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Abstract 

Background: Emerging evidence suggests a complex interplay between periodontal 

disease (PD) and coronary artery disease (CAD) risk. The novel insights into the 

shared pathogenesis of PD and CAD will potentially inform future therapeutic 

strategies. This study aimed to identify signature genes implicated in the progression 

of PD to CAD. 

Methods: Gene expression data from NCBI GEO datasets, GSE10334 and 

GSE66360, associated with both PD and CAD datasets were analyzed to pinpoint 

differentially expressed genes (DEGs), followed by weighted gene co-expression 

network analysis (WGCNA) to identify key modules. Functional enrichment analysis 

of common DEGs was conducted. Four machine learning algorithms were employed 

to construct predictive models, and the optimal model was selected for subsequent 

feature genes selection. Using GSE6751 and GSE71226 as validation cohort, receiver 

operating characteristic (ROC) curves and nomograms were generated for diagnostic 

performance assessment and risk prediction. Furthermore, immune cell infiltration 

patterns were assessed using the CIBERSORT (Cell-type Identification By Estimating 

Relative Subsets Of RNA Transcripts) algorithm. Finally, RNA-sequencing (RNA-seq) 

of 5 clinical samples vs. 5 controls was performed to validate the identified genes and 

explore their potential as biomarkers for early diagnosis and prevention of comorbid 

periodontitis and CAD. 

Results: Analysis of the GSE10334 and GSE66360 datasets revealed 48 common 

Differentially Expressed Genes (DEGs) associated with CAD and PD. Gene Ontology 

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment 

analyses of these DEGs highlighted significant overrepresentation of pathways related 

to inflammatory responses and immune cell trafficking, including response to 

lipopolysaccharides, molecules of bacterial origin, neutrophil migration, bone marrow 

leukocyte migration, and CXCR chemokine receptor binding. Additionally, pathways 

involved in lipid metabolism and atherosclerosis, such as the NF-κB signaling 
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pathway, IL-17 signaling pathway, and TNF signaling pathway, were also enriched. 

Five genes (FOS, MME, PECAM1, RGS1, and VNN2) emerged as potential signature 

genes, demonstrating strong predictive ability with an area under the curve (AUC) 

greater than 0.7 on the machine learning algorithms. CIBERSORT analysis suggested 

a potential role of these signature genes in modulating immune cell infiltration. To 

further validate these findings, RNA-seq on clinical samples confirmed significant 

upregulation of FOS, VNN2, PECAM1, and MME genes in patients with both CAD 

and PD. 

Conclusion: This study identified five signature genes that were significantly 

associated with immune cell dysregulation, where four of them were verified on 

clinical samples. These genes hold promise for the development of a nomogram-based 

approach for early diagnosis of both periodontitis and coronary artery disease, 

potentially informing future research directions for improved diagnosis and treatment 

strategies in these prevalent conditions. Notably, the prominent upregulation of 

FOS suggests its potential as a key target for future investigations. These insights hold 

significant implications for improving prevention and diagnostic strategies for 

individuals affected by both PD and CAD. 

Keywords: coronary artery disease, periodontitis, bioinformatics, machine learning 

 

1 Introduction 

Periodontal disease is commonly characterized as an inflammatory condition affecting 

the tissues surrounding and supporting the teeth, including the gums and periodontal 

tissues. It is a complex chronic inflammatory disease with a prevalence ranging from 

20% to 50% of the global population in severe cases, according to the World Health 

Organization. Over the past 30 years, the incidence, prevalence, and disability rates of 

periodontal disease have been on the rise. This prevalent disease burden has seen PD 

rise to rank among the world's 15 most common conditions, with a concerning 

association with increased adult mortality rates [1]. Formal genetic studies have 
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confirmed a significant hereditary component, attributing roughly half of the 

population variation in chronic PD to genetic factors [2]. Similarly, cardiovascular 

diseases (CVDs) represent a leading cause of global mortality. coronary artery disease, 

the most prevalent form of CVD, is characterized by narrowed or blocked coronary 

arteries due to atherosclerosis or spasm, leading to reduced oxygen supply (ischemia) 

and potential tissue death (infarction) within the heart muscle [3]. Globally, CAD 

claims over 7 million lives annually. In China alone, 2020 data revealed concerning 

mortality rates: 126.91/100,000 in urban and 135.88/100,000 in rural areas, with a 

continued upward trend [4]. 

