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Abstract:  Chronic pain impacts more than one in five adults in the United States (US) and the costs 
associated with the condition amount to hundreds of billions of dollars annually. Despite the tremendous 
impact of chronic pain in the US and worldwide, the standard of care for diagnosis depends on subjective 
self-reporting of pain state, with no effective objective assessment procedure available. This study 
investigated the application of signal processing and machine learning to electroencephalography (EEG) 
data for the development of classification algorithms capable of differentiating subjects in pain from pain 
free subjects. In this study, nineteen (19) channels of EEG data were obtained from subjects in an eyes 
closed resting state, and ultimately data from 186 participants were used for algorithm development, 
including 35 healthy controls and 151 chronic pain patients. Signal processing was applied to identify noise 
free segments of EEG data and 6375 quantitative EEG (qEEG) measures were calculated for each subject. 
Various machine learning methodologies were applied to the data, with Elastic Net chosen as the optimal 
methodology. The final classifier developed using Elastic Net contained 34 qEEG features with non-zero 
weights. The classifier was able to differentiate pain versus no pain subjects with an accuracy of 79.6%, 
sensitivity of 82.2%, and specificity of 66.7%. The features used in the classifier were evaluated and found 
to align well with contemporary literature regarding changes in neurological characteristics associated 
with chronic pain. 
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1 Introduction 

Using a chronic pain model introduced in the 2019 edition of National Health Interview Survey, 
approximately 50.2 million U.S. adults (20.5%) report pain on most or every day (Yong, 2022) with the 
most common pain locations being the back, hip, knee, and foot. Furthermore, respondents with chronic 
pain reported limitations in daily functioning and more workdays missed compared with those without 
chronic pain (Yong, 2022).  

The International Association for the Study of Pain (IASP) defines chronic pain as pain that has persisted 
for more than 3 months and is associated with significant emotional distress and/or functional disability. 
In a 2010 study, the total yearly cost associated with the condition was found to be $560 billion to $635 
billion in the US alone. That cost was composed of direct health care costs ($261 billion to $300 billion), 
days of work missed ($11.6 billion to $12.7 billion), hours of work missed ($95.2 billion to $96.5 billion), 
and lower wages ($190.6 billion to $226.3 billion) (Gaskin DJ, 2011). Considering these figures, the costs 
associated with chronic pain in 2010 were more than those associated with heart disease or cancer 
treatments.  

The current standard of care for assessing chronic pain intensity is patient self-report using the Numeric 
Rating Scale (NRS) or the Visual Analog Scale (VAS). Subjective pain measurement may lead to a non-
replicable, unreliable assessment of a patient’s pain state, resulting in inappropriate treatment decisions 
and ultimately poorly managed pain. Furthermore, there are several patient populations that are unable 
to effectively communicate their pain via self-report, challenging clinicians to determine appropriate 
treatment paths (Herr, 2011).  

There has been an abundance of research in recent years focused on identifying neurological signals 
associated with specific clinical conditions utilizing various modalities, including electroencephalography 
(EEG). As a modality for acquiring neurological data, EEG offers several benefits relative to other 
technologies such as Functional Magnetic Resonance Imaging (fMRI) or Positron Emission Tomography 



(PET), including lower cost, non-invasiveness, and ease of use. Additionally, EEG, and in particular 
quantitative EEG (qEEG) data lends itself well to the use of artificial intelligence (AI) and machine learning 
(ML) for identifying neurological patterns and developing sophisticated models for classification of various 
nervous system disorders (Mussigmann,2022).  

The purpose of this study was to develop technology to assess a chronic pain patient’s current pain state 
objectively and empirically based on neurological signals obtained from EEG recordings. With support 
from a National Institutes on Drug Abuse (NIDA) Small Business Innovation Research (SBIR) grant, a multi-
site research study was conducted, and algorithms were developed using qEEG data to objectively classify 
study subjects as “in pain” or “not in pain.”  

Following the development of chronic pain classification algorithms, the qEEG features selected for the 
algorithms using AI/ML were assessed and found to be congruent with contemporary domain 
knowledge and the published literature on qEEG and pain. Congruency with previous findings supports 
the notion there are qEEG features (neurological signatures) that are generalizable across chronic pain 
patients which can be used to characterize a patient’s pain state.  

  

2 Methods 

2.1 Ethics 

Approval was obtained from Advarra Institutional Review Board (study number Pro00042433) on March 
12, 2020, and subsequently registered the study on www.clinicaltrials.gov (NCT04585451). Written 
informed consent was obtained from all participants prior to inclusion in the study.  

2.2 Inclusion/Exclusion Criteria  

Male and female participants ages 18-80 were included in the study, and pain subjects were required to 
meet the IASP definition of chronic pain. Subjects with neurological disorders or other conditions affecting 
neurological activity were excluded from the study. Additionally, patients who may have had a reason to 
misrepresent their pain (e.g., patients on workers compensation) were also excluded. 

