youth participants and their parents. Here, 
we utilize variables from assessments of physical and mental health, substance use, 
neurocognition, school performance and quality, culture, community and environment contributed 
by youth and their parents as well as biospecimens (e.g. pubertal hormone levels) and 
environmental toxin exposure.76,77 

 

ABCD is a longitudinal study where the cohort contains ~800 twin pairs and non-twin siblings may 
be enrolled.  General inclusion criteria for the present study were a) participants enrolled in the 
study at baseline (9-10 yrs) who were still enrolled in the ABCD study through 13-14 yrs 
(n=10,093) who were b) youth participants unrelated to any other youth participant in the study 
(n=8,363). If a youth had sibling(s) present in the cohort, we selected the oldest sibling for 
inclusion. 

 

The baseline feature set comprised the majority of phenotypic variables available from the ABCD 
study, including data collection site, a proxy for geographic location. Predictive targets were 
formed from participant scores in the ASEBA Child Behavior Checklist (CBCL), a standardized 
assessment of mental health in widespread clinical and research use.78 Parents rate their child 
on a 0-1-2 scale on 118 specific problem items which are then used to form continuous subscale 
scores in clinical dimensions of interest such as Anxiety or Depression. To form binary 
classification targets, we thresholded and discretized CBCL subscale T scores using cutpoints 
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established by ASEBA for clinical practice by deeming every individual with a T score ≥65 as a 
positive case (encoded as 1) and every individual with a score <65 as a negative case (encoded 
as 0) for ADHD (Attention disorder in ASEBA), Anxiety, and Depression, but a T score of  ≥60 as 
the cutpoint for Total Burden of MI. Disruptive Behavior cases are established by meeting these 
case criteria for either Aggression or Rulebreaking, corresponding to the clinical definition of 
Disruptive Behavior Disorder. The ABCD data dictionary may be viewed at: 
https://nda.nih.gov/data_dictionary.html?source=ABCDALL. 

 
CHS cohort data 
The CHS data that we used in this study comes from NIH’s BioLINCC open science repository. 
The CHS study (https://chs-nhlbi.org/) was launched in 1987 to identify risk factors for 
cardiovascular disease related to coronary heart disease in adults aged 65 or older and the 
investigation of pulmonary disorders, diabetes, kidney disease, vascular dementia, and 
frailty. CHS collected data annually from 1989-1999 via extensive annual clinical examinations. 
Measurements included traditional risk factors such as blood pressure and lipids as well as 
measures of subclinical disease, including echocardiography of the heart, carotid ultrasound, 
and cranial magnetic-resonance imaging (MRI). This is an observational cohort. Further 
descriptions of the overall design as well as recruitment procedures and the participant sample 
may be found in Fried et al.79 Participants were contacted by phone to ascertain their health 
status every 6 months. Clinical outcomes were recorded in a binary fashion and included 
coronary heart disease, angina, heart failure, stroke, transient ischemic attack, claudication, 
diabetes and hypertension. Here, we utilize variables collected from patients spanning 
laboratory assays (e.g. thyroid hormone, glucose and lipid levels), health, medication and 
mental health history, behavioral, diet, exercise and health habits and clinical testing (e.g. blood 
pressure, heart auscultation, brain imaging). The CHS data dictionary may be viewed at: 
https://biolincc.nhlbi.nih.gov/media/studies/chs/data_dictionary/CHS_v2019a.pdf.  
 

Inclusion criteria for the present study are participants who were enrolled (and agreed to share 
their data) and remained alive in the CHS study for 10 years. This comprised a total of 3,206 
participants. The predictive targets in CHS are supplied in the original data as a clinical ternary 
variable where original data had 1=Normal; 2=Borderline; 3=Hypertension. The present study 
defined two binary targets accordingly: Hypertension (n=2382) is the comparison between Normal 
and Hypertension, and Borderline Hypertension (n=1729) is the comparison between Borderline 
Hypertension and Hypertension. 
 

MESA cohort data 
The MESA data used in this study come from the NIH’s BioLINCC open science repository. MESA 
is a longitudinal study aimed at understanding the development of cardiovascular disease across 
diverse populations. It includes data from over 6,800 participants aged 45-84, with no prior history 
of cardiovascular disease, representing multiple ethnic groups. The dataset features extensive 
imaging, genetic, and clinical data. While the dataset contains 6 exams from 2000 to 2018, only 
the first 4 exams (2000-2007) are considered in this study due to the substantial reduction in 
sample size in the latter part of the study.  
 