Growing research interest in recent decades has focused on the link between 

periodontal disease and cardiovascular disease. Numerous studies have established a 

significant association between periodontitis and coronary artery disease, evident at 

the bacterial, genetic, and various other risk factor levels [5]. This association is 

supported by two key observations: first, both diseases share common susceptibility 

factors, and second, PD acts as a risk factor, potentially initiating atherogenesis, 

promoting plaque maturation, and contributing to its instability [5]. Furthermore, 

periodontitis shares pathogenic pathways with CVD. Periodontal bacteria trigger the 

release of pro-inflammatory mediators, both locally and systemically, which directly 

worsen CAD and contribute to coronary plaque rupture [6]. Kyari et al. (2014) 

employed data from the 2013-2014 National Health and Nutrition Examination 

Survey (NHANES) in a cross-sectional study involving 2,830 adults aged 30 or older.  

Their findings indicated that individuals with fair/poor gingival health had a 2.17-fold 

increased risk of developing CVD compared to those with good/very good gingival 

health (95% CI, 0.98-4.79, P = 0.055) [7]. Additionally, a large cohort study 

demonstrated that both new-onset and existing periodontitis are linked to an increased 

risk of coronary artery disease. This study also identified a graded relationship 

between tooth loss and poorer patient outcomes, including stroke, cardiovascular 

events, and overall mortality, specifically in individuals with stable coronary artery 

disease [8]. Joshi et al. (2021) reviewed data from 14 studies, demonstrating the 
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presence of periodontal bacterial DNA in atherosclerotic plaque specimens from 

patients with coronary artery disease. Notably, porphyromonas gingivalis DNA 

exhibited significantly higher expression in these plaques compared to healthy tissue 

(mean prevalence 0.4; 95% CI, 0.24-0.56; P < 0.001) [9]. Further evidence comes 

from Stryjewska et al. (2019) who studied 128 individuals, including 68 patients with 

acute myocardial infarction (AMI) and 60 healthy controls. They found a significantly 

higher rate of fungal colonization in the AMI group (50% vs. 25%), with Candida 

albicans being the predominant fungus (44% vs. 17%). Importantly, oral fungal 

colonization (OR 3.0; 95% CI 1.4-6.4), particularly by C. albicans (OR 3.7; 95% CI 

1.9-9.1), emerged as a strong predictor of AMI. Collectively, these findings suggest 

that periodontal disease and dental caries may act as reservoirs for pathogenic 

microorganisms. These microbes can potentially migrate through the bloodstream and 

disseminate to various organs, including atherosclerotic plaques, potentially 

increasing plaque instability and rupture [10]. 

This study employed weighted gene co-expression network analysis to investigate the 

correlation between modular signature genes (highly interconnected sets of genes) and 

the occurrence of periodontitis and coronary artery disease. Differentially expressed 

genes associated with both diseases were identified using GEO2R. Genes showing 

overlap between WGCNA modules and DEGs were selected for further analysis. 

Subsequently, the potential link between periodontitis and coronary artery disease was 

explored through signature gene identification and immune infiltration analysis, and 

RNA-sequencing (RNA-seq) was performed to validate the identified genes and 

explore their potential as biomarkers for early diagnosis and prevention of comorbid 

periodontitis and CAD.to provide a new reference for the diagnosis and treatment of 

patients with coronary artery disease secondary to periodontitis.  

2 Methods 

2.1 Raw data 

Gene expression data were obtained from the Gene Expression Omnibus (GEO) 
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database (https://www.ncbi.nlm.nih.gov/geo/) using the accession numbers GSE10334 

[12] and GSE66360 [13]. The GSE10334 dataset includes 247 samples derived from 

90 patients. These samples encompass 183 tissues affected by disease and 64 healthy 

control tissues from the same patients. The GSE66360 dataset consists of isolated 

circulating endothelial cells from 49 patients diagnosed with acute myocardial 

infarction and 50 healthy individuals. 

2.2 WGCNA network construction and module identification 

The WGCNA package in R [14] was employed to construct co-expression networks 

and identify co-expressed gene modules. This process involved several steps. First, 

samples underwent hierarchical clustering to identify outliers, which were 

subsequently removed alongside any unqualified genes using the goodSamplesGenes 

function. Second, the soft-thresholding power (β) was calculated using the R function 

pickSoftThreshold and converted into a topological overlap matrix (TOM). Third, 

based on the TOM, the network's interconnectivity was established, and the dynamic 

tree-cutting algorithm was applied to identify co-expressed gene modules. Fourth, 

modules are associated with clinical features by calculating gene saliency and module 

affiliation. The genes involved in the corresponding modules were used for 

subsequent analysis. Finally, the feature gene network was visualized. 