Study enrollment involved recruiting and screening potential participants from the Comprehensive Pain 
and Wellness Center (New York City, New York), Manhattan Restorative Health Sciences (New York City 
and New Hyde Park, New York), and Panorama Orthopedics & Spine Center (Golden, Colorado). The study 
was advertised at the various institutions via posted flyers and through solicitation by the study 
investigators (and their respective staff) at the institutions.  

In total, 334 patients were recruited for the study who met eligibility criteria and provided informed 
consent. 308 participants fully completed the protocol including 54 healthy controls and 254 chronic pain 
patients. The chronic pain patient cohort included various indications as the primary diagnosis; 150 
patients with back pain, 125 patients with joint pain, 87 patients with various other sources of pain, and 
14 patients for whom a primary pain source was not indicated. 

Of the 308 who were initially considered eligible for analysis, eight subjects were dropped due to non-
conformity with expectations underlying the recruitment strategy. Three healthy controls reported being 
in pain at the time of the exam (not due to the exam itself) and five chronic pain subjects reported no pain 



at the time of the exam. This represented a confound in the expected “in pain” versus “not in pain” truth 
vector associated with the control versus pain groups, and thus these eight subjects were not considered 
in the analysis. 

Twenty-one subjects did not successfully complete EEG processing. This was largely due to anomalous 
electrode activity not detected at the time of recording. Electrode bridging, which causes multiple 
electrodes to read identical values, and single electrodes remaining at a fixed voltage for a short period 
of time (less than 2.5 seconds) were the primary causes.  

2.3 Study Protocol 

Clinical information relating to subjects’ pain history and functional impairment was collected using 
standardized instruments. Characterization of subjects’ mental state was performed using the PROMIS 
instruments for depression and anxiety.  

For the study, EEG collection was done using the Zeto WR-19 wireless headset which has a dry electrode 
array with the specifications shown in Table 1. Electrode locations were in accordance with the 
international 10-20 system of electrode placement (Figure 1). Linked mastoids were used as reference. 

Fifteen minutes of eyes closed resting state EEG data were collected. Collection began after the electrode 
array was placed on the subject’s head and all electrode impedances were verified to be within the 
manufacture defined acceptable range. Subjects were instructed to sit as still as possible and relax for 15 
mins while the recording took place. Technicians monitored the subjects and intervened if the subject was 
moving excessively or began to enter a sleep state (i.e., exhibited head nodding).  

 
Figure 1: 19 Channel EEG Montage showing electrodes locations in accordance with the international 10-20 System. 

Table 1. Summary of Zeto WR-19 Specifications 

 
      
Specification  Value  

Sampling Rate  500 samples/sec  



Bandwidth  0.01 to 80 Hz  

Data Resolution  24 bits  

Noise Free Bits  19 bits  

Table 1: Brainmaster Discovery 20 Specifications 

2.4 EEG Data Processing 

Following the 15 minutes of EEG data collection, the data was sent to a cloud computing platform, where 
it was processed by a series of software modules to refine the data to be used for classifier development 
(Figure 2). EEG data was supplied in a standard European Data Format (EDF) file. EDF is a standardized 
way of assembling the EEG signal information along with needed recording information such as sample 
rate.  

 

Figure 2: Processing Pipeline Diagram  

2.4.1 Pre-processing  

The first module in the pipeline filtered the raw EEG data by applying a second order Butterworth 
bandpass filter from 1-80 Hz. An Infinite Impulse Response notch filter was also used at 60 Hz to remove 
powerline noise.    

2.4.2 EEG Data Quality Assurance 

The second module in the pipeline assessed the quality of the EDF file containing the EEG data to ensure 
the file passed a series set of quality checks (Table 2). If any check failed, the data was deemed unusable 
due to a problem with the recording and a detailed report was created. The initial quality assurance check 
ensured the data files had a header and a body. The header was first checked to verify it was readable, 
consisted of data obtained from standard 10-20 electrode locations, and that frequency range, and 
dynamic range aligned with expected values. Subsequent checks operated on the body of the EDF which 
contained the time series EEG data. The data resolution (least significant bit), apparent sampling rate 
(derived from timestamps), and power spectral density were all checked against acceptable ranges. 
Individual electrodes were checked to ensure good contact quality over the course of the recording and 
variability was compared to all other electrodes. If more than 80% of the recording was deemed to be 
contaminated by artifact, the file was rejected. Only if all checks passed was the file advanced to the 
artifactor stage.  

