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ABSTRACT 

 

Introduction: Medical records and physician notes often contain valuable information not organized in tabular form 

and usually require extensive manual processes to extract and structure. Large Language Models (LLMs) have shown 

remarkable abilities to understand, reason, and retrieve information from unstructured data sources (such as plain text), 

presenting the opportunity to transform clinical data into accessible information for clinical or research purposes.  

Objective: We present PANDORA, an AI system comprising two LLMs that can extract data and use it with risk 

calculators and prediction models for clinical recommendations as the final output. 

Methods:  This study evaluates the model's ability to extract clinical features from actual clinical discharge notes from 

the MIMIC database and synthetically generated outpatient clinical charts. We use the PUMA calculator for Chronic 

Obstructive Pulmonary Disease (COPD) case finding, which interacts with the model and the retrieved information to 

produce a score and classify patients who would benefit from further spirometry testing based on the 7 items from the 

PUMA scale. 

Results: The extraction capabilities of our model are excellent, with an accuracy of 100% when using the MIMIC 

database and 99% for synthetic cases. The ability to interact with the PUMA scale and assign the appropriate score 

was optimal, with an accuracy of 94% for both databases. The final output is the recommendation regarding the risk 

of a patient suffering from COPD, classified as positive according to the threshold validated for the PUMA scale of 

equal to or higher than 5 points. Sensitivity was 86% for MIMIC and 100% for synthetic cases.  

Conclusion: LLMs have been successfully used to extract information in some cases, and there are descriptions of 

how they can recommend an outcome based on the researcher's instructions. However, to the best of our knowledge, 

this is the first model which successfully extracts information based on clinical scores or questionnaires made and 

validated by expert humans from plain, non-tabular data and provides a recommendation mixing all these capabilities, 

using not only knowledge that already exists but making it available to be explored in light of the highest quality 

evidence in several medical fields. 
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INTRODUCTION 

 

One of the most important sources of bias in 

observational research is the quality of the secondary 

information sources, often clinical registries [1,2]. 

Investigators and physicians are met with the fact that 

80% of clinical data is unstructured [3]or only partially 

structured. Thousands of pieces of valuable 

information are buried in text formats in physicians' 

notes or lost in low-quality databases with high 

percentages of missing data, unlabeled information, 

calculation errors, and defective formatting, just to 

name a few [4].  

 

This poor data structuring may seem harmless when 

looking at individual cases. Although time-

consuming, researchers and research assistants can 

“dig” the information out of other sources, such as 

clinical records, laboratory results, notes from  

treating physicians, and patients themselves, as a last 

resort.  

 

Advances in technology and computational sciences 

have led to the ability to collect, organise, operate, 

analyse, and interpret vast amounts of data (i.e., Big 

Data)[5–7] and to program computers to reproduce 

repetitive, time-consuming tasks only performed by 

humans in past decades (i.e., Machine Learning or 

ML) [8–10]. It would be only logical to take advantage 

of these advances and use them to improve the way 

health systems work in terms of faster diagnosis, 

personalized risk management, accurate classification 

of disease, and fairer resource distribution. In this line 

of thought, when we analyze the impact of 

unstructured data, understanding that it is one of the 

most prominent sources of information to create 

solutions with Artificial Intelligence (AI), poor 

structuring is not only harmful on an individual scale 

but could also introduce bias in worldwide used 

algorithms that could affect millions of patients, their 

families and have a significant impact on the economy 

[11–14]. 

 

The first clinical registries digitalized in the 1960s 

were simple electronic records of specific patient 

notes. It was not until the 1990s that the digitalization 

of healthcare became more popular in light of 

computational development, which demanded more 

effective ways of handling information. However, it 

was the new millennium that brought about the 

widespread institution of clinical digitalization [15–

19]. Undoubtedly, it made it easier for clinicians and 

researchers to access and collect the patient's medical 

data. 

 

Nevertheless, the large flow of daily information, the 

short time a clinician has to evaluate a patient, and the 

overload of clinics, hospitals, and outpatient services 

curtail the quality of registered information. Also, the 

limited funding for architectural and technological 

infrastructure in health care contributes to the fact that 

the wide implementation of these technologies is often 

the exception rather than the rule [20–22].  

 

In response to the need for a more straightforward, 

effective, and precise way to approach the issue of 

unstructured data in health systems and research, we 

sought to utilize the advances made in Natural 

Language Processing (NLP) to deliver an AI solution 

that would actively help health-care personnel to find 

any piece of information they might need from clinical 

records, whether it is for research, diagnosis, urgent 

care or chronic care, etcetera. With this in mind, we 

created PANDORA. 

 

In Greek mythology, PANDORA means the all-gifted. 

Inspired by this concept, we developed a robust 

algorithm framework that retrieves data from plain 

text and makes it accessible. We also propose a model 

that applies scores and clinical practice guidelines to 

the information retrieved, incorporating this capability 

in PANDORA. In the following sections, we explain 

how PANDORA came to be and give an initial scope 

of what could be achieved with its implementation in 

healthcare scenarios. 

 

METHODOLOGY 

 

This section will briefly explain the methods and 

resources, including technical functions. They are 

referenced and available for consultation at the 

respective websites cited. 

 

General description  

 

To explain how PANDORA was developed, it is 

helpful to divide the process into two smaller sections. 