2.3 Identification of common DEGs 

GEO2R (www.ncbi.nlm.nih.gov/geo/ge2r) is an online deg analysis tool based on the 

Limma software package [15]. An adjusted P-value < 0.01 and |logFC| ≥ 1 were 

defined as thresholds for screening DEGs. We extracted the genes most associated 

with periodontitis and coronary artery disease from the WGCNA module and 

cross-analyzed the two gene lists for common DEGs. 

2.4 Enrichment analyses of common DEGs 

To further understand which biological functions these common DEGs are involved in, 

we performed gene enrichment analysis using the KOBAS 3.0 database, including 

gene ontology and Kyoto Encyclopedia of Genes and Genomes pathways [16]. 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted September 22, 2024. ; https://doi.org/10.1101/2024.09.18.24313934doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.18.24313934


Adjusted P-values < 0.05 was considered significant. 

2.5 Machine learning algorithms for identifying feature genes 

Machine learning models are constructed using the filtered DEGs. We used four 

machine learning methods to construct the model respectively: 

(1) Random Forest (RF): This versatile ensemble method combines multiple decision 

trees, each built independently from random subsets of the data [17, 18]. Individual 

trees learn and predict independently, with the final prediction being the average of all 

tree predictions.  

(2) Support Vector Machine Recursive Feature Elimination (SVM-RFE): This 

discriminative classifier iteratively removes the least informative features to identify 

the most relevant ones for classification [19]. The model is trained using labeled 

samples, and test samples are classified based on the optimal separation hyperplane. 

(3) XGBoost: This powerful ensemble method leverages gradient boosting to create a 

robust model by combining multiple weak decision trees [20]. XGBoost facilitates a 

meticulous comparison of classification errors and model complexity.  

(4) Generalized Linear Model (GLM): This flexible method extends the linear model 

by incorporating a link function to model the relationship between the response 

variable and the linear combination of predictor variables [21]. We compared the 

performance of these four methods to identify the one with the highest accuracy for 

screening disease signature genes. The "DALEX" package was used to interpret the 

models, allowing us to visualize the residual distributions and feature importance for 

each method. Performance was further evaluated by visualizing the receiver operating 

characteristic curves using the "qROC" package. A larger area under the curve 

indicates higher model accuracy. 

2.6 Receiver operating characteristics curve and nomogram construction  

To assess the diagnostic potential of identified characteristic genes, their expression 

levels in coronary artery disease and periodontitis groups were compared. The area 

under the receiver operating characteristic curve was calculated for each gene, along 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted September 22, 2024. ; https://doi.org/10.1101/2024.09.18.24313934doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.18.24313934


with its 95% confidence interval, to estimate diagnostic accuracy. To mitigate bias, 

datasets GSE6751 and GSE71226 were employed as validation cohorts. Only genes 

exhibiting an AUC > 0.7 in both the original dataset and both validation sets were 

included for further analysis. Subsequently, nomograms were constructed using the 

RMS R package [22] to facilitate clinical decision-making. 

2.7 Immune Infiltration Analyses 

CIBERSORT is a bioinformatics tool that estimates the relative proportions of various 

cell types within complex tissue samples [23]. We utilized CIBERSORT to evaluate 

immune cell infiltration in the coronary artery disease and periodontitis groups. This 

algorithm offers a comprehensive assessment of immune cell abundance by profiling 

24 distinct immune cell types. The proportion of each immune cell type in each 

sample was visualized using histograms. Additionally, heatmaps depicting the 

correlations between different immune cell types within the CAD and PD groups were 

constructed using the "corrplot" R package [24]. We further employed t-test to 

compare immune cell infiltration levels between disease and control groups. Finally, 

Spearman correlation analysis was performed to explore potential associations 

between immune cell populations and signature genes. 

2.8 Clinical validation of RNA-seq analysis 

Blood samples and clinical data of 5 patients with both PD and CAD, and another 5 

patients with only CAD, were collected at Shiyan People's Hospital from May 2024 to 

July 2024. In order to obtain a homogeneous sample with patients enrolled in a 

specific age group (35-75 years) and equal representation of men and women, 

stratified random sampling was performed by dividing patients who met the study 

criteria into three age strata of 35-50, 51-65, and 66-75 years to reduce possible bias 

related to gender or different ages. The patients included in the study were categorized 

into CAD group, PD+CAD group. 

The exclusion criteria were (1) those who had taken antibiotics or hormonal drugs 

within six months; (2) women who were in pregnancy or breastfeeding; (3) systemic 
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diseases and history of drug allergy; (4) those who had a history of treatment for 

periodontal diseases within one year; (5) those who suffered from renal and thyroid 

diseases; and (6) those who had used non-steroidal anti-inflammatory drugs within 

three months. The study experimental design and workflow were approved by the 

Science and Technology Ethics Review Committee of Hubei Medical College 

(reference number: 2024-RE-26). Written consent was obtained from patients before 

inclusion in the study. 