Table 2. EEG Quality Control Checks 
    



Quality Check Description of Check 

EDF Header 
Verify header is readable, standard 10-20 electrode locations are 
denoted, frequency range, and dynamic range align with signal data 
content  

Recording Length Recording length must exceed 12 minutes  

Sampling Rate Sampling rate must be 500 samples for second 

Raw Dynamic Range Raw dynamic range must be within the bounds of the amplifier  

Minimum Step Size Step between samples must be in line with the resolution of the 
amplifier  

Percent Flat Less than 10% of the recording can be flat, or showing no variability  

Percent Clean More than 20% of the recording must be deemed artifact free 

Clean Dynamic Range Once the recording is artifacted, dynamic range must be below 
±300µV 

Clean PSD vs TUH 
Once the recording is artifacted, the recording is compared to a large 
corpus of publicly available EEG data and data must exist within the 
typical Power Spectral Density range from that corpus    

Clean PSD vs Self 
Once the recording is artifacted, each individual channel is compared 
to all other channels and all channels must be non-significantly 
different 

Occipital Power Once the recording is artifacted, the ratio of alpha power in the 
occipital vs the rest of the electrodes must be above 0.4.    

Table 2: Table of Quality Control Checks 

2.4.3 Epoch Creation 

The full EEG recording was divided into segments referred to as “epochs,” each 2.5 seconds long. With a 
sample rate of 500 samples/second, each epoch contained 1250 samples across 19 electrodes. Successive 
epochs overlapped by 50%, so the EEG recording was effectively doubled in the array of epochs, since 
each epoch repeated half the information from the preceding epoch, and half from the following one. 
This approach offset the later use of a hamming windows as part of signal analysis: the window attenuated 
the signal down to zero at the beginning and end of each epoch, so the 50% overlap preserved signals 
attenuated near the start & end of each epoch. Various epoch lengths were tested during the algorithm 
development process, with the previously mentioned specifications resulting in the optimal performance 
during cross-validation. 

2.4.4 Artifact Detection and Removal 

The automatic artifactor software flagged any distortions in the EEG data caused by signals not originating 
from the brain. The artifactor produced a list of detected artifacts (Table 3), each of which was tagged 
with the onset time and duration in the recording. Each artifact caused an interval of EEG to be excluded. 



Epochs were down selected for further processing based on artifactor results with any epoch overlapping 
in time with an artifact being excluded from further analysis. 

Table 3. EEG Artifact Types 
    
Artifact Description 

Impulse Large excursion in amplitude, usually represented 
by a spike in the signal on one or more electrodes  

Electromyographic ~30 Hz noise resulting from muscle activity on one 
or more electrodes  

Vertical Eye Movement 
Artifact resulting from the eye moving vertically 
because of blinking or eye flutter, localized to Fp1, 
Fp2, F7 and F8 

Significantly Low Activity Signal Signal is constant or near constant on one or more 
electrodes 

Table 3: Table of Artifact types 

2.4.5 Epoch Ranking and Selection 

The epochs that remained after artifacting were then down-selected a second time based on covariance, 
a method derived from the work of Congedo, Barachant et. al (Congedo, 2017). For each epoch, the 
covariance matrix was generated, which is a 19 -by- 19 square diagonal positive-definite matrix (given the 
19 electrodes used for data acquisition). The resulting array of matrices was then analyzed to determine 
a single covariance matrix representing the centroid covariance of all epochs, similar to finding the 
centroid of a cloud of points.  All epochs with distance beyond the starting threshold of 6 were excluded. 
The process was then iterated:  1) find centroid of epochs under analysis, 2) calculate distance and remove 
epochs from analysis if their distance is beyond the threshold, 3) repeat. For each iteration, the threshold 
was reduced by 0.95. The intent was to determine the covariance cloud which represented the “normal” 
covariance for the recording. Iteration was stopped when a targeted percent of epochs remained in 
analysis, or when the remaining epoch cloud was tight (i.e., there were no more discarded epochs beyond 
the distance threshold). This resulted in a single centroid derived from the epochs remaining in analysis. 
Finally, distance was calculated to this centroid for all epochs, including those discarded from analysis, 
with the final calculation performed using Riemannian distance. The rational was that Euclidean distance 
was much less computationally complex, so it was used in the iterative process, while Riemannian distance 
was a superior choice for final evaluation, justified by the fact that covariance matrices are always positive 
definite, thus occupying a subspace of all possible matrices, and similarity between them is reflected by 
distance along the subspace manifold, calculated as Riemannian distance.  

2.4.6 QEEG Feature Extraction 



Epochs selected for further processing by the artifacting and epoch ranking modules were then passed to 
the feature extractor module. Over six thousand unique EEG features were calculated for each EEG 
recording. The “feature type” refers to the general type of mathematical analysis performed. Those 
analyses were carried out for all electrodes or electrode pairs as well as for each frequency band defined 
in table 4, which is what led to the large number of individual qEEG features shown in table 5. 

Table 4. Frequency Band Descriptions 

Frequency Band Name Symbol Frequency Range (Hz) 

Theta T 3.5 – 7.5 

Low Alpha A1 7.5 – 10.0 

Alpha A 7.5 – 12.5 

High Alpha  A2 10.0 – 12.0 

Beta B 12.5 – 25.0 

High Beta B2 25.0 – 35.0 

Gamma G 35.0 – 50.0 

Full Lower Spectrum S 1.5 – 25.0 

Table 4: Descriptions of frequency bands that were used in generation of features. 