PANDORA is a modular algorithm. Each section 
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consists of an algorithm, referred to as an agent. One 

is responsible for extracting information from the 

Electronic Health Records (EHRs) and constitutes the 

Extraction Phase. The other uses the knowledge in 

clinical guidelines and validated scores chosen and 

provided by human researchers to predict a specific 

outcome based on the factors recovered from the 

EHRs. These factors are also referred to as features or 

variables. The latter algorithm constitutes the 

Recommendation Phase of the model, and the clinical 

score we chose for this validation was the PUMA scale 

for opportunistic case finding of Chronic Obstructive 

Pulmonary Disease (COPD) [23]. 

 

The two agents work synchronically. This means that 

the information extracted from the Electronic 

Information Records (EHRs) follows the instructions 

of clinical guidelines or score systems previously 

selected by the researchers (the PUMA scale in this 

case) to recover the variables needed (e.g. in the 

scoring system) and create a specific knowledge base, 

which will then be used to make a prediction or 

recommendation on the outcome of interest. The latter 

constitutes an intermediate step, the scoring or 

punctuation phase. PANDORA’s workflow is 

depicted in Figure 1.  

 

Figure 1. Workflow structure of PANDORA

General Sources of Data 

 

To extract specific information from EHRs 

(Extraction Phase), we needed clinical cases or notes 

resembling real-life clinical charts' structure. For this 

study we created two types of validations. The first 

used the Medical Information Mart for Intensive Care 

(MIMIC) database. This database contains data from 

previously deidentified Intensive Care Unit (ICU) 

patients hospitalised at the Beth Israel Deaconess 

Medical Center in Boston, USA. Its purpose is to assist 

quality research in healthcare and is available at 

https://mimic.mit.edu/. From 2002 to 2019, MIMIC 

collected patient data from two clinical information 

systems and has presented four updates. The latest is 

MIMIC-IV, where they added information from 

patients at the hospital and emergency department 

levels on top of the ones from previous versions at the 

ICU. Consequently, this version is divided into 

modules according to where the data was obtained 

from. One of these modules, the MIMIC-IV-Note, 

contains deidentified free-text clinical notes [24–26]. 

This was the database we used.  

 

The second was a synthetic database generated 

automatically with an algorithm framework using the 

GPT family, following instructions provided by our 

medical team. They manually designed a standard 

form that simulated the structure of a clinical record 

made by the physician at a typical outpatient 

consultation in compliance with the Ministry of Health 

in Colombia [27].   

 

Regarding the Recommendation Phase, we used 

Chronic Obstructive Pulmonary Disease (COPD) as 

the pathological entity of interest. We defined the 

presence or absence of risk for diagnosis of COPD as 

our primary outcome. This decision was based, first, 

on its high sub-diagnosis (89%) [28] and second, on 

the measurability of the outcome as a binary response 
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that allowed us to evaluate the model’s overall 

reasoning after finding the relevant EHR information. 

Therefore, we used the standard clinical guideline for 

COPD, the Global Initiative for Chronic Obstructive 

Lung Disease (GOLD) 2024 Report, available at 

https://goldcopd.org/, and the PUMA COPD 

opportunistic case finding tool [23,29–31], including 

their latest validation study in 2022 [32].  

 

The synchronism of both algorithms, which 

constitutes the scoring or punctuation phase of the 

model, did not require external input or further 

training, as it used the capabilities embedded into the 

PANDORA Large Language Model structure. The 

scoring was based on the mentioned scale (PUMA), 

which calculates a score for COPD risk employing 

seven features, namely sex, age in years, tobacco 

consumption in packets/year, dyspnea, chronic 

expectoration, chronic cough and whether the patient 

has had spirometry before. Each feature is assigned a 

score from zero to two, with a minimum result of zero 

and a maximum of nine, where risk is defined as a 

score more than or equal to five (Table 1.).  

 

Materials 

 

All phases were developed using Python 3.12.2, 

Microsoft Office 365, the Arkangel App capabilities 

(https://www.arkangel.ai/), the AI translation and 

writing assistant Deepl (https://www.deepl.com ), and 

the other cited resources from the internet. 

 

 

 

Table 1. The PUMA calculator 

Variable 

Sex 
Age 

(years) 
Smoking history 

(packs-year) 
Dyspnea Chronic cough 

Chronic 
expectoration 

Spirometry 

F M 40-49 50-59 >60 <20 20-30 >30 Yes No Yes No Yes No Yes No 

Score 0 1 0 1 2 0 1 
 

2 
 

1 0 1 0 1 0 1 0 

Algorithmic framework 

PANDORA uses Natural Language Processing (NLP) 

algorithms and statistical algorithms to extract and 

analyse data from Electronic Health Records (EHRs). 

The primary algorithmic framework refers to the 

algorithms' capabilities needed to perform at the 

different phases. It includes the following: 

1. Natural Language Processing (NLP) 

techniques process and extract relevant 

disease-related factors from unstructured text 

within EHRs. This includes using models that 

understand medical terminology and context, 

allowing for accurate information extraction. 

2. Chain of Thought Strategy (CoT): This 

strategy ensures that the sequence of 

reasoning is maintained when extracting and 

analysing data. PANDORA can accurately 

map or associate patient data with disease 

factors by following a logical progression. 

CoT consists of reasoning steps, breaking 

down questions to guide language models 

through multi-step reasoning problems. This 

technique has been shown to improve LLM 

reasoning [33]. 

3. Non-Relational Database Algorithms: To 

manage the knowledge base, non-relational 

database algorithms efficiently store and 

retrieve patient-specific factors, allowing 

quick access during the recommendation 

process. 