All patients included in the study had 5 ml of venous blood collected on admission, 

placed in an anticoagulation tube containing 3.2% sodium citrate, left to stand for 5 

min at room temperature, centrifuged at 3500 r/min, the precipitate extracted, 1 ml of 

Trizol was added and mixed, and the peripheral blood samples was immediately 

frozen and stored on dry ice. RNA extraction of the samples was performed using 

Tianmo#TR205-200 kit. Extracted total RNA was tested for RNA integrity using an 

Agilent Bioanalyzer 2100 (Agilent technologies, Santa Clara, CA, US) test with a 

Qubit® 3.0 Fluorometer (Life Technologies, CA, USA) and a Qubit® 3.0 

Fluorometer (Life Technologies, CA, USA) and Nanodrop One spectrophotometer 

(Thermo Fisher Scientific Inc, USA) were used to determine the concentration and 

purity of total RNA. 

Total RNA was extracted for microarray analysis from venous blood of 10 patients 

who met the study inclusion criteria. The microarray study was performed using 

Affymetrix GeneChip®Human Genome U133 Plus 2.0 Array for standard operating 

procedures and quality control of mRNA. Samples from different groups were 

randomized to prevent batch effects and sample processing was performed 

simultaneously to minimize variation. Quality control of microarray data was 

performed using the Transcriptome Analysis Console (TAC). For each mRNA 

expression probe set, it was then normalized using the TMM (trimmed mean of M 

values) algorithm (https://www.ncbi.nlm.nih.gov/COG/). The median polish after 

quantile normalization was used to remove probe affinity effects when calculating 

probe set summaries. Expression values were log2 of signal intensity. low expression 
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probe sets were removed if they were not expressed in more than 25% of the samples. 

The expression level of each gene was estimated by calculating the median expression 

level of all probes within the coding region of that gene. Residual normalized gene 

expression was fitted to a regression model using the R package "limma". A mitigated 

t-test was used to determine the deg between the CAD and PD+CAD patient groups. 

Genes with P-value < 0.05 and at least a 1-fold change (FC) were determined to be 

significant DEGs. 

Total RNA sequencing libraries were prepared using an Illumina TruSeq Stranded 

Total RNA Library Prep kit to deplet cytoplasmic rRNA according to the 

manufacturer’s instructions. All cDNA libraries were QC using the Agilent DNA1000 

Kit (Agilent) prior to next-generation sequencing. samples were sequenced on an 

Illumina NovaSeq 6000 to a depth of approximately 50 million pairs of end-reads per 

biological sample. FastQ was utilized for quality control of raw reads. Pairwise 

end-reads were aligned to the human reference genome GRCh38 using the STAR 

comparator with default parameters. Gene counts were calculated using featureCounts 

[25]. Gene counts were normalized for "limma" default parameters. And differential 

gene expression (DE) analysis was performed using "limma" package. The significant 

deg called with P-value < 0.05 and |logFC| >1. Graphs were generated using R 

(version 4.3.1). 

3 Results 

3.1 WGCNA network construction and module identification 

WGCNA was employed to identify co-expressed gene modules potentially associated 

with disease. Before module identification, samples were clustered to detect and 

remove outliers. No significant outliers were identified in the GSE10334 (Fig. 2A) or 

GSE66360 (Fig. 2C) datasets. Within the WGCNA framework, an optimal 

soft-threshold power (β) of 11 was determined for the GSE10334 dataset (Fig. 2B), 

while a β of 8 was optimal for the GSE66360 dataset (Fig. 2D). This analysis resulted 

in the identification of nine modules in the GSE10334 dataset and seven modules in 
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the GSE66360 dataset. Correlation analysis revealed a strong negative correlation 

between the brown module and periodontitis (r = -0.55) (Fig. 2E). Similarly, the grey 

module exhibited a strong negative correlation with coronary artery disease (r = -0.65), 

while the brown was positively correlated with coronary artery disease (r = 0.61) (Fig. 

2G). Moreover, the correlation of module membership in brown (r = 0.83) and gene 

significance for PD samples was observed, as well as grey module membership (r = 

0.66) (Figure. 2F, H). 

3.2 Identification of common DEGs 

Differential expression analysis using GEO2R identified 517 and 687 DEGs in the 

GSE10334 and GSE66360 datasets, respectively (Figure. 3A, B). We then focused on 

genes within WGCNA modules that exhibited strong associations with periodontitis 

and coronary artery disease. Genes from these disease-associated modules were 

intersected with the GEO2R-identified DEGs to identify commonly dysregulated 

genes in both diseases. Utilizing Venn diagram analysis, this approach revealed 48 

DEGs shared between periodontitis and CAD (Figure. 3C). 