 

Table 5. QEEG Features Extracted 

Name Feature Type Description 
Number of 
Features 

Alpha Power 
Ratio 

Power 
Ratio of power 9-11Hz divided by power 7-9Hz on 
all 19 electrodes, plus one additional alpha power 
ratio utilizing all electrodes. (Witjes, 2021) 

20 

Bipolar 
Power 

Power 
For each of the 7 primary bands, excluding S, 
power between all electrode pairs divided by 
total power across the S band. (John, 1990) 

1197 

Cross-
Frequency 
Coupling 

Connectivity 

Similarity (correlation & coherence) between low 
frequency waveform components vs power 
envelopes of high frequency waveforms.  
(Canolty, 2010) 

488 

Coherence Connectivity 
For each of the 7 primary bands, excluding S, a 
measure of the statistical relation between all 
electrode pairs. (John 1990) 

1368 



Centroid 
Quartiles 

Variability 

For all 19 electrodes, variation in brain activity 
from moment to moment expressed as the 
distribution of distance from each epoch 
covariance to the centroid covariance of the full 
recording.  (Barachant, 2013) 

19 

Granger 
Causality 

Connectivity 

Linkage between two electrodes in terms of the 
ability of one to improve forecasting the other.  
Only a subset of electrode pairs are utilized.  
(Marinazzo, 2011) 

210 

Mean 
Frequency 

Frequency 

 The frequency at which half the power in the 
band is above and half is below within all 8 
frequency bands for all electrodes and electrode 
pairs. (John 1990) 

1520 

Peak 
Dispersion 

Frequency 

For all 8 bands, the difference between mean 
frequency on non-occipital electrodes and the 
average of the mean frequency on occipital 
electrodes (O1 & O2). The average mean 
frequency of the occipital and the non-occipital 
electrodes are also included as features. 
(Halgren, 2018) 

24 

Power 
Asymmetry 

Asymmetry For each of the 8 primary bands and all 19 
electrodes, ratio of power for all electrode pairs. 
(Wang, 2016) 

1368 

Monopolar 
Power 

Power For each of the 7 primary bands, excluding S, and 
all 19 electrodes the mean frequency divided by 
the S band. (John, 1990) 

133 

Spectral 
Event 

Spectral Event Excursions of brain activity in terms of their 
duration, bandwidth, peak amplitude, and 
frequency. Only a subset of electrode pairs are 
utilized. (Levitt, 2020) 

28 

Table 5: QEEG Features Calculated 

2.4.7 Implications of Age on QEEG Features  

Nearly all qEEG features have an expected trend with age. This was accounted for by converting features 
into Z-scores that incorporate age-expectation using a separate normative dataset from the Brain 
Research Laboratories of NYU School of Medicine which included 92 subjects with representation across 
ages 19 to 81. This norming dataset was used to fit a trend line for each feature. Subjects in this normative 
dataset did not have any evidence of clinically significant pain, depression, or anxiety, other than one 
individual with moderate anxiety.  In each case, age dependence was assumed to be linear with log of 
age.  



2.4.8 Classifier Development 

The calculated qEEG features and participant reported NRS scores were used as input to AI/ML based 
classifier development methodologies with the objective of developing algorithms for the characterization 
of chronic pain. ML best practices were utilized in the development of a pain versus no-pain binary 
classification algorithm, to reduce the possibility of overtraining in which results are good on the training 
dataset, but poor in the broad population. The approach to mitigate overtraining included rigor in the 
cross validation so that test folds are truly isolated from the training folds, i.e. no information leakage was 
allowed to occur. In addition, ML results were compared to domain knowledge to identify solutions which 
do not align with relationships reported in literature, potentially representing something about the 
dataset that may be different from the broader population. Finally, 30% of the data was randomly set 
aside as an independent set of data to confirm the findings of the cross validation, and this 30% “hold 
out” group was only processed once at the end of development, producing a clean estimate of 
performance on the broad population.  

2.5 Analysis of Classifier Performance 

2.5.1 Train/Test and Hold Out Data Sets 

Algorithms were developed on a Train/Test (TT) dataset (70% of the data), with performance evaluated 
on a Hold Out (HO) dataset (30% of the data) to check for potential overtraining of the algorithm. The 
performance of the Pain / No-pain classifier was analyzed using a variety of metrics. Performance was 
evaluated for both the TT and HO datasets. The TT performance was derived from 20 repetitions of 10-
fold cross-validation, in which the TT set is partitioned at random into a Train interval and Test interval 
and results are aggregated, whereas the HO performance was a single application of the TT-developed 
classifier applied to the HO dataset. 