4. Clinical algorithms: Recommendations are 

constructed based on results from clinical 

algorithms. Here, we employ the PUMA 

calculator to screen for COPD risk.
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System development 

Based on the previous framework, we develop a 

system with three main components:  

1. EHRs Data Extraction: This stage involves 

extracting critical information related to 

disease factors from clinical records using 

advanced Natural Language Processing 

(NLP) techniques. The process leverages the 

chain of thought strategy to ensure that all 

relevant data is accurately identified and 

captured from unstructured text.  

2. Knowledge Base Construction: The 

extracted information is then used to build a 

non-relational knowledge base. This 

knowledge base stores all pertinent patient 

data related to the identified disease factors 

using the features of a particular validated 

clinical guideline or score, serving as a 

structured repository that supports the next 

stage of the process. 

3. Recommendation System: Instead of 

directly inferring from the guidelines, 

PANDORA employs a recommendation 

mechanism. The model takes the information 

stored in the knowledge base (from EHRs) 

and, following the predefined instructions 

(specific disease scores), suggests whether a 

patient is at risk of having a particular 

disorder. This recommendation is based on 

analysing the extracted factors and their 

alignment with established medical criteria or 

methodology. In this case, the 

recommendation comes from the PUMA 

calculator.  

Once these steps are taken, PANDORA’s first 

assistant extracts the information, if available, from 

the EHRs and builds a knowledge base that is passed 

onto the second one, which runs the PUMA calculator 

on the extracted data and recommends whether to 

conduct further testing for COPD based on the 

presence or absence of risk, according to the score.  

 

Algorithm Evaluation  

 

Evaluation of the Extraction Phase  

 

To evaluate the model's ability to extract information 

from the clinical notes, we used the EHR-DS-QA 

dataset found at https://physionet.org/content/ehr-ds-

qa/1.0.0/. Its authors designed questions to evaluate 

LLMs' extraction capabilities. They created this 

dataset with clinical questions and answers (QA pairs) 

using the LLM Meta Llama 2 for AI generation. The 

sources for the QA pairs were the clinical discharge 

notes from the MIMIC-IV-Note database mentioned 

above. It sampled 21466 medical discharge summaries 

from MIMIC-IV and automatically generated an 

outcome of 156,599 QA pairs. Based on convenience, 

we selected a subset of 506 from those original QA 

pairs since they correspond to cardiorespiratory 

clinical cases and had been reviewed by human 

physicians. This way, we had our reference standard 

for comparing PANDORA’s text extraction (Figure 

2.). 

 

An example of a question found in EHR-DS-QA is: 

"Does the patient have any known allergies or adverse 

drug reactions?" If the extraction was correct, the EHR 

should state the response [33]. No preprocessing was 

applied to the input data since the goal was to directly 

manage and analyze complex, unstructured data from 

EHRs without altering the original content.  

Then, we employed four metrics to measure the 

quality of text summarization against the EHR-DS-

QA dataset benchmark answers. Initially, we used 

BERTscore, an automatic metric used in text 

generation that calculates the similarity between a 

candidate and a reference sentence. The 

SimilarityScore is evaluated using contextual 

embeddings. This concept refers to how words are 

represented as vectors that algorithms in natural 

language processing can use to understand and 

produce language from them. It can recognize 

linguistic structures and their possible definitions 

instead of comparing exact matches between words 

[34]. The SemanticScore uses the same method as 

BERTscore but employs more semantic embeddings, 

better suited to understanding more subtle language 

characteristics, such as paraphrasing. RelevanceScore 

assesses the correctness and completeness of the 

answer [35]. 

This score gives lower marks for incomplete answers 

or those with redundant information. It is calculated as 

the mean cosine similarity of the original question to a 

series of artificial questions that are reverse-
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engineered from the answer [36]. All metrics and their 

interpretations are tabulated in Table 2. 

 

Additionally, we assessed extraction using Judge 

Alignment Metrics. This strategy was developed as a  

Figure 2. Flow chart of the MIMIC-IV-Note database and sample size 

 

 

more scalable and automated alternative to human 

evaluation [37]. It employs state-of-the-art LLMs like 

GPT-4o or Gemini to judge PANDORA’s wording of 

responses. In this case, we built a confusion matrix 

with the results and calculated accuracy, precision, 

recall, and F1 (Table 3.). The Judge LLM was given 

the exact information as PANDORA, including the 

EHRs, the PUMA score, and the GOLD 2024 

guidelines. The LLM we used as judge was Cloud AI  

 

 

from Devsig Technologies Private Limited, which “is 

based on the Generative Pre-trained Transformer 

architecture and is pre-trained to generate human-like 

text” [38]. This application is free to access and 

available at  

https://play.google.com/store/apps/details?id=com.de

vsig.cloudai&hl=en&pli=1.  
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Table 2: Quality of text summarization metrics and their interpretation 

 

Metric Interpretation 

BERTScore 

This score reflects the system's ability to evaluate the semantic similarity 

between the generated and reference texts, indicating high accuracy in 

understanding and generating relevant responses. 

SemanticScore 

This metric measures the semantic coherence of the output, demonstrating 

PANDORA's effectiveness in maintaining the meaning and context of 

extracted information. 

RelevanceScore 

This score indicates how well the extracted information aligns with the 

relevant disease factors, ensuring that the most pertinent data is used in the 

recommendation process. 