3.3 Analysis of the functional characteristics 

Gene Ontology enrichment analysis revealed that commonly dysregulated genes were 

significantly enriched in biological processes including response to 

lipopolysaccharide, response to bacterial-derived molecules, bone marrow leukocyte 

migration, and neutrophil migration (Fig. 3D). Cellular component enrichment 

highlighted secretory granule membranes, secretory granule lumen, and plasma 

membrane. Furthermore, enriched molecular functions included CXCR chemokine 

receptor binding, pattern recognition receptor activity, and phosphoprotein binding. 

KEGG pathway analysis identified significant enrichment of DEGs in pathways 

associated with lipids and atherosclerosis, the NF-κB signaling pathway with IL-17, 

and the TNF signaling pathway (Fig. 3E). 

3.4 Candidate signature genes of CAD and PD using machine learning  

We utilized the identified intersection genes to train four machine-learning models. 
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The "DALEX" package in R was employed to visualize the residual distributions of 

each model within the training set. Subsequently, feature importance analysis was 

performed to rank the top ten genes in each model based on their Root Mean Squared 

Error (RMSE). Finally, the diagnostic performance of all four models in the training 

set was evaluated using ROC curves generated through 5-fold cross-validation. 

Analysis of the residual distributions (Fig.4A, B) revealed that the Support Vector 

Machine and XGBoost models exhibited lower sample residuals, indicating better 

model fitting. Furthermore, the XGB model demonstrated the largest area under the 

ROC curve (AUC) in Fig. 4D, signifying superior prediction accuracy. Consequently, 

the top five most important genes (FOS, VNN2, PECAM1, MME, RGS1) identified by 

the XGB model were selected as predictor variables for further analysis (Fig. 4C). To 

assess generalizability, the XGB model was validated on independent datasets 

(GSE106090, GSE179789) from the validation set. The results depicted in Fig. 4E 

and Fig. 4F confirm that the XGB model retains good predictive ability in these 

external datasets. 

3.5 Validation of biomarker diagnostic value and nomogram construction  

In the external validation set (GSE106090), all five identified signature genes 

exhibited significantly higher expression levels in periodontitis patients compared to 

healthy controls (Fig. 5A-E), suggesting their potential involvement in periodontitis 

pathogenesis. The AUC values of the receiver operating characteristic (ROC) curves 

for these genes ranged from 0.704 (FOS) to 0.891 (PECAM1) (Fig. 5F-J), all 

exceeding 0.7, which indicates good diagnostic potential. 

We further evaluated the diagnostic efficacy of these genes for coronary artery disease 

prediction in the validation set (GSE179789). Consistent with the periodontitis 

findings, all genes displayed higher expression in CAD patients compared to controls 

(Fig. 6A-E). The AUC values of the ROC curves for these genes ranged from 0.710 

(PECAM1) to 0.861 (RGS1) (Fig. 6F-J), again exceeding 0.7, suggesting good 

diagnostic performance for CAD as well. Collectively, these results indicate that the 

identified signature genes hold promise as diagnostic biomarkers for both 
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periodontitis and coronary artery disease. 

To gain insights into the XGB model's predictions, we employed a nomogram (Fig. 

7A). This graph depicts the estimated risk of developing coronary artery disease 

compared to periodontitis for a given individual. The expression level of each 

signature gene translates to a corresponding score, and the sum of these five scores 

generates a composite score. This composite score serves as an indicator of disease 

prevalence for a specific sample. The calibration curve (Fig. 7B) demonstrates good 

agreement between the actual risk of developing the disease and the model's predicted 

risk, highlighting minimal error. Additionally, decision curves (Fig. 7C) support the 

high accuracy of the nomogram for risk prediction. 

3.6 Immune cell infiltration analysis  

Evaluation of the immune cell composition in periodontitis and coronary artery 

disease showed significant differences in immune cell profiles between the diseased 

and control groups (Fig. 8A, C). In patients with periodontitis and coronary artery 

disease, eosinophils, activated memory CD4+ T cells, and resting dendritic cells were 

highly positively correlated with B cells (Fig. 8B, D).  

In patients with periodontitis and coronary artery disease, there was a significant 

increase in monocytes, and neutrophils and a significant decrease in activated memory 

CD4+ T cells (Fig. 8E, F). We next investigated the relationship between the 

identified signature genes and immune cell components. In periodontitis, VNN2, 

PECAM1, MME, and RGS1 displayed strong negative correlations with CD8+ T cells, 

while VNN2 and MME showed strong positive correlations with neutrophils (Fig. 8G). 