2.5.2 Discriminant Score and Receiver Operating Characteristics Plots  

The pain versus no-pain algorithm combined weighted qEEG values to produce a discriminant score. One 
method for visually assessing how well a binary classifier can separate two classes is a histogram of the 
discriminant scores for each of the two classes, which was generated as part of the study. Another method 
for visualizing the performance of a binary classifier, which was also utilized as part of the study, is the 
Receiver Operating Characteristics (ROC) curve. The ROC curve is a performance measurement for the 
classifier at all possible settings of the operating point, and so it represents an unbiased perspective on 
performance.  

2.5.3 Area Under the Curve (AUC) 

The Area Under the Curve (AUC) metric is derived from the ROC curve and represents the degree or 
measure of separability. It tells how much the model is capable of distinguishing between classes. The 
higher the AUC, the better the model is at predicting negative (no-pain) classes as negative and positive 
(pain) classes as positive. By analogy, the higher the AUC, the better the model is at distinguishing 
between patients with the disease/condition versus without the disease/condition. 

2.5.4 Operating Point Selection 

In order to generate specific performance metrics based on the AUC – ROC curve, an operating point must 
be established which determines the discriminant score cut point that defines which cases are classified 



as positive (pain) versus negative (no-pain). The selection of an operating point is often made based on a 
risk/benefit analysis for a specific application of the classier, where false positive versus false negative 
results may have very different risks associated with them.  Since a pain vs no-pain classifier may see 
several different applications, the study utilized an operating point that minimized the total number of 
false classification results. 

2.5.5 Performance Metric Calculations Using Study Data 

Having chosen an operating point, application of the classification algorithm yields a specific set of true 
positive (TP), true negative (TN), false positive (FP) and false negative (FN) results/counts. Those counts 
are often displayed in a 2x2 table referred to as a confusion matrix. Utilizing the data from the confusion 
matrix, a variety of performance measures were calculated, each providing a different perspective on the 
behavior of the algorithm.  Definitions for the metrics calculated as part of the study include the following: 

Accuracy: Percent of correctly classified cases involving both pain and no-pain classifications 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
	

 
Sensitivity: Percent of correctly classified pain cases 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
	

 
Specificity: Percentage of correctly classified no-pain cases 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
	

 
Positive Predictive Value: Percent of subjects classified as in pain who are actually in pain 

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
	

 
Negative Predictive Value: Percent of subjects classified as no-pain who are not in pain 

𝑁𝑃𝑉 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
	

 
 
2.5.6 Extended Performance Metric Calculations Using Study Data and Prevalence Models 

Several of the performance metrics calculated, such as sensitivity and specificity, involve only one class, 
and so they are not impacted by the distribution of pain versus no-pain cases in the study population. 
Other metrics, such as Positive Predictive Value (PPV) and Negative Predictive Value (NPV), are impacted 
by changes in the ratio of positive (pain) to negative (no-pain) cases in the population under test. PPV and 
NPV often play an important role in the assessment of benefit versus risk associated with the use of a 
classifier for a specific purpose in a specific population. For this study, the goal of subject recruitment was 
to achieve a reasonable balance between classes (pain and no-pain) in order to optimize the ML process. 



While that goal was achieved, the resulting study population was not representative of any of the 
populations that might be targeted for pain / no-pain assessment in the “real world.”  Therefore, in order 
to derive relevant PPV and NPV metrics, the Sensitivity and Specificity measures defined above were used 
to derive new confusion matrix values based on two “real world” prevalence models for pain versus no-
pain. The first prevalence model was based on the incidence of chronic pain across adults in the U.S., 
which is reported to be approximately 20% (with 80% not in pain) (Yong, 2022).  The second prevalence 
model targeted the population of patients being seen in U.S. pain clinics. That model was developed based 
on discussions with pain clinicians and assumed that 95% of patients being seen are experiencing pain 
(with 5% not in pain). Application of the sensitivity and specificity measures across each a given population 
resulted in a new confusion matrix consisting of derived values referred to as TPx, TNx, FPx, and FNx. Those 
new sets of counts were used to derive PPV and NPV numbers specific to the defined population.  

Positive Predictive Value (for population x): 

𝑃𝑃𝑉(𝑥) =
𝑇𝑃!

𝑇𝑃! + 𝐹𝑃!
	

Negative Predictive Value (for population x): 

𝑁𝑃𝑉(𝑥) =
𝑇𝑁!

𝑇𝑁! + 𝐹𝑃!
	

 

3 Results 

3.1 Data Set Generation Results  

The data from 132 subjects (70% of the data) was used for algorithm development and the remaining 54 
(30% of the data) was used as an independent test set.  Participants were assigned to either group 
randomly, but stratified so that distributions of gender, age, and pain intensity were similar.  (Figure 4) 

 



 

Figure 3. Histograms show the distribution of age, pain intensity, and gender. Heatmaps show joint distribution of age and pain 
intensity in the development (TT) dataset and the independent (HO) test dataset. Subjects were assigned randomly into these 
groups using stratification to ensure these distributions are similar. HO recordings were set aside and processed only after classifier 
development was completed using only TT. 