Judge Alignment 

Metrics 

Accuracy 

These are the metrics PANDORA got when comparing its answers to 

another LLM's responses, in this case, Cloud AI. 
Recall/Sensitivity 

F1 Score 

Figure 3. Examples of extraction and scoring capabilities assessment, performed in 3 steps by humans 
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Recommendation Phase Evaluation 

 

Once the model's general extraction capabilities were 

assessed, two strategies were implemented to evaluate 

PANDORA’s output. 

  

First Strategy:  

 

A two-step evaluation was designed to determine the 

model’s specific extraction capability, implementing 

the PUMA score. We used 506 randomly selected QA 

pairs from the EHR-DS-QA dataset to test it. This was 

a different set of 506 from the one in the previous 

section, which we used for semantic scores and 

Judgement Alignment Metrics, but also based on the 

clinical discharge notes from MIMIC-IV-Note. The 

reason was that we wanted to explore the performance 

of our model with real clinical cases with original 

diagnoses from pathologies with or without 

cardiorespiratory components. We used the same 

number of questions to maintain the number of cases 

reviewed, adding that using the total 2688 

Cardiorespiratory cases was extremely costly. 

However, since this set was not human evaluated, we 

performed a human evaluation of a subgroup of (102 

clinical cases, 20%) to confirm, first, that the retrieved 

information was consistent with the information 

registered in the original medical notes from the EHR-

DS-QA dataset and to evaluate how accurate the 

extraction of variables from EHRs was, following the 

instructions from the features in PUMA. Figure 7. 

indicates outcomes for this stage. Figure 3. depicts an 

example of the human evaluation process.  

 

Second, we also assessed how the model made its 

recommendations using retrieved information. The 

diagnosis of COPD is defined as a ratio of Forced 

Expiratory Volume and Forced Vital Capacity 

(FEV1/FVC) lower than 0.70 in the first second after 

administering a dose of a bronchodilator in a 

pulmonary function test (the spirometry)[39,40]. The 

risk of diagnosis was exclusively assessed using the 

score of the Puma scale, which depends on 7 variables 

stated in Table 1. The maximum is 9 points; the 

minimum is 1 if male or 0 if a woman.  

 

According to the validations made of the scale, in 

several countries in Latin America [23,28–31,41] and 

Asia [32], the optimal cutoff point is 5, as it was shown 

to detect more sub-clinical cases. For our study, we 

used the same threshold and defined that a score of 5 

or more points on the PUMA scale would classify the 

individual as at risk for the diagnosis of COPD. 

However, this only represents the scoring capability of 

the model. To evaluate the diagnostic recommendation 

per se, PANDORA’s predictions were compared to 

the binary ground truth values: 1 (yes COPD risk) or 0 

(no COPD risk). Ground truths are obtained from the 

EHRs in the original MIMIC-IV. The results are 

summarised in Table 4. by performance metrics of 

accuracy, sensitivity, specificity, and precision. The 

punctuation of the PUMA scale was evaluated as 

correct or incorrect and described using relative and 

absolute frequencies. 

 

Second Strategy: 

 

The other approach to evaluate the recommendation 

phase was the creation of synthetic clinical charts 

(synthetic EHRs) with a multi-step framework using 

the GPT family based on a guideline designed by our 

team's medical lead. The document was built on the 

traditional structure of a Colombian-based outpatient 

consultation record and can be accessed in 

Supplementary Material 1.  

 

By creating this synthetic database, we wanted to 

challenge PANDORA with clinical cases to test how 

accurately it could extract and apply the PUMA scale 

when the symptoms were similar to the extracted data. 

We used the nine possible differential diagnoses of 

COPD listed in Figure 5. Then, we manually created 

nine clinical cases using the said guideline, generated 

clinical records for each differential diagnosis and 

gave them as few-shot examples to the algorithmic 

framework for the elaboration of 100 synthetic clinical 

cases. Some of the instructions given to PANDORA 

(action also known as prompting) during this stage can 

be found in Figure 4. 
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Figure 4. Example of an instruction or prompt given to PANDORA on how to score the individual’s “smoking 

history” based on the PUMA scale. Original instruction (left) and improved instruction after review (right) 

 

 

Figure 5. Differential diagnoses of COPD used to 

simulate outpatient consultation records  

 

 
 

At each process step, our medical and Machine 

Learning (ML) teams worked together to improve 

prompting strategies and recreate the outpatient 

scenario as closely as possible. Supplementary 

Material 2 provides an example of a synthetic clinical 

case. Similarly to the evaluation performed in the first 

strategy described above, we evaluated extraction, 

recommendation, and PUMA scale punctuation 

capabilities using relative and absolute frequencies, 

confusion matrices, and performance metrics.  

 

Several EHRs stated a history of COPD. Therefore, we 

decided to introduce the presence of already diagnosed 

COPD as a feature to be extracted. If a patient had a 

previous history of COPD, the model was instructed to 

classify them as COPD-risk independent of their score 

in the PUMA. This strategy was only applied to the 

evaluations in MIMIC. The performance metrics for 

recommendation in these cases are in Table 4. 

 

RESULTS 

 

This section will elaborate on PANDORA's 

assessment results compared to the clinical discharge 

notes on the MIMIC-IV database and the synthetic 

outpatient clinical scenarios.  
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Semantic Scores 

 

The previous section abundantly described the 

meaning of these metrics (see Table 2). Table 3 

demonstrates their results.  