Similarly, in CAD, VNN2, PECAM1, MME, and FOS exhibited strong positive 

correlations with neutrophils, whereas RGS1 showed a negative correlation (Fig. 8H). 

These findings suggest that the signature genes may influence immune responses in 

both periodontitis and CAD. 

3.7 Clinical validation of RNA-seq analysis 

Differential gene expression analyses were performed using “limma” packages. Of the 
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five characterized genes we screened using the machine learning algorithm, four of 

them were expressed differently in two groups. Specially, the FOS gene was 

confirmed to be highly expressed (logFC > 1.5, P-value = 0.01) in the PC group 

compared to the C group (Fig. 9). Overall, the expression pattern of the FOS gene was 

highly consistent in RNA sequencing of clinical samples as well as in the analyses of 

the present study, confirming the potential of the FOS gene as a signature gene for 

coronary heart disease and periodontitis. 

4 Discussion 

Periodontitis and coronary artery disease are both important public health problems, 

but their correlation remains controversial. In addition to dyslipidemia and metabolic 

dysfunction, arterial wall inflammation is an important marker of CAD, and the 

association between CAD and PD may be mediated by PD-induced systemic 

inflammation because of the high bacterial burden and accumulation of toxic 

by-products in PD-induced inflammatory connective tissues, and the elevated levels 

of circulating inflammatory biomarkers are a key response to CAD progression. The 

importance of inflammation in atherosclerosis is well established and inflammatory 

markers such as high-sensitivity c-reactive protein (hsCRP) are being used for cardiac 

risk stratification [26-27]. The inflammatory response can lead to plaque rupture or 

erosion, setting the stage for a thrombotic response that can lead to myocardial injury 

or infarction [28]. Alleviating the inflammatory process is an unmet therapeutic need 

for CAD. With the prevalence of atherosclerosis risk factors such as aging, obesity, 

and metabolic syndrome, the discovery of new biomarkers and therapeutic targets 

may be beneficial in the management of this common disease [29-30]. 

In this study, we integrated the gene expression profiles of periodontitis and coronary 

artery disease by using bioinformatics, explored the common mechanism between the 

two from the molecular genetics perspective, explained the potential crosstalk genes, 

shared pathways, and screened biomarkers with certain significance between 

periodontitis and coronary artery disease by using the machine learning method, and 
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finally collected clinical samples to perform the RNA-seq test, which verified the 

screened genes, providing reference for early prevention and diagnosis of patients 

with the combination of the two diseases. 

We extracted genes from modules closely related to periodontitis and coronary artery 

disease, respectively, and then intersected the module signature genes with DEGs 

identified by GEO2R to further obtain 48 common DEGs. After GO enrichment 

analysis, we showed that common DEGs were enriched for biological processes such 

as response to lipopolysaccharides, response to molecules of bacterial origin, myeloid 

leukocyte migration, and neutrophil migration; the enriched cellular components were 

secretory granule membrane, secretory granule lumen, and plasma membrane; and the 

molecular functions enriched were CXCR chemokine receptor binding, pattern 

recognition receptor activity, and phosphoprotein binding. Here, we further identified 

five signature genes (FOS, VNN2, PECAM1, MME, RGS1) associated with 

inflammation and immune response, and we evaluated the expression of the five 

signature genes in an external validation set, which showed that the screened 

signature genes were highly expressed in periodontitis and coronary heart disease, and 

the AUCs were all greater than 0.7, suggesting that these genes may play a potential 

role in periodontitis and coronary heart disease. Using RNA-seq experiments on 

clinical samples, we verified that the expression of FOS genes was indeed 

significantly upregulated in the group with coronary heart disease combined with 

periodontitis compared to the group with coronary heart disease. c-Fos is a 

transcription factor involved in many signaling pathways, and in view of its 

prominent role in the severity of atherosclerosis, our study further suggests that FOS 

is likely to act as a biomarker independent of classical such as CRP or white blood 

cells (WBC), as a core inflammatory marker that influences the onset and progression 

of coronary heart disease. 