Inclusion criteria of the MESA data in the present study are participants not excluded from all 
follow-up events (n=6809). The predictive target in MESA is metabolic syndrome where the 
original data supplied it as a binary variable. By subsetting to the participants who have been 
assessed with metabolic syndrome in the last considered examination, a total of 5,636 
participants are considered in this study. The objectives and design of the study can be found in 
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Bild et al.80 The MESA data dictionary may be viewed at 
https://biolincc.nhlbi.nih.gov/media/studies/mesa/data_dictionary/MESA_v2023a.pdf. 
 
Data cleaning and preprocessing 
For each studied dataset, the study data dictionary guided the variable encoding process. To 
ensure parsibility as a numerical dataset, all non-numerical variables were removed from 
consideration. For each variable, values represented as missingness in the dictionary were 
encoded as missing data points. Phenotypic variables in ABCD lacking summary scores were 
scaled (by min-max normalization) and averaged to a summary metric. Pairs of variables with one 
encoding unit of measurements were paired up to ensure interpretability (e.g., ‘How often do you 
use fat in cooking’ and ‘Unit of time’). The names of variables that changed over time epochs have 
been standardized to ensure consistency throughout the timeseries dataset. 

 

The pipeline for data preprocessing is 
summarized in Figure 5. All variables 
after cleaning were encoded according 
to the dictionary as a nominal, ordinal, or 
continuous variable. Non-binary 
nominal variables were one-hot 
encoded. Variables that could 
potentially leak information to each 
predictive target were removed after 
inspection by NdL, who is a medical 
doctor. For instance, symptoms of the 
predictive target in ABCD or medication 
given for the predictive target in CHS 
and MESA. Features with >35% missing 
values were discarded, where prior 
research shows that good results may 
be obtained with machine learning 
methods for imputation with up to 50% 
missing data.81 The resultant data were 

randomly partitioned into a training and validation partition and a test partition held out for out of 
sample testing in the ratio 7:3 by stratifying the target. All subsequent pre-processing was 
performed separately in these partitions to avoid bias and information leakage.  
 

Each subsequent preprocessing step is then applied to the training and test datasets 
independently within each time epoch. For each positive case of the target, a negative case of 
the same gender and age group (binarized by median age) was matched. See Table 3 for sample 
sizes after balancing. 
 

Figure 5: Preprocessing pipeline 
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Continuous features were winsorized 
to the bounds of mean +/- 3 standard 
deviations whereas ordinal features 
were winsorized according to the 
bounds encoded in the provided data 
dictionary. Then all features were 
scaled to the unit interval using min-
max normalization. Missing values 
were imputed using non-negative 
matrix factorization (with an initial 
strategy of filling in mean values), 
an imputation method that is 
particularly suitable for large-scale 
multimodal data since it performs well regardless of the underlying pattern of missingness.82-84 

 
Input matrix padding 
In longitudinal data, padding may be required to impute features with no samples in a given time 
epoch. RiskPath offers matrix padding as a utility where users may select among five different 
padding strategies: constant, mean (average of samples from other time epochs), median 
(median of samples from other time epochs), backward (samples from the closest earlier time 
epoch), and forward (samples from the closest later time epoch). Notice that an optimal choice of 
padding strategy is data-dependent. For the sake of simplicity, each feature without any sample 
in a time epoch is padded with the constant approach (i.e., padding with 0) in this study.  

Feature Selection 
As a utility for user convenience, RiskPath provides 3 options for feature selection: (1) L1-
regularized and cross-validated logistic regression to capture features linearly relevant to the 
target (linear), (2) the random-forest-based Boruta85 method to capture features non-linearly 
relevant to the target (nonlinear), and (3) combining the feature subsets returned by (1) and (2) 
(both). Users can also choose to opt out of any feature selection technique (none) and use their 
own preferred approach or no feature selection.  

(1) is implemented by the scikit-learn LogisticRegressionCV86 and (2) by the BorutaPy package87. 
RiskPath uses Python wrappers to adapt these methods for time series data. Users have explicit 
control of settings that constrain the number of features selected by each technique. In the present 
study, feature subsets of each setting in linear, nonlinear, both, and none were generated for each 
experiment, and performance was compared across these feature subsets. 
 

The L1-regularized and cross-validated logistic regression approach, also known as the LASSO 
CV in the regression case, is a gold standard linear feature selection technique for ML that 
identifies a set of linear coefficients minimizing the logarithmic loss of the prediction under L1-
regularization. Default settings in LogisticRegressionCV were adopted in our experiments. 
RiskPath adapted this subroutine for time-series data by separately performing feature selection 
at each time epoch in the training dataset. The union of features across time epochs was obtained 
to determine an overall linear feature subset. RiskPath users are offered the additional option of 
thresholding coefficients output to further constrain the size of feature sets. Our baseline analyses 
adopted a lenient approach by leaving coefficients un-thresholded so that all features with a non-
zero coefficient were accepted as linearly relevant. 
 