 

Table 3. Semantic scores for extraction evaluation 

using the EHR-DS-QA dataset  

 

Metric Score 

BERTScore 0.911 

SemanticScore 0.925 

RelevanceScore 0.901 

Judge 

Alignment 

Metrics 

Accuracy 0.838 

Recall/Sensitivity 0.838 

F1 Score 0.912 

 

Extraction, scoring and recommendation  

capabilities evaluation on the MIMIC-IV database  

 

Based on the original 506 cases from the MIMIC-IV-

Note and derived EHR-DS-QA database, we randomly 

chose a subset of 20% to evaluate them using human 

revisors. Figure 6. shows the results obtained from the 

human evaluation of the extraction and scoring 

capabilities of this subset of 102 cases. The variables 

age and smoking history had to be excluded in all cases 

because they were erased in the de-identification 

process of clinical records in the original MIMIC 

database and were unavailable. This resulted in 615 

questions used to assess the scoring capability.  

Adequate extraction was demonstrated in 100% of 

questions, while 581 (94.47%) were classified as 

 

presenting correct scoring under the PUMA scale. 

Most of the 34 mistakes in scoring occurred when the 

model would not recognize COPD cases if the 

diagnosis were already in the clinical chart as a past 

disease. Table 4 compares how the performance 

metrics for the recommendation capability changed 

when instructing PANDORA to classify an individual 

as at risk for COPD in the presence of a history of 

COPD diagnosis against only using a PUMA score 

≥5.  Sensitivity increased by 66% when a search for a 

previous diagnosis of COPD was included. 

 

Conversely, specificity decreased by 22.5%. Metrics 

were obtained from confusion matrices found in 

supplementary materials 3 and 4. On two occasions, 

the model hallucinated when it could not find data 

regarding the time frame that a specific symptom had 

been present and used similar reasoning (chain of 

thought) to classify its nature as acute or chronic.  

 

Extraction, scoring and recommendation 

capabilities evaluation on synthetic cases 

 

The human evaluation of the 100 synthetic cases 

revealed optimal information extraction and scoring 

capabilities. As shown in Figure 7, PANDORA 

correctly extracted the information in 99.6% of cases. 

This means it demonstrated 697 adequate extractions 

from 700 questions, 7 for each feature in PUMA, 

applied to each synthetic clinical case and assigned the 

correct score, following the Puma scale in 94% of 

cases (658/700).  

 

 

Figure 6. Human evaluation of extraction and 

scoring capabilities using the MIMIC-IV database as 

standard and based on the PUMA scale. The results 

express the accuracy of the test as the proportion of 

correct answers on each capability. 

 

 
 

Two of the three extraction mistakes are associated 

with the assumption that having a history of COPD in 

the clinical record means the patient’s expectoration 

must be chronic. The other mistake occurs when 

PANDORA fails to recognize the phrase “worsening 

of the symptoms over the past few months” signifying 

their chronic nature. 
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Table 4. Performance metrics for recommendation 

capabilities of PANDORA when using the MIMIC-

IV database as standard, according to COPD's 

previous diagnosis  

 

Metric 

Value 

Considering the 

history of 

COPD 

Not considering 

the history of 

COPD 

Sensitivity 0.855 0.194 

Specificity 0.700 0.925 

Precision 0.815 0.800 

Accuracy 0.794 0.480 

F1 score 0.835 0.312 

Cohen's 

Kappa 
0.790 0.470 

 

Of the 41 scoring mistakes, 28 correspond to a 

misunderstanding from our LLM of the threshold 

values for the 3 categories of smoking history in 

PUMA, resulting in wrong punctuations for the risk of 

COPD. Of the remaining 13 scoring errors, three are 

due to an incorrect classification of age where 

PANDORA correctly calculated the patient’s age but 

still classified it into a mistaken age interval. The other 

10 cases are associated with the definition of chronic 

cough and expectoration, where the model 

understands the term “persistent”  as always referring 

to the chronic nature of symptoms or gets confused 

when it is not given a specific period for the duration 

of a given symptom.     

 

Figure 7. Human evaluation of extraction and 

scoring capabilities using the synthetic cases as 

standard and based on the PUMA scale. The results 

express the accuracy of the test as the proportion of 

correct answers on each capability. 

 

 
 

 

Based on the extraction and scoring, PANDORA 

recommends risk for COPD (PUMA score ≥ 5) or 

“other” for any other respiratory disease.  Table 5 

shows the confusion matrix and performance metrics 

for recommendation compared to the original 

diagnosis in the synthetic case. PANDORA reached a 

sensitivity of 100% and a specificity of 20% since it 

incorrectly classified 64 synthetic cases at risk for 

COPD. Table 6. presents the distribution of  PUMA in 

the false positive cases, stating their specific diagnosis 

and characteristics distribution.  

 

Of the wrongly classified individuals, 92.2% were 

male, 81.25% were older than 60 years old, 64.06% 

had a smoking history of over 30 packages per year, 

and 100% had dyspnea. Chronic cough (57.81%), 

chronic expectoration (10.94%) and spirometry 

(51.56%) are also present but more varied across 

diseases.  