The FOS gene was originally identified as an oncogene in osteosarcoma, and its 

importance in inflammation and calcification coincides with known pathological 

changes in atherosclerosis [31-35]. Neelanjan Ray et al. explored the role of the 
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transcription factor c-Fos in lipopolysaccharide (LPS)-induced cytokine responses 

using mice lacking c-Fos. Compared to wild-type controls, c-Fos deficient mice 

showed significantly increased production of tumor necrosis factor (TNF)-a, 

interleukin (IL)-6 and IL-12, but decreased production of the anti-inflammatory 

cytokine IL-10 [36]. (IL)-6 propagates inflammation and stimulates hepatic synthesis 

of C-reactive proteins and leads to an increase in C-reactive proteins in PD patients 

[37]. This suggests a novel role for c-Fos as an anti-inflammatory transcription factor 

in oral health and CAD. Meanwhile, N.J. Dun et al. suggested that the differential 

distribution of FOS neurons in hypotensive and hypertensive animals highlights the 

potential application of FOS as a metabolic marker in identifying neuronal networks 

for specific cardiovascular diseases [38]. The FOS gene encodes the transcription 

factor FOS protein, which is involved in the regulation of biological processes such as 

gene expression and cellular signaling and may be associated with the development of 

cardiovascular diseases. 

The understanding of inflammation in atherosclerosis is currently controversial [33]. 

This is particularly true for cellular molecules involved in inflammation, as their 

involvement is usually multifactorial. A second factor is that the application of 

anti-inflammatory treatments is complex, which is related to the fact that most 

experimental work has been done using animal models rather than human tissue [34]. 

For example, in a study originally designed by Aikawa et al. for arthritis treatment, 

they describe that T5224 (a Fos/AP- 1 inhibitor) significantly suppressed the levels of 

inflammatory cytokines (IL-1b, IL-6, and COMP) and MMP3 in vivo and in vitro, 

suggesting an interesting role in immunosuppression [41]. Similarly, the inhibitory 

effect of T5224 on Fos/AP- 1 was anti-inflammatory in endotoxin-induced acute 

kidney injury and in a lipopolysaccharide-induced liver injury model [42]. Zhuang et 

al. conducted a study on male C57BL/6 mice to investigate immune heterogeneity 

following myocardial infarction. Mice underwent either myocardial infarction surgery 

and were monitored for 1 or 7 days, or sham surgery and were monitored for 7 days. 

Cardiac CD45-positive immune cells were subsequently isolated and subjected to 
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single-cell RNA sequencing analysis. FOS protein deficiency attenuates cardiac 

inflammation by down-regulating IL-6 and MCP1 (Monocyte chemotactic protein- 1) 

expression Response. These studies suggest that inhibition of Fos/AP-1 activity is a 

potential anti-inflammatory therapeutic approach, and Fos/AP-1 (activator protein 1) 

regulation has been identified as a key regulator of pro-inflammatory responses. And 

enriched Fos/AP-1 target gene loci were identified in genome-wide association study 

signals for coronary artery disease and myocardial infarction. Targeting Fos/AP-1 

with the selective inhibitor T5224 attenuated leukocyte infiltration and reduced 

cardiac dysfunction in a preclinical mouse model of myocardial infarction [43]. In 

order to identify disease markers and genes associated with atherosclerosis, Patino et 

al. used the Sequence Analysis of Gene Expression (SAGE) technique to quantify 

gene expression in circulating monocytes from a limited number of atherosclerotic 

patients and normal subjects. This comparison showed that, compared with normal 

controls, the transcriptional levels of a wide range of stress-responsive and 

inflammatory genes in patient monocytes were higher, especially the FOS gene was 

strongly expressed in patient circulating monocytes. Levels of FOS transcripts were 

increased 8-fold in patients requiring CEA (carotid endarterectomy) compared to 

controls and were more sensitive and specific for disease severity compared to plasma 

hsCRP testing [44].  

However, the individuals who might benefit from FOS treatment have not yet been 

identified. This calls for the development of a simpler, more sensitive, and more 

specific FOS assay, which would allow for larger prospective clinical trials to 

determine the clinical utility of FOS levels. FOS is a responsive transcriptional 

regulator, a functional property that may make it useful in monitoring disease activity 

or therapeutic efficacy (45). In addition to this study's finding that FOS expression is 

elevated in periodontitis conditions, FOS may be elevated in other inflammatory 

conditions, such as rheumatoid arthritis, and needs to be tested in appropriate patient 

populations [46-47]. FOS expression may be equivalent to the coronary calcium score 

currently used for screening for coronary artery disease [48]. Targeted patient 
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management, based in part on sensitive molecular testing, could provide better insight 

into atherosclerosis for risk stratification and treatment. 

5 Conclusion 

This study identified five signature genes that were significantly associated with 

immune cell dysregulation. These genes hold promise for the development of a 

nomogram-based approach for early diagnosis of both periodontitis and coronary 

artery disease, potentially informing future research directions for improved diagnosis 

and treatment strategies in these prevalent conditions. Notably, the prominent 

upregulation of FOS suggests its potential as a key target for future investigations. 