Boruta is an ensemble-based technique that is a popular nonlinear method for feature selection. 
Constructed around a random forest algorithm, it compares original features with their shadow 

Table 3: Study sample and feature set sizes after feature 

selection 
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copies (original features with values shuffled) such that a feature is important only when it has an 
importance score higher than the maximal importance score in the set of shadow features, that 
is, if it has a significantly higher importance over k random forest runs than the expected value 
k/2 (as defined by a binomial distribution with p = 1/2). Significance is measured by multiple 
hypothesis testing. Similar to the discussion of the linear subroutine, the Boruta subroutine in 
RiskPath is separately performed at each time epoch to generate time-specific feature subsets, 
and then the union of features across epochs is obtained to determine an overall nonlinear feature 
subset for the experiment. RiskPath offers users the ability to control two tunable hyperparameters 
that control the strictness of the selection criteria. The first is the level of significance alpha that 
can be adjusted to expand or shrink the rejection region in each two-sided hypothesis test and 
concomitantly the size of the feature subset. The second is the percentile (perc) where each real 
feature is compared to a specific percentile of the importance scores of the shadow feature set 
(instead of the maximal case when perc=100). Intuitively, setting a higher alpha or lower perc will 
return a larger number of important features at a higher risk of false positives. In the present study, 
we implemented Boruta with alpha=0.05 and perc=100, and each embedded random forest with 
a tree depth of 7 to avoid runtime overhead. Table 3 shows the number of features after feature 
selection and Supplementary Table 2 shows the feature sets that were used in each experiment 
after the feature selection using each method. In the present study, results reported for the best-
performing models are those exhibiting best performance out of linear, nonlinear or 
linear+nonlinear feature selection. 
 
Timeseries AI architectures and settings 
LSTMs incorporates 3 gates to regulate the flow of information: the forget gate (discarding old 
information), the input gate (storing new information), and output gate (controlling output at each 
time epoch). Commonly, practitioners use bidirectional layers to direct a LSTM model forward and 
backward in timeseries or sequence to capture a richer context representation. Generically, the 
number of parameters in an LSTM is 4(hm + h2 + h) where h = number of hidden units and m = 
the number of features, and a bidirectional LSTM doubles that of a unidirectional LSTM. LSTM 
models in RiskPath are trained with two bidirectional layers with the tanh activation function with 
its result in the last time epoch for probability estimation. 

Temporal Convolutional Network is a parallelized process that considers the entire timeseries at 
once by utilizing convolutional layers and dilation factors to handle sequential data. Temporal 
Convolutional Networks consist of three factors that determine the size of the model parameters: 
kernel size k (size of the filter applied in the convolution), input channels Cin (number of 
multivariate sequences), and output channels Cout (number of filters in the layer). The number of 
trainable parameters in a Temporal Convolutional Network is represented by the sum of k × Cin,i 
× Cout,i + Cout,i over each convolutional layer i (where Cin,1 = the number of features). Temporal 
Convolutional Networks are composed of individual temporal blocks, each consists of 2 one-
dimensional convolutional layers (activated by a ReLU function) to connect the input and output 
channels. The convolutional layer is equipped with a kernel size k of 3, a doubling size of dilation 
d over subsequent blocks (starting at 1), a stride of 1, and a padding size of d(k - 1)/2. Another 
pair of layers (with a kernel size of 1) is applied for the first temporal block when the numbers of 
input and output channels mismatch. Each Temporal Convolutional Network model in RiskPath is 
sequentially composed of two temporal blocks and lastly a fully connected 1-unit layer for 
probability estimation. 
 
Transformers encode features into a higher dimensional space where a self-attention mechanism 
allows transformers to focus on relevant time epochs automatically. The model embeds each of 
the m features to a higher dimensional space of size d yielding (m+1) × d parameters, encode the 
timeseries (of length t) by positional encoding with td parameters. The attention phase consists 
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of a 3-step projection (i.e., query, key, and value) and an output projection, yielding 4d2 
parameters, then passes to a (usually 2-layer) feedforward network with a width w, yielding 2dw 
+ 3d + w parameters after normalization. The total number of parameters in a k-layer transformer 
model is simplified as d(t + m+1) + k(4d2 + 2dw + 3d + w). Transformer models begin with 
projecting the features to the tunable embedding space, position the sequential encoding by the 
number of time epochs, carry forward to a two-layer encoder with 1024 hidden units and 8 
attention heads, and bridge to a fully connected 1-unit layer for probability estimation. 
 