Table 5: Confusion matrix and performance metrics for recommendation capabilities of PANDORA when using 

the synthetic cases as standard 

 

 

 

  
Diagnosis 

COPD 

Diagnosis 

Other 
 

PANDORA 

COPD 
20 64 84 

PANDORA 

Other 
0 16 16 

 20 80 100 

Metric Value 

Sensitivity 1.0 

Specificity 0.200 

Precision 0.238 

Accuracy 0.360 

F1 score 0.385 

Cohen's Kappa 0.347 
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Table 6: Absolute frequencies of PUMA features in the misdiagnosed individuals, organized by differential 

diagnosis 

Diagnosis 

Sex 

(M:F) 

Age Smoking history (packs/year) 
Dyspnea 

Chronic 

Cough 

Chronic 

Expectora

tion 

Spirometry 

40-49 50-59 >60 <20 20-30 >30 

COPD differential 

diagnosis 
n (n) (%) (n) (%) (n) (%) (n) (%) (n) (%) (n) (%) (n) (%) (n) (%) (n) (%) (n) (%) 

Asthma 17 13:4 0 0 10 59 7 41 16 94 0 0 1 6 17 100 17 100 1 6 17 100 

Pneumonia 12 11:1 0 0 0 0 12 100 0 0 0 0 12 100 12 100 1 8 3 25 0 0 

Heart Failure 8 8:0 0 0 0 0 8 100 2 25 1 13 5 63 8 100 7 88 0 0 8 100 

Cardiomegaly 6 6:0 0 0 0 0 6 100 0 0 0 0 6 100 6 100 3 50 0 0 0 0 

Community Acquired-

Pneumonia 
3 3:0 0 0 0 0 3 100 0 0 0 0 3 100 3 100 0 0 0 0 0 0 

Pulmonary Edema 5 5:0 0 0 0 0 5 100 1 20 0 0 4 80 5 100 0 0 2 40 0 0 

Pulmonary Fibrosis 8 8:0 0 0 0 0 8 100 0 0 0 0 8 100 8 100 8 100 0 0 7 88 

Cystic Fibrosis 1 1:0 1 100 0 0 0 0 1 100 0 0 0 0 1 100 1 100 1 100 1 100 

Pneumothorax 4 4:0 0 0 1 25 3 75 0 0 0 0 2 50 4 100 0 0 0 0 0 0 

Total 64 59:5 1 2 11 17 52 81 20 31 1 2 41 64 64 100 37 58 7 11 33 52 

DISCUSSION 

Despite the gigantic advances in health, data science, 

and machine learning, most clinical data is still 

unstructured, which means it is not organised in 

databases, to facilitate their processing and 

interpretation. Consequently,  health-related data that 

could be used to understand disease patterns and make 

high-impact decisions in public and private health 

systems is currently buried in rudimentary clinical 

software in plain text [42]. With our Generative AI 

PANDORA, we intend to provide a tool for the health 

industry that enhances the use of all the existing 

knowledge that has not yet been exploited.  

Specifically, earlier or missed diagnoses of several 

diseases could be achieved by combining the vast 

amount of capabilities developed over the last couple 

of years in Natural Language Processing [43] and the 

traditional, validated clinical diagnostic scores and 

updated clinical guidelines that contain the best 

available evidence and the consensus of field experts 

around the world.  

Context  

The literature has explored LLMs' ability to extract 

information from various text sources, such as EHRs 

and clinical notes. However, most models offer 

information retrieval and recommendation functions 

separately [44–52], while others are machine learning 

algorithms focused on diagnosis and risk prediction 

from organised, tabular data [50,52–58]. 

 

To name a few examples, Gu et al. tested the capability 

of information extraction from free electronic health 

records of 5 open-source LLMs. They evaluated their 

ability to extract social determinants of health and 

calculated accuracy as the number of true extractions 

over the total number of questions. Maximum 

performance was achieved by openchat_3.5, with an 

accuracy of over 80% [53]. Wang et al. also evaluated 

the impact of implementing LLMs for data extraction 

compared to human evaluation in China. The 

researchers found that the AI-assisted process 

improved efficiency by 80.7%, significantly reducing 
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human labour time. Nevertheless, the accuracy of 

manual entry was 99.08%. The study also reported that 

the model made mistakes in understanding Chinese 

clinical terminology [54].  

 

A recent preprint by Wiest et al. presents LLM-AIx for 

information extraction from unstructured medical text. 

In this study, the researchers present an adaptable 

pipeline for information extraction using Llama-3 

70B. The model has been used for several purposes: 

extraction of signs and symptoms to make a diagnosis, 

recovery of information for research, detection of the 

risk of suicide and anonymization of the clinical data. 

This last function has been tested and improved, 

reporting 99.9% specificity and 100% sensitivity. 

They also report extraction from The Cancer Genome 

Atlas (TCGA) dataset 

https://www.cancer.gov/ccg/about. It retrieved 

variables such as the number of lymph nodes 

examined, if they were positive for cancer cells and 

whether the resection margin was tumour-free, with an 

overall accuracy of 87% [55].  

 

On the other hand, Yu-Tzu Lee explored the 

integration of the extraction capability and 

recommendation in his thesis paper, which is available 

as a preprint at https://arxiv.org/abs/2407.10453. He 

intended to test the enhancement of medication 

recommendations using LLMs to extract information 

from free-text notes. The study used the MIMIC-III 

and CYCH datasets, including diagnoses and 

medication histories, and tested 7 different LLMs. The 

study shows that one of the seven models (G-BERT) 

improves its performance when text information 

extracted by the LLM is added alongside the 

medication codes, going from an Area Under the 

Precision Recall Curve (AUPRC) of 76.75% to 77.6%  

[56]. A different approach to retrieval and 

recommendation was proposed by Ozan Unlu et al. 