3.2 Classification Algorithm Development Results 

Given that the optimal ML methodology for a given classification problem can differ depending on the 
underlying phenomenon driving the differences between the defined classes, a variety of ML tools were 
applied including Gradient Boosted Trees, Nearest Neighbor Models, Logistic Regression Classifiers, 
Support Vector Machines, and Elastic Net Classifiers, each of which included many settings which were 
explored in detail. For example, Support Vector Machines were implemented with four different kernel 
types: Radial Basis Function, Polynomial, Sigmoid, and linear. From this work, we selected Elastic Net 
(ENET) (Hastie, 2009) as our preferred tool. Cross validation results were the dominant criteria for 
selection, but we also inspected details of the solutions to assess the contribution of different inputs 
(features) and whether highly weighted qEEG features met with expectation based on the relationships 
between neurological changes and chronic pain reported in the literature.  

Elastic Net is a generalized method that encompasses two well-established methods: Ridge Regression 
and LASSO. Ridge Regression seeks to minimize the total magnitude of assigned weights (contributions) 
across all inputs (features), and LASSO seeks to minimize the total number of non-zero weights. ENET 
allows a smooth transition between the two so the objective function can reflect both goals in order to 
better fit a wide range of problems. The study utilized an L1_ratio of 0.5, meaning the solution was halfway 
between pure Ridge Regression and pure LASSO, and an Alpha parameter of 0.1, meaning 10% of the 
objective function was driven by driven by minimizing the number of features receiving non-zero weights, 
and the remaining 90% was driven by model match to data (i.e., least squared error). 

3.3 Discriminant Score Results 

Results for pain and no pain are shown in Figure 5.  The left panel shows histograms of discriminant scores 
from the Development group (N=132), which arise from two hundred repetitions of 10-fold cross 
validation, and the right panel shows discriminant scores for the final classifier applied once to the 
independent test group (N=54). 



 

Figure 4. Histograms of discriminant scores for the development dataset (left panel) and the independent test set (right panel). 
The left panel shows test scores from the cross validation in which N=132 subjects each contributed 20 scores reflecting 20 
repetitions of 10-fold cross validation. The right panel shows a single application of the classifier to an independent test set of 
N=54, which was processed only once. 

 

3.4 Receiver Operating Characteristics (ROC) and Area Under the Curve (AUC) Results 

The ROC curves for the TT and HO groups are shown in Figure 6. The ROC curves demonstrate the  ability 
to classify pain versus no-pain subjects using QEEG features. The AUC calculated from the development 
group (TT) was 0.83, calculated as the average AUC in test subsets across 20 repetitions of 10-fold cross 
validation, and AUC in the independent test group (HO) was 0.78, calculated from the single application 
of the final classifier trained by the development group (TT). 



 
Figure 5. Receiver Operator Characteristic curves for the development dataset and the independent test set. The blue line is based 
on cross validation in which N=235 subjects each contributed 20 scores reflecting 20 repetitions of 10-fold cross validation. The 
orange line shows a single application of the classifier to an independent test set of N=151, which was processed only once. 

3.5 Confusion Matrix Results 

With the operating point set to minimize total false classification results, confusion matrix results for both 
the TT and HO groups are illustrated in figure 7. 

 

Figure 6. Confusion matrices show subject counts in the development dataset (left panel) and independent test (right panel). The 
left panel shows discriminant scores for subjects in the test interval of the cross validation, so each subject contributes 20 values 
to this matrix since the CV was repeated 20 times. The right panel shows subject counts for the single application to the 
independent test set.  



 

3.6 Classification Algorithm Quality Metrics Results 

Processing the data from the confusion matrices as described in the methods section of this paper, 
accuracy was 0.818 for TT and 0.775 for HO. Sensitivity/specificity was 0.858/0.654 for TT and 0.822/0.667 
for HO. The full set of quality metrics for both the Train/Test and Holdout groups are shown in Tables 6. 
Confidence intervals shown in Table 6 reflect the variability in the twenty repetitions of 10-fold cross 
validation. 

Table 6. Pain / No-pain Classifier Quality Metrics     
              
Metric Train / Test Dataset (TT)   Holdout Dataset (HO) 
AUC   0.829 ± 0.016   0.775 

Accuracy   0.815 ± 0.022   0.796 

Sensitivity   0.857 ± 0.022   0.822 

Specificity   0.642 ± 0.050   0.667 

NPV   0.194 ± 0.029   0.165 

PPV   0.978 ± 0.003   0.979 
Table 6. Foundational Quality Metrics 

3.7 Extended Quality Metric Utilizing Prevalence Models Results 

The study population included 151 pain cases and 35 no pain cases. Thus, the prevalence of pain in the 
study population was 81.2%. In order to estimate PPV and NPV for populations in which the pain versus 
no-pain classifier might be utilized, two prevalence models were applied as described in the methods 
section. Table 7 summarizes the results when the two prevalence models were applied to re-calculate PPV 
and NPV. 