For all deep learning models (timeseries and feedforward, below), the hidden weights of all 
mentioned algorithms are initialized with the Xavier uniform distribution (where LSTM models 
have an orthogonal distribution for their hidden-to-hidden weights), and biases are initialized as 
0. Binary cross-entropy loss is selected as the loss function used for model fitting. In the present 
study, the AdamW optimizer is used with weight decay = 0.1 and learning rate = 10-5. Models were 
trained for a maximum of 150 epochs with early stopping (patience = 5, evaluated by validation 
loss). RiskPath allows these settings to be modified by the practitioner for local heuristics or 
experimental preferences. All embedded deep-learning algorithms and the GradientSHAP values 
computation in RiskPath are encoded with PyTorch88 and Captum89 packages in Python 
respectively. 
 
Comparison machine learning techniques and settings 
Standard feedforward artificial neural network and three classic machine learning approaches are 
available in RiskPath and investigated in the present study: feedforward artificial neural networks, 
logistic regression, random forest, and SVM. Since these algorithms are not designed for time-
series prediction, a Haar wavelet transformation (with decomposition level=1) is applied to the 
timeseries to obtain a 2-dimensional data matrix that adequately capture the temporal and 
frequency information of the timeseries data. This is a typical procedure when using these 
algorithms in time series data. The wavelet transformation is implemented with the PyWavelets 
package in Python.90 

 

Each feedforward model was constructed with 3 hidden fully connected layers with the ReLU 
activation function equipped to capture potential non-linear relationship between the feature set 
and the target. By setting each hidden layer with an equal number of units k, the number of 
parameters for a feedforward model is simplified to k(m + 1) + 2(k2 + k) + k + 1 where m denotes 
the number of features. Logistic regression is a learning algorithm designed specifically for 
classification tasks by modeling the probability of a class label using a logistic function applied to 
a linear combination of the features. Random Forest is an ensemble-based algorithm that 
constructs multiple decision tress during training and combines their respective predictions 
through a voting mechanism to improve accuracy and reduce overfitting. SVM aims to identify the 
optimal hyperplane to separate data points into classes by maximizing the margin between the 
closest data points of different classes. These algorithms were encoded with the Python scikit-
learn package86 and implemented with their default runtime parameters, which are commonly 
used in benchmarking practices. 
 
Training and testing procedures 
A 10-fold cross-validation technique is incorporated in the model-fitting process. Across the 10 
fitted models, the one with the best validated AUROC is used for subsequent evaluation in out of 
sample testing in the 30% held out data after initial data partitioning. Users can choose from a 
wide range of metrics (e.g., accuracy, binary cross-entropy, precision, Bayesian information 
criterion, etc.) to evaluate models. In each experiment, the best-performing model in terms of 
accuracy (evaluated in out of sample testing) was selected for reporting. 
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All models were trained and evaluated on High Performance Computing (HPC) clusters, with each 
node equipped with an AMD EPYC 7713 64-core CPU, 1TB of RAM, and 8 NVIDIA A30 GPUs, 
each with 24GB of memory. Parallelization was not used for deep learning in the present study.  

 
Topological optimization process for deep learning models 
A common measure of model topology in deep-learning literature is the width of the model, 
referring to the maximal number of units in a hidden layer. In the deep-learning algorithms used 
in this study and implemented in RiskPath, the width corresponds directly to the number of hidden 
units in LSTMs and feedforward neural networks, the number of output channels in temporal 
convolutional networks, and the dimension of the embedding space in transformers. RiskPath 
adopts a grid search approach by embedding the option of an increasing range of model widths 
which can be controlled by the practitioner, allowing for the identification of an optimal width value 
to explore complexity-performance tradeoffs. The suggested setting in our experiments is a grid 
in [8, 1200], with an interval of 8 in [8, 120) and an interval of 40 in [120, 1200], yielding a total of 
42 width values. The small-interval values aim to capture the traditional bias-variance tradeoff 
zone, with wider intervals for the overparameterized region. This enables practitioners to identify 
the optimal network width recommended by Risk Path and/or analyze and visualize performance-
complexity tradeoffs.  
 
Feature ablation 
Feature ablation is performed by focusing on an important feature subset according to the mean 
predictor importance of an optimal model in RiskPath. By inputting the raw GradientSHAP values, 
RiskPath computes the ordered mean predictor importance and automatically identifies the point 
of diminishing returns (also known as the knee) using the triangle method (Figure 2).  