[57], who developed a model that would retrieve 

information from EHRs according to predefined 

selection criteria to select appropriate candidates for 

the clinical study Co-Operative Program for 

Implementation of Optimal Therapy in Heart Failure 

(COPILOT-HF; ClinicalTrials.gov number, 

NCT05734690). Here, their assistant, named 

RECTIFIER, extracted information according to 

inclusion criteria and used exclusion criteria to 

recommend final candidates. This study's sample 

selection, compared with revision from non-licenced 

study staff, had 92% sensitivity and 94% specificity. 

 

To our knowledge, no other health-related LLMs are 

pursuing this dual objective. In particular, there is no 

description in the current literature of a modular LLM 

capable of producing information recovery as well as 

a diagnosis or stratification using that recovered 

information based on human-made clinical 

algorithms. Therefore, the research in this manuscript 

is our initial approach to validating a model that could 

simultaneously serve several purposes: information 

retrieval, integration with clinical guidelines, and 

recommendations for the risk of a diagnosis. 

 

Analyses and Findings  

 

Our model demonstrated high-quality text 

summarization as evidenced by the BERTScore, 

which means that PANDORA can understand and 

generate relevant responses. Also,  the Semantic Score 

demonstrates its effectiveness in maintaining meaning 

and context, and the Relevance Score indicates how 

well the information aligns with the relevant disease 

factors, showing that the model uses pertinent data in 

its recommendations. A Judge Alignment Metric was 

also applied; the good marks imply that our model 

performs well semantically in the presence of state-of-

the-art LLMs and all their capabilities for evaluating 

the input (e.g., information retrieved from EHRs) and 

the output (recommendation regarding risk of 

diagnosis). Notwithstanding, these scores measure 

only one dimension of the written answer.  

 

State-of-the-art (SotA) LLMs refer to the Large 

Language Models with the highest accuracies reported 

compared to other current LLMs [58]. For example, 

the current SotA performance for GPT-4 is 90.2% and 

85.4% for Med-PaLM 2 when assessed in light of one 

of the reference standards. These reference standards 

mainly consist of enormous datasets of questions and 

answers built from medical board exam questions or 

telemedicine interactions [34,59,59–61], which 

provide revised answers and facilitate quantitative 

analyses. The strategies usually consist of running 

these databases on the LLM and comparing their 

responses to said standards [46,51,62–69]. Usually, 

the expected outcome is a binary classification of 

correct or incorrect, one or zero, etcetera, according to 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 19, 2024. ; https://doi.org/10.1101/2024.09.18.24313915doi: medRxiv preprint 

https://www.zotero.org/google-docs/?f3C9LW
https://www.cancer.gov/ccg/about
https://www.zotero.org/google-docs/?RdkLYA
https://arxiv.org/abs/2407.10453
https://www.zotero.org/google-docs/?WFzqQv
https://www.zotero.org/google-docs/?OYRrgd
https://www.zotero.org/google-docs/?DwkoM9
https://www.zotero.org/google-docs/?PuHslM
https://www.zotero.org/google-docs/?qrP0QH
https://doi.org/10.1101/2024.09.18.24313915
http://creativecommons.org/licenses/by-nc-nd/4.0/


the nature of the standard dataset. From there, they 

calculate the accuracy, often the measure presented in 

the manuscripts [33,60,70], defined as the correct 

answers obtained with the model being tested divided 

by the total of items in the database.  

 

Although no scientific consensus exists for a test that 

could be used as a gold standard in LLM evaluation 

[71], human expert revisors are still considered the 

desirable comparison criteria for LLM responses 

[72,73]. The Judge Alignment Metrics strategy (e.i. 

Using a benchmark LLM to evaluate another original 

LLM) was developed as a more scalable and 

automated alternative to human evaluation [37]. The 

rationale is that human eval, although ideal, is almost 

impossible given the sizes of clinical notes databases, 

some containing more than fifteen thousand questions 

or clinical scenarios. It would transform any attempt at 

developing an LLM into a costly, time-consuming 

matter and exhausting for the professionals involved.  

 

The MIMIC-IV-Note database was explicitly chosen 

to test PANDORA for its comprehensive coverage of 

patient health records. This database focuses 

exclusively on healthcare, making it an ideal source 

for extracting disease-related factors. Furthermore, 

MIMIC-IV-Note has been widely used as a benchmark 

for training and evaluating models in the medical field 

[24–26]. As such, we used it as the standard of 

reference for the qualitative assessment of 

PANDORA. This assured the model’s exposure to 

raw, intricate data typical in clinical settings, allowing 

it to work effectively in this context. Also, we 

emphasised handling open-ended responses so the 

algorithms could extract relevant factors. Unlike other 

databases, there are no described benchmarks for LLM 

evaluation specifically using MIMIC IV.  

 

PANDORA showed that it can adequately extract 

structured data from unstructured sources, such as 

medical records and discharge notes. To validate this, 

we performed Human Evaluations of each process step 

using a subset of the MIMIC-IV database. In this 

initial evaluation, our model demonstrated perfect 

extraction capability (100%); additionally, we 

explored its ability to interact with a validated risk 

calculator (scoring capability), the PUMA scale for 

COPD risk assessment, which revealed that our model 

understands the rationale behind the scoring rules. 