Table 7. PPV & NPV Adjusted for Chronic Pain Population   
  

      

Metric General US Adult Population Outpatient Pain Clinic 
Population 

PPV 0.37 0.99 
NPV 0.95 0.06 

Table 7. PPV and NPV adjusted based of the prevalence of chronic pain in the general US adult population (20% prevalence) and 
a representative pain clinic population (95% prevalence) 



3.8 QEEG Feature Selection and Weighting Results 

Using ENET, specific qEEG features were selected and assigned a weight for use in the pain versus no-pain 
classification algorithm, with the weight assigned to a feature indicating that feature’s relevance to the 
classification of Pain vs No-pain. Table 8 illustrates the top 10 most highly weighted qEEG features. 

Table 8: Top 10 Features Ranked by Weight 

Features 
rank 

Feature Frequency 
Band 

Band 
Range 

Electrodes Weight Contribution to 
Score 

#1 #2 
1 Bipolar 

relative 
power 

Theta band 3.5 - 7.5 
Hz 

F4 F7 -0.0520 11.5% 

2 Mean 
Frequency 

Alpha band 7.5 - 12.5 
Hz 

C3 Cz -0.0377 8.4% 

3 Mean 
Frequency 

Alpha band 7.5 - 12.5 
Hz 

F3 Fz -0.0343 7.6% 

4 Asymmetry Beta band 12.5 - 25 
Hz 

F7 T5 0.0249 5.5% 

5 Asymmetry Alpha band 7.5 - 12.5 
Hz 

O1 O2 0.0247 5.5% 

6 Asymmetry High Beta 
band 

25 - 35 Hz P3 O1 0.0240 5.3% 

7 Coherence High Beta 
band 

25 - 35 Hz C3 T3 0.0233 5.2% 

8 Asymmetry Beta band 12.5 - 25 
Hz 

O2 F7 -0.0230 5.1% 

9 Coherence Low Alpha 
band 

7.5 - 10 
Hz 

T3 T6 0.0217 4.8% 

10 Asymmetry High Alpha 
band 

10 - 12.5 
Hz 

P3 Pz 0.0199 4.4% 

Table 8: Top 10 features ranked by weight. 

4 Discussion 

4.1 Performance Metrics  

The overall performance of the pain versus no-pain classifier developed through the application of ML on 
qEEG data indicates that EEG can serve as a foundational component of an algorithm for the objective 
determination of a chronic pain patient’s pain state. For both the Train/Test and Hold Out datasets, 
histograms of discriminant scores illustrated differentiation of the pain versus no-pain groups. The ability 
to effectively separate the two groups was further supported by the ROC curves and AUCs for the 
Train/Test and Hold Out datasets, with an AUC of 0.83 for TT and 0.78 for HO.  

The separation of the pain versus no-pain groups demonstrated by the discriminant score histograms and 
ROC curves enabled classification accuracy of 0.815 for TT and 0.796 for HO. Sensitivity/specificity was 
0.857/0.642 for TT and 0.822/0.667 for HO. While potential risks associated with false negative and false 



positive results would need to be mitigated for any commercial application of the classifier, these results 
are promising. 

When mapped to a representative population of pain clinic patients, the sensitivity and specificity results 
achieved led to a Positive Predictive Value (PPV) of 0.979. This implies that if a pain clinic has any concerns 
regarding objective assessment of a pain patients pain state, a positive result could be relied on to identify 
patients in pain. On the other hand, the Negative Predictive Value (NPV) for the same population was 
0.194, indicating that the classifier should not be used to identify patients who are not in pain. However, 
a negative (no-pain) result could be used to identify patients that require further assessment of their pain 
state. Since that assessment would probably be the same process currently applied for all pain clinic 
patients, an overall improvement in the efficiency of patient evaluation could potentially be achieved. 

4.3 QEEG Features 

Of the 6375 features calculated and submitted to Elastic Net, 34 received non-zero weight. The rest were 
effectively discarded from the solution.  Elastic Net aims to minimize the L1 norm of the weight vector 
(i.e., the count of non-zeros) which acts to make the solution sparse, and that helps not only to simplify 
interpretation and greatly reduce the burden of feature computation, but it also imposes regularization 
on the solution, which mitigates the risk of overtraining (Zou, 2005).  The summed magnitude of weights 
assigned to the top 10 features accounted for 63% of the total, leaving only 37% for the remaining 24 
features.  For this reason, the discussion below focuses only on the 10 features which contributed the 
most to classifier output (Table 8).  