Explainability 
Different approximation techniques of Shapley values have been studied as SHAP (SHapley 
Additive exPlanations). This study utilizes GradientSHAP (implemented in Python Captum 
package89), a combined technique of Integrated Gradients91 and SmoothGrad92 to compute 
expected gradients, as a fast approximation of Shapley values for gradient-based models. In the 
discussion of non-timeseries datasets where the raw SHAP value matrix is 2D, researchers 
commonly compute the Mean-Absolute SHAP values across samples to increase explainability 
in black box models.93 Intuitively, these values capture the relative magnitude of feature 
importance. However, the same averaging technique is not common in the literature on timeseries 
analysis. RiskPath explores 3 averaging techniques over the 3D SHAP value matrix to account 
for different senses of relative importance. To our knowledge, these averaging techniques have 
not been studied in the relevant literature on time-series analysis. 

Predictor path marginalizes the distribution of the samples in the 3D SHAP value matrix by 
computing the absolute values averaged over samples. Mean predictor importance further 
marginalizes the time epoch distribution to encapsulate the general magnitude of feature 
importance in a timeseries setting. This is performed by computing the absolute values averaged 
over samples and time epochs. This is further used in the feature ablation module. Epoch 
importance marginalizes the sample and feature distributions as a metric to compare the 
importance across time epochs. This is performed by computing the absolute values averaged 
over samples and features. 
 
Visualization Utilities 
RiskPath provides visualization utilities to support predictive analytics in tabular timeseries data. 
Examples of performance-complexity tradeoff curves (Figure 1), mean predictor importance and 
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its point of diminishing returns (Figure 2), epoch importance (Figure 3), and mean predictor path 
(Figure 4) are shown above. Other visualization tools include Receiver Operating Characteristic 
(ROC) plots (Supplementary Figure 3), stacked bar plots of mean SHAP values 
(Supplementary Figure 4), beeswarm plots that compare feature values and their importances 
(Supplementary Figure 5), and heatmaps for SHAP values across samples and time epochs of 
a given feature (Supplementary Figure 6). RiskPath also provides an animated 3D surface plot 
for SHAP values to illustrate the pathway of changes in feature importance. Users may consult 
the GitHub repository of the RiskPath Python package for the tutorial on the full visualization 
utilities.  
 
RiskPath Software Package 

The RiskPath toolbox is contained in our Python Package available at 
https://github.com/delacylab/PathLearn/tree/main/RiskPath. The repository provides instructions 
to install the package, and multiple tutorials explaining how RiskPath models can be created, 
trained, and evaluated with simple commands including demonstrations in toy datasets, vignettes 
and example workflows.  
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Supplementary materials 

 

 
Supplementary Figure 1: Performance-complexity tradeoffs in prediction 

The relationship between increasing network width and accuracy (a) or binary cross-entropy loss 

(b) is shown for the best-performing timeseries model in out of sample for each predictive target. 

Red triangles indicate the optimal structural configuration identified by RiskPath. 
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Supplementary Figure 2: Feature ablation 

The mean predictor importance of each predictive target for the best-performing timeseries 

model in out of sample testing is plotted to identify the point of diminishing returns (red). 
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Supplementary Figure 3: AUROC curves 

The Area Under the Receiver Operating Characteristic (AUROC) curve of each predictive target 

with the best-performing timeseries model in out of sample testing.  

 

 

Supplementary Figure 4: Visualization of mean predictor importance with a stacked bar chart 

The mean predictor importances in the last time epoch (year) for predicting ADHD using the 

ablated Transformer model with 10 features. Different colors of each horizontal bar represent the 

mean predictor importance of the respective class of the binary target.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 26, 2024. ; https://doi.org/10.1101/2024.09.19.24313909doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.19.24313909
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
Supplementary Figure 5: Visualization of SHAP values with a beeswarm plot  

The SHAP values in the last time epoch (year) for predicting ADHD using the ablated Transformer 

model with 10 features. The colors of each data point encode the feature values (scaled to the 

unit interval). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 6: 

Visualization of SHAP values 

with a heatmap  

The SHAP values of the binary 

feature encoding children’s 

drop in school grades for 

predicting ADHD using the 

ablated Transformer model 

with 10 features.  
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Supplementary Table 1: Sensitivity 

analysis under subsampling  

Improvements in accuracy were 

observed after subsetting the full 

list of samples by 50% and 25% 

respectively, verifying the findings 

of Nakkiran et al.94 that a larger 

sample size can adversely affect 

model performance. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Table 

3: Algorithm setting 

and hyperparameters 
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