These insights hold significant implications for improving prevention and diagnostic 

strategies for individuals affected by both periodontitis and CAD. 
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Figure 1. Research design flow chart. In this study, we used WCGNA to explore the 

correlation between modular signature genes and the occurrence of periodontitis and 

coronary artery disease, while DEGs for periodontitis and coronary artery disease were 

obtained using GEO2R. The overlapping genes between modular genes and DEGs were 

used for further analyses. Subsequently, the optimal machine learning model was 

selected to identify the signature genes of the two diseases and validate the accuracy of 

the model, and the expression of the signature genes was verified in the validation 

dataset. Immune infiltration analysis and gene-immune cell correlation analysis were 

then performed to demonstrate that they were significantly associated with immune cell 

dysregulation. Finally, RNA-sequencing of clinical samples was performed to validate 

the identified genes and explore their potential as biomarkers for early diagnosis and 

prevention of co-morbid periodontitis and CAD. 

 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted September 22, 2024. ; https://doi.org/10.1101/2024.09.18.24313934doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.18.24313934


 

Figure 2. (A, C) Clustering dendrogram of samples based on their Euclidean distance in 
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GSE10334 and GSE66360. (B, D) Determination of soft-thresholding power for 

GSE10334 and GSE66360. (E, G) Heatmap of the correlation between module genes and 

the occurrence of periodontitis and coronary artery disease. Modules with different 

colors represent different gene modules, and the numbers in the modules represent the 

correlation between the module and the phenotype. (F, H) The scatter plots of module 

membership and gene significance for PD and CAD respectively. 

 

Figure 3. (A) The volcano map of GSE10334. (B) The volcano map of GSE66360. Red 

dots represent up-regulated genes, blue dots represent down-regulated genes and grey 

dots represent genes with no significant difference. (C) Venn diagram shows that 48 

common DEGs in GSE10334 and GSE66360. (D) Enrichment result of common DEGs 

GO term; (E) enrichment result of common DEGs KEGG pathway. Adjusted P-value < 

0.05 was considered significant. The ordinate represents the enriched term, and the 

abscissa represents the proportion of genes involved in the term. The size of the dots 

represents the number of genes, and the color of the dots represents the P-value. 
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Figure 4. Construction and evaluation of SVM, RF, XGB, and GLM machine learning 

models. (A) Cumulative residual distributions of samples computed by SVM, RF, XGB, 

and GLM machine learning models respectively. (B) Box line plots of sample residuals 

based on SVM, RF, XGB, and GLM machine learning models, with the red dots 

representing the root-mean-square (RMS) of the residuals. (C) The importance scores of 

the top ten genes obtained by SVM, RF, XGB, and GLM. (D) ROC analyses of the four 

machine learning models based on the 5-fold cross-validation in the training set. (E, F) 

ROC analysis of the XGB model in the 2 validation sets. 
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Figure 5. Expression of feature genes in GSE106090. (A-E) Expression of signature 

genes in periodontitis patients and healthy population. (F-J) ROC showing diagnostic 

performance of signature genes. 

 

 

Figure 6. Performance of signature genes in GSE179789. (A-E) Expression of signature 

genes in patients with coronary artery disease and healthy population. (F-J) ROC 

showing diagnostic performance of signature genes. 
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Figure 7. Nomogram construction and diagnostic efficacy validation. (A) A nomogram 

was constructed based on five selected feature genes, each corresponding to a score, and 

the total score of the five feature genes was used to predict the risk of periodontitis and 

coronary artery disease. (B-C) Calibration curves (B) and decision curves (C) were used 

to assess the predictive efficiency of the XGB model. 
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Figure 8. (A, C) Stacked bar chart of the immune cell. The different colors of the 

rectangular bars in the diagram represent different immune cells, and the length 

represents the proportion of immune cells. (B, D) The correlation matrix of immune cell 
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proportions. The numbers in the squares represent the correlation coefficients between 

the corresponding immune cells. (E) Comparison of immune cell scores in patients with 

periodontitis and a healthy population. (F) Comparison of immune cell fractions in 

patients with coronary artery disease and a healthy population. The horizontal axis 

indicates the different immune cells and the vertical axis indicates the proportion of 

immune cells. T-test was used to compare the disease group with the control group. (G) 

Correlation between characterized genes and immune cell fractions in patients with 

periodontitis. (H) Correlation between characteristic genes and immune cell components 

in patients with coronary artery disease. 

 

Figure 9. Peripheral blood RNA sequencing analysis of the coronary artery disease 

group (C group) and the periodontitis combined with coronary artery disease group (PC 

group). The box plot indicated that FOS, MME, PECAM1 and VNN2 genes were 

up-regulated in the PC group compared with C group (|logFC| > 1, P-value < 0.05). 
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