Regarding the recommendation capability, it could 

point out the risk for COPD in all synthetic clinical 

cases and 89% of the MIMIC-IV discharge notes. Still, 

the specificity for this last capability was 20% for 

synthetic cases and 70% using MIMIC-IV. These 

results could be explained by the use of a highly 

sensitive COPD case-finding tool such as PUMA.  

 

The  “Prevalence and Usual Practice in a Population 

at-risk of COPD in General Medicine Practice in 4 

Countries of Latin America” Study or PUMA [31] is 

described as an opportunistic case-finding tool for 

COPD [31], validated for screening in adult, heavy-

smoker population. Thus, its threshold for COPD ( ≥ 

5) risk was set accordingly. This raises the question of 

the tool’s applicability in a population with different 

baseline characteristics and risk factors: Could a 

different threshold be used? The scale's precision is 

extensively described elsewhere [29,30,32,41] and is 

not the focus of this paper. However, it is plausible that 

setting a higher threshold could validate PUMA for 

use in a broader population base without pre-selected 

risk factors. Supplementary material 5. depicts the 

operative characteristics of the PUMA scale when 

applied to our population sample, using thresholds 

from 1 to 9. The calculations for operative 

characteristics of the PUMA scale,  in one of the 

original samples it was validated, were presented by 

Lopez Varela et al. in their 2016 paper “Development 

of a Simple Screening Tool for opportunistic COPD 

Case Finding in Primary Care in Latin America: The 

PUMA study” [23]. 

 

However, both sources of clinical cases (MIMIC and 

synthetic) were tested using the same scale, which 

does not explain the 50% difference in specificity 

(70% for MIMIC, 20% for synthetic cases). We 

believe the explanation lies in the intrinsic 

characteristics of the sources used and our final aim.  

 

The MIMIC-IV was a real-world dataset with patients 

who were entered into the ICU and had just been 

discharged. Their entire clinical record was that of a 

sicker patient. Unfortunately, we could not evaluate 

smoking habits or age, as it was part of the erased 

information in the de-identification process, 

mandatory for the public access of sensitive 

information. This fact makes the score results not 
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comparable to those from the synthetic cases, which 

have all the information.  

 

On the other hand, the synthetic cases were created to 

intentionally present the scale with cases that showed 

similar symptoms to COPD. The profile of this patient 

was also completely different, as they were outpatient 

consultations, healthier in general than the previous 

ones. For this database, the number of cases of 

PANDORA misclassified as COPD was 64, which 

shows the adequate extraction and scoring of the 

model but the high sensitivity and low specificity of 

PUMA. To elaborate on this, take the example of a 62-

year-old man (male 1 pt+age 2 pts) presenting with 

dyspnea (1 pt) due to heart failure, with spirometry 

performed (1pt); this patient will be undoubtedly be 

classified as a case for COPD if only evaluated using 

the PUMA scale. 

 

To approach this, we found out there were 62 synthetic 

cases that were given COPD as part of past clinical 

history by the generative model and decided to use this 

criterion for a subsequent analysis on MIMIC 

(presented in the results section) adding an item to the 

extraction phase, which we prompted as “does the 

patient has a smoking history?”. This approach improved 

sensitivity by 66%. 

 

A remarkable contribution of the present research is 

the application of the recently proposed “Self-Thought 

Evaluators”, described in a paper by the same name, 

published on August 8, 2024 [74]. The approach 

proposes the evaluation of models without human 

judges. Instead, it presents an approach using only 

synthetic data with which an AI model evaluates the 

performance of another. Our experience developing 

and using the Judge Alignment Metric was remarkable 

in that it allows any kind of assessment of any number 

of entries or queries, facilitating and expediting 

analyses, comparisons and improvements. The 

downside is that AI judges could make mistakes in 

their judgement and would amplify possible biases 

introduced when they were created. 

 

 

Biases 

 

First, regarding the benchmark used (MIMIC-

IV/EHR-DS-QA), we could not assess the complete 

set of questions for each case using the PUMA scale 

since age and smoking history were missing in all 

cases. Thus, we were not able to control this from the 

data source. Consequently,  we performed a human 

evaluation of each case and question-answer pairs, not 

necessarily to apply the score, which would 

undoubtedly affect the recommendation, but to ensure 

every other capability was conserved. As mentioned, 

human evaluation is the standard of reference desired 

but is a cumbersome task. The ideal way to approach 

this is to manually revise the percentage of the cases, 

ideally 100 and no less than 50 cases [72]. 

 

Given that all data in PANDORA is generated and 

evaluated synthetically, the system may not fully 

represent the diversity of EHRs in the general 

population. This approach could introduce biases into 

the model, as the synthetic data might not capture the 

full range of variability in real-world clinical data. 

Furthermore, clinical note structure may vary by 

country or institution. We had medical professionals 

and government guidelines to replicate outpatient 

clinical cases. We explicitly instructed the LLM to 

consider all races, sexes, occupations, nationalities and 

social backgrounds to make the rules more egalitarian. 

Still, continuous human monitoring and re-evaluation 

are necessary to ensure and supervise PANDORA’s 

and other LLMs' outcomes. 

 

CONCLUSION 

 

This initial evaluation is the first step towards the 

validation and launch of a clinical and research tool 

that will allow the application of diagnostic scores 

from different diseases to information previously 

trapped in formats that made it inaccessible. Even 

institutions without structured databases will be able 

to use it and make the most of all the knowledge 

currently not being utilised, written in plain text. 
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