We assessed alignment of the features selected to various findings reported in the literature by inspecting 
the weight assigned to each feature and checking whether its sign (+/-) agreed with reports on similar 
measures investigated by other researchers and published in peer reviewed journal articles. Our ML 
solutions were developed solely from data acquired as part of this study, and domain knowledge is 
entirely independent, so alignment between these two lines of evidence is a strong indication that the 
pain versus no-pain classifier is capturing fundamental physiology and is not overtrained on spurious 
signals in our dataset. This was also confirmed by results obtained on the independent Hold-Out (HO) 
dataset, which played no role in development, was processed only once, and demonstrated performance 
(AUC 0.78) which is comparable to prediction from cross-validation (AUC 0.83) on the development (TT) 
dataset. 

In terms of the magnitude of weight applied to the features, the second and third heaviest were Mean 
Frequency features, which represent the frequency at which the total power within the specified band is 
split in half: total power above equals total power below. This is the center of gravity formula for mean 
frequency (Klimesch, 1993), which we used in this study.  These are the only two Mean Frequency features 
in the top 10, and they’re both in the Alpha band (8.5 - 12.5 Hz) with negative weight.  This means a 
decrease in the measured value of these features acts to increase the discriminant score, which makes a 
positive pain assessment more likely.This aligns well with the consensus reached by independent research 
worldwide over the past two decades that neural oscillations in the Alpha band tend to be slower among 
chronic pain subjects, as reviewed recently by [Musigman, Pinhero]. 

There were two Coherence features in the top 10, each one representing coherence of waveforms from 
an electrode pair, and this signal relates to connectivity between brain activity in different cortical regions.  
Both these features had positive weight in the classifier, which means an increase in measured value acts 



to increase the discriminant score, which makes a positive pain assessment more likely.  As with mean 
frequency, these Coherence features align well with the consensus among pain researchers that 
connectivity tends to be higher in chronic pain subjects. 

Five features in the top 10 represented asymmetry, which reflects spatial variability of brain activity, and 
there is no consensus on this kind of signal relative to chronic pain.  Of the five, most have positive weight 
(4 out of 5), which means an increase in spatial variability in neural activity acts, mostly, to increase the 
likelihood of a positive pain assessment.  

One feature in the top 10 was a power feature in the Theta band, calculated as Bipolar Relative Power on 
the electrode pair F4 and F7.  This feature has a negative weight in the classifier.  While contemporary 
literature indicates that Theta oscillations tend to increase in chronic pain subjects, this is a measure of 
relative power which does not respond to broad changes across all electrodes and bands, but instead only 
indicates changes in the given electrode pair relative to all others, which is not a focus of contemporary 
literature.   

 

Figure 7: Out of the top 10 highest weighted features, two are based in Alpha band (8.5 - 12.5 Hz) shown in blue:  A) Peak Alpha 
between C3 and Cz.  B) Peak Alpha between F3 and Fz.  Two others represent connectivity in different bands, shown in purple:  C) 
Coherence between T3 and C3.  D) Coherence between T3 and T6.  Weights derived by machine learning show alignment with 
consensus in literature:  Peak Alpha tends to decrease, and connectivity tends to increase with chronic pain.   

 

5 Conclusions 

This study successfully demonstrated that ML based algorithms utilizing EEG data can be used to 
differentiate subjects who are not in pain from subjects who are in pain. EEG features identified using the 
ML pipeline were congruent with domain knowledge identified by previous chronic pain and EEG studies. 
The ability to empirically differentiate subjects in pain from those not in pain has several potential 
applications, including determination of proper opioid dispensing practices and validation of chronic pain 
state in legal cases. 

Even with the success of this research, limitations in the performance achieved indicate that additional 
research is needed to refine the technology. Although many qEEG features which were selected in the 
final algorithm align with domain knowledge, some features that have been reported to be relevant to 
chronic pain assessment were not selected. Additionally, the inherent subjectivity of the patient self-
report and the natural variability of the human brain will always pose a limit to performance, but better 
understanding of the underlying mechanisms and neurological patterns related to chronic pain will allow 
us to approach or meet this limit. Areas of future research opportunities include conducting additional 



studies to increase the size and diversity of the training database and combining EEG with other 
physiological data sources (such as heart rate or blood-based biomarkers) to further improve the 
technology and its pain intensity prediction capabilities. 
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Figure List 

1. 10-20 international EEG placement  
2. Processing Pipeline Diagram 
3. Histograms show the distribution of age, pain intensity, and gender. Heatmaps show joint 

distribution of age and pain intensity in the development (TT) dataset and the independent (HO) 
test dataset. 

4. Histograms of discriminant scores for the development dataset (left panel) and the independent 
test set (right panel). 

5. Receiver Operator Characteristic curves for the development dataset and the independent test 
set. 

6. Confusion matrices show subject counts in the development dataset (left panel) and independent 
test (right panel). 

7. Top 10 highest weighted connectivity features. 


